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We examine acoustic radiation force and torque on a small (subwavelength) absorbing isotropic particle
immersed in a monochromatic (but generally inhomogeneous) sound-wave field. We show that by
introducing the monopole and dipole polarizabilities of the particle, the problem can be treated in a way
similar to the well-studied optical forces and torques on dipole Rayleigh particles. We derive simple
analytical expressions for the acoustic force (including both the gradient and scattering forces) and torque.
Importantly, these expressions reveal intimate relations to the fundamental field properties introduced
recently for acoustic fields: the canonical momentum and spin angular momentum densities. We compare
our analytical results with previous calculations and exact numerical simulations. We also consider an
important example of a particle in an evanescent acoustic wave, which exhibits the mutually orthogonal
scattering (radiation-pressure) force, gradient force, and torque from the transverse spin of the field.
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Introduction.—Optical and acoustic radiation forces and
torques are of great importance from both practical and
fundamental points of view. On the one hand, these
mechanical manifestations of the radiation power underpin
optical and acoustic manipulations of small particles [1–6],
atomic cooling [7–9], optomechanics [10], acoustofluidics
[11,12], etc. On the other hand, radiation forces and torques
reveal the fundamental momentum and angular-momentum
properties of the optical and sound wave fields [13–23].
Since Kepler’s observation of the comet tail and early

theoretical works by Euler and Poynting [13,14], the
studies of optical and acoustic momentum and forces were
developed in parallel ways. Remarkably, despite numerous
works calculating radiation forces and torques acting on
various small particles in optics [24–30] and acoustics [31–
41], the explicit proportionality of the force and torque to
the local wave momentum and spin angular momentum
densities was properly established in optics only recently
[42–51]. The reason for this is that, in generic inhomo-
geneous wave fields, the force and torque on an isotropic
small absorbing particle are proprtional to the canonical
momentum and spin densities rather than the Poynting
(kinetic) momentum and angular momentum commonly
used for many decades [45–48,50,52–54].
In acoustics, such explicit connection between the

radiation force (torque) and momentum (spin) in generic
inhomogeneous fields has not been described so far.
Moreover, the concepts of the canonical momentum and
spin angular momentum densities in sound wave fields
have been introduced only in very recent works [55–58].
In this Letter, we provide a simple yet accurate theory of

acoustic forces and torques on small (subwavelength)

absorbing isotropic particles in generic monochromatic
acoustic fields. By employing methods well-established
in optics and involving the monopole and dipole polar-
izabilities of the particle (determined by the leading terms
in the Mie scattering problem), we derive simple analytical
expressions for the acoustic forces and torque. Most
importantly, these expressions indeed expose the intimate
relation to the canonical momentum and spin densities in
the acoustic field. We show that our results agree with
specific previous calculations and exact numerical simu-
lations. We illustrate our general theory with an explicit
example of the forces and torque on a small particle in an
evanescent acoustic wave.
Properties of acoustic fields.—We will deal with mono-

chromatic but arbitrarily inhomogeneous acoustic fields of
frequency ω in a homogeneous dense medium (fluid or
gas). The complex pressure and velocity fields, pðrÞ and
vðrÞ, obey the wave equations [59]

iωβp ¼ ∇ · v; iωρv ¼ ∇p; ð1Þ
where the medium is characterized by the compressibility
β, the mass density ρ, and the speed of sound c ¼ 1=

ffiffiffiffiffi
ρβ

p
.

We will characterize the dynamical properties of the
acoustic wave field by its energy, canonical momentum,
and spin angular momentum densities. The energy density
reads [59]:

W ¼ 1

4
ðβjpj2 þ ρjvj2Þ≡WðpÞ þWðvÞ: ð2Þ

The canonical momentum and spin densities of acoustic
fields were introduced very recently [56–58]:
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P ¼ 1

4ω
Im½βp�∇pþ ρv� · ð∇Þv�≡ PðpÞ þ PðvÞ; ð3Þ

S ¼ ρ

2ω
Imðv� × vÞ; ð4Þ

where ½v� · ð∇Þv�i ≡ Σjv�j∇ivj [42].
The energy (2) and momentum (3) densities are

represented as symmetric sums of the pressure- and
velocity-related contributions, indicated by the correspond-
ing superscripts. This is similar to the symmetric electric-
and magnetic-field contributions in electromagnetism
[42,45–48,52,54,60]. In contrast, the spin density (4) has
only the velocity contribution because the scalar pressure
field cannot generate any local vector rotation.
Note that the canonical momentum determines the orbital

angular momentum density L ¼ r × P [45,48,52,53,58],
and that the more familiar kinetic momentum density (the
acoustic analog of the Poynting momentum) is given by
Π ¼ Pþ 1

4
∇ × S ¼ ð1=2c2ÞReðp�vÞ [58,59]. The equiva-

lence of the canonical and kinetic momentum and angular
momentum quantities appears for their integral values
for localized acoustic fields: hPi ¼ hΠi and hSi þ hLi ¼
hr ×Πi [45,48,52,53,58], where the angular brackets stand
for spatial integration. However, here we are interested in
local rather than integral field properties, which are very
different in the canonical and kinetic pictures; below we
show that it is the canonical quantities (3) and (4) that
correspond to the force and torque on small particles.
Interaction with a small particle.—The most straightfor-

wardway to detect themomentumand angularmomentumof
awave field is to measure the force and torque it produces on
a probe particle [13–22,43–46,48–51,56,61]. Therefore, we
consider the interaction of a monochromatic acoustic wave
with a small (subwavelength) spherical isotropic particle of
the radiusa, density ρ1 and compressibility β1, with its center
at r ¼ r0. We allow the particle to be absorbing; i.e., the
parameters fρ1; β1g are generally complex.
The wave-particle interaction is directly related to the

wave scattering problem. For small isotropic particles, the
scattered field is conveniently represented by a multipole
expansion [62–64], where the small parameter is ka ≪ 1
(k ¼ ω=c is the wave number). For electromagnetic waves,
the leading term is the dipole one [1–4,24–26], because the
monopole cannot radiate transversal waves. In contrast, for
longitudinal acoustic waves, the leading terms are the
monopole and dipole ones, and these generally have the
same order in ka [11,31]. Therefore, a small particle in an
acoustic wave field can be approximated by a monopole
and dipole, which are induced by the incident field and are
interacting with this field (so the interaction is quadratic
with respect to the field).
The oscillating monopole and dipole modes of the

particle are schematically shown in Fig. 1. The monopole
mode is associated with the isotropic compression or
expansion of the sphere, while the dipole mode represents

oscillations of the particle position along certain direction.
It is easy to see that these modes can be excited by the
oscillating pressure p and velocity v fields, respectively.
Therefore, the induced monopole and dipole moments of
the particle can be written as:

Q ¼ −iωβαmpðr0Þ; D ¼ αdvðr0Þ; ð5Þ
where, following optical terminology, αm and αd are the
monopole and dipole polarizabilities of the particle, and
the prefactor −iωβ in the monopole term is introduced for
the convenience in what follows and equal dimensionality
of the polarizabilities. Comparing the leading terms of the
multipole expansion of the acoustic Mie scattering problem
with the standard expressions for the acoustic monopole
and dipole radiation [63,64], we find the expressions for the
polarizabilities (see the Supplemental Material [65]):

αm ¼ −
4πi
k3

a0 ≃
4π

3
a3ðβ̄ − 1Þ;

αd ¼ −
4πi
k3

3a1 ≃
4π

3
a3

3ðρ̄ − 1Þ
2ρ̄þ 1

: ð6Þ

Here, ρ̄ ¼ ρ1=ρ and β̄ ¼ β1=β are the relative density and
compressibility of the particle, a0 and a1 are the first two
Mie scattering coefficients, and we approximated these
coefficients by the leading ðkaÞ3 term in ka ≪ 1 (see the
Supplemental Material [65]). Naturally, the monopole
and dipole polarizabilities are related to the differences
in the compressibilities and mass densities between the
particle and the surrounding medium, respectively. These
differences induce relative compression and shift of the
particle as shown in Fig. 1.
Absorption rate, force, and torque.—The interaction of

the induced monopole and dipole moments of the particle
with the acoustic field can be described via the minimal-
coupling model between the moments (5) ðQ;DÞ and the

FIG. 1. The monopole and dipole oscillatory modes of a
spherical particle. These modes are associated with an isotropic
compression or expansion and a linear oscillatory motion of the
particle, which are induced by the oscillating scalar pressure p
and vector velocity v fields, respectively.
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fields ðp; vÞ. Introducing the proper dimensional coeffi-
cients, the complex interaction energy takes the form
Wint ¼ 1

2
½ði=ωÞQ�p − ρD� · v�. Notably, this energy is

precisely equivalent to the energy of the electric dipole
D and charge Q in the electric field E ¼ ρv and the
corresponding electric potential Φ ¼ iω−1p (E ¼ −∇Φ).
The interaction can be characterized by the rates of the

energy, momentum, and angular momentum transfer
between the field and the particle, which are quantified
by the absorption rate, radiation force, and radiation torque,
respectively [46]. First, the absorption rate is determined by
the imaginary part of the interaction energy:

A¼ω ImðWintÞ¼ 2ω
h
ImðαmÞWðpÞ þ ImðαdÞWðvÞ

i
: ð7Þ

It is naturally proportional to the imaginary parts of the
particle polarizabilities (6) (and, hence, of the parameters ρ̄
and β̄) and to the corresponding pressure- and velocity-
related energy densities (2) of the field.
Second, the radiation force is associated with the

gradient of the real part of the interaction energy and
can be written as [3,4,26,28,29,46]:

F¼−
1

2
Re
�
i
ω
Q�∇p−ρD� ·ð∇Þv

�
¼FgradþFscat: ð8Þ

Here the gradient and scattering parts are related to the real
and imaginary parts of the particle polarizabilities:

Fgrad ¼ ReðαmÞ∇WðpÞ þ ReðαdÞ∇WðvÞ; ð9Þ

Fscat ¼ 2ω
h
ImðαmÞPðpÞ þ ImðαdÞPðvÞ

i
: ð10Þ

These laconic expressions reveal the direct relation between
the scattering force (which is associated with the absorption
of phonons by the particle) and canonical momentum
density (3) of the acoustic field. Importantly, by substitut-
ing the polarizabilities (6) into Eqs. (9) and (10), one can
check that the gradient force exactly coincides with the
force found in earlier calculations for lossless particles
[11,31,36,41] (Fscat ¼ 0 in this approximation), while the
scattering-force part is equivalent to that found in recent
works [35,37] considering viscous fluids. Remarkably,
Eqs. (8) and (9) are entirely similar to the expressions
for optical radiation forces on small Rayleigh particles or
atoms [3,4,24–26,28–30,42–48]. In this manner, the elec-
tric- and magnetic-dipole terms in optical equations
[28,45–48] (related to the electric and magnetic fields E
andH) correspond to the monopole and dipole terms in the
acoustic equations (related to the pressure and velocity
fields p and v).
Using the above correspondence between the optical and

acoustic interactions, we readily find the acoustic torque on
a small particle. The isotropic monopole moment cannot
induce any torque, and the torque originates solely from the

dipole momentD of the particle. In analogy with an electric
dipole in an electric field [44–46,48,49], we obtain:

T ¼ 1

2
Re½ρD� × v� ¼ ω ImðαdÞS: ð11Þ

The very simple Eq. (11) reveals the direct connection
between the spin angular momentum density (4) of the
acoustic field and the radiation torque on a small absorptive
particle. To the best of our knowledge, this equation has not
been derived before. This general connection (entirely
similar to the optical case) is very important, because it
was implied without rigorous grounds in the very recent
experiment measuring acoustic spin [56]. Furthermore, this
connection can be seen by comparing very recent numerical
simulations of the acoustic torque and analytical calcula-
tions of the spin density in the particular case of acoustic
Bessel beams [40,58]. Having the simple expression (11),
acoustic torques on subwavelength isotropic particles can
be readily found analytically in an arbitrary acoustic field.
Equations (7)–(11) are the main results of our work. Even

though some of these are equivalent to the previously known
expressions (such as gradient force on lossless particles),
here the acoustic absorption, forces, and torque are for the
first time presented in a unified and physically clear form.
All these quantities are determined by the fundamental
energy, momentum, and angular-momentum properties (2)–
(4) of the field, as well as by the monopole and dipole
particle polarizabilities (5) and (6). Note that all the
quantities (6)–(11) behave as ∝ ðkaÞ3, i.e., proportionally
to the volume of the particle. This makes perfect physical
sense and allows one to discriminate between various calcu-
lations of radiation forces and torques [see, e.g., torques in
[33,39] with dependences ∝ ðkaÞ2 and ∝ ðkaÞ5, respec-
tively]. For larger or lossless [Imðαm;dÞ ¼ 0] particles, one
has to involve higher-order terms in ka (see below).
Example: Forces and torques in an evanescent acoustic

field.—To illustrate the above general theory, we consider a
single evanescent acoustic wave with the pressure and
velocity fields given by [56,57]:

p ¼ Aeikzz−κx; v ¼ A
ωρ

 iκ
0

kz

!
eikzz−κx: ð12Þ

Here, A is a constant amplitude, kz is the longitudinal
propagation constant, and κ is the vertical decay constant.
This example is very simple yet generic. On the one hand,
the evanescent wave can be treated as a plane wave with the
complex wave vector k ¼ kzz̄þ iκx̄ (the overbar denotes
the unit vectors of the corresponding axes) [45,48] (see
Fig. 2), which allows one to use the exactly solvable Mie
scattering problem for numerical calculations of forces and
torques [82]. On the other hand, the evanescent wave is
inhomogeneous, and it carries the intensity gradient ∇W,
canonical momentum P, and spin S, which exert the
gradient force (9), scattering forces (10), and the radiation
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torque (11) in the three mutually orthogonal directions
[45,48,54,56,57] (see Fig. 2).
Figure 3 shows the dependences of these two forces and

torque in the field (12) on the dimensionless particle radius
ka for the cases of absorptive and lossless particles. We plot
analytical results from Eqs. (9)–(11), valid only to leading
order, ∝ ðkaÞ3, and the exact numerical calculations using
the Mie scattering solutions together with the momentum
and angular momentum fluxes, similar to the Maxwell
stress tensor approach in optics (see the Supplemental
Material [65]). Note that the forces and torque are nor-
malized by F0 ¼ πβjAj2a2=2 and T0 ¼ F0=k, so the
analytical dependences (9)–(11) are linear in Fig. 3. For
an absorptive particle, the analytical approximation agrees
with the exact calculations for ka≲ 0.3.
To improve the accuracy of the analytical expressions

(9)–(11), one can use the exact expressions for the Mie
scattering coefficients a0 and a1 in Eq. (6) (see the
Supplemental Material [65]). In this case, the monopole
and dipole terms include all orders in ka, although the
higher-order multipole terms are still neglected. The
corresponding refined analytical dependences are shown
in Fig. 3 by dashed curves, and these agree with the exact
numerical calculation for ka≲ 0.8.
Note important peculiarities (also known in optics) of the

scattering force and torque on lossless particles. First, the
scattering (radiation-pressure) force vanishes only in
the ðkaÞ3 order but is generally nonzero (see Fig. 3). The
higher-order radiation-pressure force originates from the so-
called “radiation friction” effect, which is described by small
higher-order imaginary parts in the monopole and dipole
polarizabilities [29,83,84], and also from the interference
between the monopole and dipole fields [29]. Using the Mie
coefficients a0 and a1, we find that the higher-order imagi-
nary parts of the polarizabilties can be written as
α̃m ≃ αm þ ðik3=4πÞα2m and α̃d ≃ αd þ ðik3=12πÞα2d, where

αm;d are the leading-order polarizabilities (6) (see the
Supplemental Material [65]). Second, the radiation torque
vanishes exactly for lossless spherical particles of any radius
(Fig. 3). This is also similar to optics, where the radiation-
friction effect produces the force but not the torque on the
particle [27,49]. Thus, the simplest analytical approximations
(6) and (11) coincide with the exact calculations in this case.
Conclusion.—We have presented a general theory of the

interaction of a monochromatic acoustic wave field with a

FIG. 2. A small spherical particle in the acoustic evanescent
field (12), which can be treated as a plane wave with the complex
wave vector k ¼ kzz̄þ iκx̄. The gradient and scattering (radia-
tion pressure) forces (9) and (10) are produced by the energy
density gradient and canonical momentum (the real part of the
wave vector), respectively. The torque (11) is produced by the
transverse spin of the evanescent field [45,48,54,56,57].

FIG. 3. Exact numerical and approximate analytical calcula-
tions of the gradient force, scattering (radiation-pressure) force,
and torque on a spherical particle in the acoustic evanescent field
(see Fig. 2). The field and particle parameters are these:
kz=k ¼ 1.34, κ=k ¼ 0.89, ρ̄ ¼ 2þ 0.5i, β̄ ¼ 3þ 0.7i (the imagi-
nary parts are omitted in the lossless-particle case). See dis-
cussion in the text.
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small absorbing spherical particle. Our theory is based on
the complex monopole and dipole polarizabilities of the
particle, and it provides simple analytical expressions for
the absorption rate, radiation forces (including the gradient
and scattering forces), and radiation torque. Most impor-
tantly, these expressions reveal close connections with the
fundamental local properties of the acoustic field: its
energy, canonical momentum, and spin angular momentum
densities [56–58]. Thus, one can now use acoustic forces
and torques to measure the canonical momentum and spin
densities of sound waves, and vice versa: use canonical
momentum and spin to predict radiation forces and torques.
Our work also unifies theoretical approaches to the acoustic
and optical field-particle interactions and reveals close
parallels between these. This provides a more fundamental
understanding and new physical insights into these impor-
tant problems.
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