
 

Klein-Gordon Representation of Acoustic Waves
and Topological Origin of Surface Acoustic Modes

Konstantin Y. Bliokh1,2 and Franco Nori1,3
1Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan

2Nonlinear Physics Centre, RSPE, The Australian National University, Canberra, ACT 0200, Australia
3Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 16 February 2019; published 1 August 2019)

Recently, it was shown that surface electromagnetic waves at interfaces between continuous
homogeneous media (e.g., surface plasmon-polaritons at metal-dielectric interfaces) have a topological
origin [K. Y. Bliokh et al., Nat. Commun. 10, 580 (2019)]. This is explained by the nontrivial topology
of the non-Hermitian photon helicity operator in the Weyl-like representation of Maxwell equations.
Here we analyze another type of classical waves: longitudinal acoustic waves corresponding to spinless
phonons. We show that surface acoustic waves, which appear at interfaces between media with opposite-
sign densities, can be explained by similar topological features and the bulk-boundary correspondence.
However, in contrast to photons, the topological properties of sound waves originate from the non-
Hermitian four-momentum operator in the Klein-Gordon representation of acoustic fields.
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Introduction.—Maxwell electromagnetism, elasticity,
and acoustics describe various classical waves via different
types of wave equations [1–3]. Analogies between these
waves are very fruitful and repeatedly resulted in the mutual
export of ideas between optics and acoustics. To name a
few, acoustic crystals or metamaterials [4–7], vortex beams
[8–10], and topological systems [11–15] were developed
in parallel with their optical counterparts [16–28] and
attracted great attention in the past decades.
Surface waves at interfaces between continuous media,

such as surface plasmon polaritons, are highly important
for modern optics [17–19,29–32]. However, there are only
few works analyzing acoustic analogs of such waves
[33–36]. The reason for this is that such waves (for linear
longitudinal sound fields) appear only at interfaces with
negative-density media, i.e., acoustic metamaterials [6,7].
Surface electromagnetic waves also require media with
negative parameters (permittivity or permeability), but
there are natural media with such parameters, e.g., metals.
Nonetheless, here we explore the fundamental origin of
surface acoustic modes, and show that this reveals non-
trivial intrinsic properties of the acoustic wave equations.
Surface modes are particularly important in the context

of topological quantum or classical-wave systems, which
are currently attracting enormous attention [27,28,37–40].
Indeed, the topological approach provides a direct link
between the nontrivial intrinsic properties of the bulk
Hamiltonian and the appearance of surface modes at
interfaces between topologically different media.
Recently we have shown [41] that electromagnetic

surface waves and their domains of existence can be
explained by the fundamental topological origin and the
bulk-boundary correspondence. Namely, analyzing the

relativistic Weyl-like form of Maxwell equations, one
can see that the photon helicity operator (i) is generally
non-Hermitian, even in idealized lossless media, and
(ii) has a nontrivial topological structure involving two
medium parameters: the permittivity ε and permeability μ.
According to this approach, the helicity eigenvalues expe-
rience discrete rotations in the complex plane, described by
the topological bulk indices w ¼ 1

2
½1 − sgnðεÞ; 1 − sgnðμÞ�,

and the difference of these Z2 indices between the two
media provide the number of surface electromagnetic
modes [one (two) mode when one (two) index changes],
Fig. 1(a).
Notably, the equations for sound waves in fluids or gases

also have a form similar to Maxwell equations and also
involve two medium parameters: the density ρ and com-
pressibility β. Many electromagnetic and acoustic quan-
tities (e.g., the energy density, energy flux density, etc.)
have similar forms described by the substitution of the
Maxwell (electric, magnetic) and acoustic (velocity, pres-
sure) fields: ðE;HÞ ↔ ðv; PÞ, as well as the medium
parameters: ðε; μÞ ↔ ðρ; βÞ [36,42]. However, surprisingly,
surface acoustic waves exist only at interfaces where ρ
changes its sign (but no additional mode appears at
interfaces where β changes its sign) [33–36], Fig. 1(b).
This breaks the symmetry between acoustic and Maxwell
equations.
In this Letter, we explain this enigmatic property by

revealing the fundamental topological origin of surface
acoustic waves. Akin to the Maxwell case [41], this requires
representing the equations of acoustics in the fundamental
field-theory form. However, since phonons are spinless
particles, this corresponds to the Klein-Gordon (KG) rather
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than the Weyl equation. In contrast to previous Klein-
Gordon approaches to acoustics [43–46], here we focus
on the “relativistic” four-momentum operator in the problem
rather than on the wave equation itself. Remarkably, we find
that this operator is generally non-Hermitian (even in
idealized lossless media with real-valued parameters) and
it provides a single Z2 topological bulk index determined by
sgnðρÞ. According to this, surface waves are also generally
“non-Hermitian”, i.e., can have either real or imaginary
frequency and propagation constant. A comparison between
the electromagnetic Weyl and acoustic KG formalisms is
provided in the Supplemental Material [47].
Klein-Gordon form of acoustic wave equations.—We

start with the acoustic wave equations for the real-valued
pressure Pðr; tÞ and velocity vðr; tÞ fields [3]:

β
∂P
∂t ¼ −∇ · v; ρ

∂v
∂t ¼ −∇P: ð1Þ

These equations obey an acoustic analog of the electro-
magnetic Poynting theorem ∂tW þ∇ ·Π ¼ 0, where

W ¼ 1

2
ðβP2 þ ρv2Þ and Π ¼ Pv ð2Þ

are the acoustic energy density and energy flux density,
respectively.
On the one hand, Eqs. (1) describe vector waves,

characterized by one scalar (pressure) and one vector
(velocity) fields. These scalar and vector degrees of free-
dom are equally important, as can be seen from their
symmetric contributions to the conserved quantities (2). In
quantumlike terminology, one can say that acoustic waves
are described by the four-component “wave function”
Ψμ ¼ ðP; vÞ. On the other hand, the acoustic waves are
longitudinal waves, which correspond to spinless quantum

particles: phonons. It is known from field theory that
spinless particles are described by a single scalar field
and the KG equation.
The vector acoustic theory can indeed be reduced to

the KG description using a single scalar field ψðr; tÞ.
We employ the standard KG field Lagrangian L ¼
1
2
½c−2ð∂tψÞ2 − ð∇ψÞ2�, where c2 ¼ ðρβÞ−1 is the squared

speed of sound. The equation of motion, energy density,
and energy flux density for this Lagrangian read [49]:

c−2∂2
tψ −∇2ψ ¼ 0; ð3Þ

W ¼ 1

2
½c−2ð∂tψÞ2 þ ð∇ψÞ2�; Π ¼ −∂tψ∇ψ : ð4Þ

Comparing the vector acoustic equations (1) and (2) with
the scalar KG equations (3) and (4), we find that these are
equivalent, when the vector and scalar representations are
related by P ¼ − ffiffiffi

ρ
p ∂tψ and v ¼ ð1= ffiffiffi

ρ
p Þ∇ψ . Thus, the

KG wave function is similar to the scalar velocity potential
φ, v ¼ ∇φ, widely used in acoustics [3], but the prefactors
involving

ffiffiffi

ρ
p

will play a crucial role in our theory below.
To provide an elegant representation of the KG forma-

lism, we introduce “four-vectors” aμ ¼ ðaðPÞ; aðvÞÞ, aμ ¼
ðaðPÞ;−aðvÞÞ, where the timelike and spacelike components
are related to the pressure and velocity degrees of freedom,
and the metric with signature ðþ;−;−;−Þ is used. Of
course, the acoustic equations (1) are not relativistic and
Lorentz covariant, but using the relativistic formalism,
natural for the KG equation, facilitates the consideration.
To describe scalar and three-vector properties, we introduce
the following bilinear operations for four-vectors:

aμ • bμ ≡ βaðPÞbðPÞ − ρaðvÞ · bðvÞ;

aμ ⊗ bμ ≡ aðPÞbðvÞ − aðvÞbðPÞ: ð5Þ

The first operation (5) is a scalar product modified by the
scaling coefficients β and ρ, to provide the correct dimen-
sionality, while the second operation is a “cross product,”
which produces a three-vector (note that aμ ⊗ aμ ¼ 0).
Using these notations, the KG equation and the relation

between the KG wave function and physical fields can be
written as

ðp̂μ • p̂μÞψ ¼ ð−c−2∂2
t þ∇2Þψ ¼ 0; ð6Þ

Ψμ ¼ ip̂μψ ; p̂μ ¼
�

i
ffiffiffi

ρ
p ∂t;

−i∇
ffiffiffi

ρ
p

�

; Ψμ ≡ ðP; vÞ: ð7Þ

Here, the operator p̂μ should be associated with the four-
momentum in the problem. Equations of motion (1) also
take a very laconic form:

p̂μ • Ψμ ¼ 0; p̂μ ⊗ Ψμ ¼ 0: ð8Þ

FIG. 1. Phase diagrams showing the domains of existence of
the electromagnetic (a) and acoustic (b) surface modes at
interfaces between continuous media. The electromagnetic dia-
gram is explained in [41] (εr and μr are the relative permittivity
and permeability of the two media), while the acoustic one is
described by the topological Z2 index (10) and bulk-boundary
correspondence (11) (ρr and βr are the relative density and
compressibility of the two media).
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Here the first equation is obtained from Eqs. (6) and (7),
while the second equation is a consequence of Eq. (7) and
p̂μ ⊗ p̂μ ¼ 0. Thus, the acoustic KG equation (6) uses only
the first equation of motion (1), while the second equation
of motion (yielding ∇ × v ¼ 0) follows from the defini-
tions (v ∝ ∇ψ). This is similar to the Weyl-like form
of Maxwell equations, where equations ∇ · E ¼ 0 and
∇ ·H ¼ 0 are not used [41] (see Supplemental Material
[47]). Finally, the acoustic energy density and energy flux,
Eqs. (2) and (4), also take simple forms:

W ¼ 1

2
Ψμ • Ψμ; Π ¼ 1

2
Ψμ ⊗ Ψμ: ð9Þ

Equations (3)–(9) provide the KG representation of
acoustic equations (1) and (2), both in terms of the scalar
KG wave function ψ and vector wave function Ψμ

involving real physical fields (cf., the electromagnetic
Weyl representration in the Supplemental Material [47]).
Both of these are important, because the real physical fields
ðP; vÞ determine the boundary conditions (i.e., the corre-
sponding components are continuous at interfaces), while
the KG wave function ψ provides the fundamental field-
theory representation of the problem. One can see that
Eqs. (3)–(9) are not relativistic invariant, because the only
relativistic-invariant four-vector equations in the Klein-
Gordon problem are [49] p̂μψ ¼ mΨμ, p̂μΨμ ¼ mψ ,
ðp̂μp̂μ −m2Þψ ¼ 0, where m is the mass, which obviously
differs from Eqs. (6)–(8).
Topological non-Hermitian origin of surface modes.—

The most remarkable feature of the above formalism is
contained in Eq. (7). Namely, while all other equations are
fairly symmetric with respect to the ρ and β parameters,
the four-momentum operator p̂μ involves only the density ρ
but not the compressibility β (cf., the electromagnetic
four-momentum or helicity involving both ε and μ in the
Supplemental Material [47]). This operator is the key
operator in the KG formalism, and it is this operator (rather
than the “Hamiltonian” p̂μ • p̂μ) which should be consid-
ered for the topological classification of acoustic media.
Remarkably, the four-momentum operator is generally

non-Hermitian with respect to the standard inner product,
because in negative density media, ρ < 0, it has purely
imaginary eigenvalues. In complete analogy with the non-
Hermitian helicity operator for photons [41,50], the p̂μ

operator is singular at ρ ¼ 0, which separates topologically
different phases with real (ρ > 0) and imaginary (ρ < 0)
eigenvalues. It should be emphasized that the “anomaly” of
the four-momentum in negative-density media is not due to
the imaginary wave vector k or frequency ω (which also
occur in negative-β media), but is due to imaginary
proportionality factors between the four-momentum eigen-
values pμ and the four-wave-vector kμ ¼ ðω;kÞ. The same
topological difference between the ρ > 0 and ρ < 0 zones,
separated by the ρ ¼ 0 singularity, appears in the

connection between the Klein-Gordon wave function ψ
and real physical fields ðP; vÞ ¼ ip̂μψ .
Then, entirely similar to [41] and a number of recent

results on the topological properties of non-Hermitian
systems [51–54], we note that the topologically different
cases of purely real and purely imaginary four-momentum
eigenvalues can be labeled by the Z2 topological bulk
invariant for acoustic media:

wðρÞ ¼ 1

2
½1 − sgnðρÞ� ∈ f0; 1g: ð10Þ

Furthermore, according to the bulk-boundary correspon-
dence, an interface between media “1” and “2” supports N
surface modes, where

N ¼ jwðρ2Þ − wðρ1Þj ¼ jwðρrÞj ∈ f0; 1g; ð11Þ

where ρr ¼ ρ2=ρ1 is the relative density of the media. This
means that there is a single surface acoustic mode at
interfaces with sgnðρrÞ ¼ −1 (topologically different
media) and no surface modes at interfaces with sgnðρrÞ ¼
1 (topologically equivalent media), as shown in Fig. 1(b).
These findings are in agreement with the topological
properties of various non-Hermitian systems [51–54]
where topological transitions occur at exceptional points
where the spectrum of the non-Hermitian operator changes
from real to imaginary. The only principal difference here is
that most of the previous studies considered non-Hermitian
Hamiltonian operators (i.e., systems with physical losses or
gain), while here, similar to [41] (see also Supplemental
Material [47]), we use another key operator, the four-
momentum of phonons. Akin to the helicity of photons, this
operator can be mathematically non-Hermitian even in
idealized lossless systems.
An important feature of the non-Hermitian topological

approach is that the surface modes are also generally “non-
Hermitian.” This means that these can have complex
(actually, either real or imaginary) frequencies and/or
propagation constants. We will refer to surface modes with
real and imaginary frequency/propagation characteristics as
propagating and evanescent surface waves, respectively.
For a planar interface between two media, the parameters of
the surface acoustic mode are determined by the following
equations [33,34,36]:

κ1
ρ1

þ κ2
ρ2

¼ 0; ð12Þ

k2surf ¼ κ21
ρrðβr − ρrÞ
ρrβr − 1

; ω2
surf ¼ c21κ

2
1

ð1 − ρ2rÞ
ρrβr − 1

; ð13Þ

where κ1;2 > 0 are the spatial-decay (away from the inter-
face) constants in the two media, ωsurf and ksurf are the
frequency and propagation constant of the surface wave,
c1 ¼ 1=

ffiffiffiffiffiffiffiffiffi

ρ1β1
p

is the speed of sound in the first medium,
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and βr ¼ β2=β1 is the relative compressibility.
Equation (12) requires ρr < 0, which is exactly the topo-
logical condition (10) and (11). This condition determines
the domain of existence of the surface mode, Fig. 1(b),
which is robust (topologically protected) and independent
of the shape of the interface. Note that Eq. (12) actually
follows from the second equation (1) (which determines the
longitudinal character of sound waves, ∇ × v ¼ 0) and the
continuity of the pressure and normal velocity component.
At the same time, Eqs. (13) determine specific parameters
of the surface mode, which are not robust and can vary with
the shape of the interface.
Figure 2 shows the zones of propagating (ω2

surf > 0,
k2surf > 0) and evanescent (ω2

surf < 0 or/and k2surf < 0) sur-
face acoustic modes, which follow from Eqs. (13). Usually,
only propagating surface modes are considered and
observed experimentally. Moreover, evanescent modes
with imaginary frequencies (ω2

surf < 0) cannot exist in
the physical lossless systems considered here [55].
Indeed, in lossless media, the frequency spectrum
must be symmetric with respect to the Reω axis, but
exponentially growing solutions with Imω > 0 cannot
exist in systems without gain. Nonetheless, these solutions
are formally present in the acoustic equations for mono-
chromatic fields vðr; tÞ → Re½vðrÞe−iωt� and Pðr; tÞ →
Re½PðrÞe−iωt�, where vðrÞ and PðrÞ are now complex field
amplitudes. Notably, there are also evanescent surface
modes with real frequencies and imaginary propagation

constants (ω2
surf > 0, k2surf < 0), which can appear in reality.

Such modes can occur at interfaces between two nontrans-
parent media with opposite-sign densities and compress-
ibilities: c21;2 < 0, ρr < 0, βr < 0.
It should be emphasized that here we deal with an

idealized situation of lossless and nondispersive media. In
reality, negative parameters, necessary for the appearance
of surface modes, can be achieved only in acoustic
metamaterials, i.e., dispersive media. This also leads to
inevitable presence of losses. Therefore, real physical
systems with surface modes should be described by a
complex frequency-dependent density ρðωÞ and compress-
ibility βðωÞ. Nonetheless, in many cases, the diagrams
obtained for lossless nondispersive media are sufficient to
obtain the main properties of surface modes, such as
surface plasmon polaritons [29–32]. Indeed, Eqs. (12)
and (13) remain valid with the substitution fρ; βg →
fReρðωÞ;ReβðωÞg, provided that the imaginary parts of
these parameters are negligible. In this case, the dispersion
can only modify the parameters of the non-Hermitian
surface modes shown in Fig. 2, but it does not affect
the fundamental topological origin of these modes,
Eqs. (10)–(12) and Fig. 1(b). This is because the dispersion
only modifies the inner product of the wave function in the
problem, but does not affect the operators which are
responsible for the topological classification of media
[41,50,56–58].
Discussion.—We have shown that equations for acoustic

waves in fluids or gases allow the relativisticlike Klein-
Gordon representation. This representation breaks the
symmetry between the pressure and velocity degrees of
freedom and is characterized by the nontrivial “four-
momentum” operator. Importantly, in contrast to other
fundamental quantities, this operator depends only on
one parameter (density ρ but not compressibility β), and
it is generally non-Hermitian (even in idealized lossless
media with real parameters). The ρ ¼ 0 point splits the
parameter space into two topologically different phases
with real (ρ > 0) and imaginary (ρ < 0) four-momentum
eigenvalues. This allows one to introduce the Z2 bulk
topological index (10), the bulk-boundary correspondence
(11), and reveals the topological origin of acoustic surface
waves (analogs of surface plasmon polaritons in electro-
magnetism), Fig. 1(b). Remarkably, the non-Hermitian
nature of the four-momentum operator leads to non-
Hermitian surface modes, which can have either real or
imaginary frequencies and/or propagation constants. This
further splits the simple phase diagram Fig. 1(b) into zones
of propagating and evanescent surface modes, Fig. 2.
However, this splitting is not topologically protected and
can vary with the shape of interface and other perturbations.
This work explains the fundamental origin of acoustic

surface waves, which is present already in the simplest case
of nondispersive and lossless media. In practice, negative
medium parameters can be achieved only in dispersive, and

FIG. 2. Because of the non-Hermitian origin of surface acoustic
modes, the global domain of their existence, Fig. 1(b), is split into
zones with real and imaginary frequencies and propagations
constants. These zones differ for the cases of a transparent
(c21 > 0) and nontransparent (c21 < 0) first medium. The light-
blue zones correspond to the usual case of propagating surface
modes with real frequency and propagation constant [36]. The
separation of the propagating and evanescent surface-wave zones
is not robust (topologically protected) and can vary with proper-
ties of the interface: its shape, dispersion of the media, etc.
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therefore lossy, metamaterials. In the case of small losses,
the dispersion can modify details of the non-Hermitian
diagrams in Fig. 2, but it cannot affect the fundamental
topological properties, Eqs. (10)–(12) and Fig. 1(b). Still,
an accurate generalization of the topological consideration
to dispersive lossy media is an important task for future
studies, both in acoustics and electromagnetism. The
comparison of acoustic and electromagnetic surface waves
provides insights for both theories, highlighting their
similarities and distinctions. Both electromagnetic and
acoustic equations can be presented in the form of
relativistic wave equations: the Weyl and Klein-Gordon
ones (see Supplemental Material [47]). Furthermore, the
main operators of these equations, helicity and four-
momenta, are non-Hermitian and their topological phases
determine the phase diagrams of surface modes, Fig. 1.
There is one more classical wave theory: elasticity. It
combines features of acoustics and electromagnetism,
because there are both longitudinal (sound) and transverse
(shear, photonlike) modes. Constructing the topological
theory for elastic waves is another important and challeng-
ing problem.
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