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Overview of the Supplemental Material

The Supplemental Material (SM), which comprises several sections, can be divided in three main parts:
The first part is given in Sec. I, II where, firstly, we perform the mathematical passages needed to properly trace

out the environmental degrees of freedom in second quantization; secondly, we recast the fermionic Hamiltonian in
terms of collective spins exploiting the symmetries of the light-matter interaction. We derive the Dicke model by
reabsorbing the diamagnetic term in the photonic terms.

The second part, comprising Secs. III-IV, illustrates the details of the bosonic model, in which a Holstein-Primakoff
approximation is performed to treat the matter-like excitations. In Sec. III we derive the polariton eigenstates using a
perturbation expansion beyond the rotating-wave approximation (RWA) on the bosonic Jaynes-Cummings (JC) part
of the Hamiltonian. In Sec. IV instead we provide an alternative route, explicitly deriving the polariton eigenstates
beyond the perturbation theory used in the main text, by diagonalizing, in Sec. IV A, the full bosonic Hamiltonian,
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which contains the counter-rotating wave terms, and then deriving the transition matrix elements in terms of such
states, Sec. IV B, showing qualitative and quantitative agreement with the perturbation theory. In Sec. IV C, we also
estimate the effective photonic emission from the cavity after the polariton scattering rates.

The third part of the SM instead, comprising Sec. V, develops the fermionic model [Eq. (1) of the main text],
retaining the full nonlinearities for the matter-like excitations. Following this route, we will arrive to an expression for
the single-polariton processes involved in the multielectron ground state electroluminescence that can be compared
to the one obtained for the bosonic models. Moreover, in this formalism, we can capture more confidently also the
scattering processes involving double-polariton states. However, in this framework, we will need to develop a more
refined second-quantization theory capable of grasping the microscopic processes involved in this effect, to leading
order in perturbation theory, with light-matter states comprising both fermionic and bosonic degrees of freedom. In
order to do so, we derive a model for electron addition and subtraction, which will lead us to map the electron current
effects in terms of Dicke states with non-fixed particle number, beyond a RWA analysis.

In particular, in Sec. V, using the Dicke state formalism, we develop perturbative fermionic eigenstates in terms of
the RWA Hamiltonian of the light-matter system. In Sec. V A, we highlight the properties of the Tavis-Cummings
model eigenstates, used to derive the perturbed basis of the Dicke model. In Sec. V B, we introduce the difference
between the microscopic and macroscopic state formalism and derive the corresponding master equations. In Sec. V C,
we calculate the general transition matrix elements induced by the interaction Hamiltonian relative to the electronic
environment. In Sec. V D, we unravel the compact but cumbersome formal expression derived in Sec. V C and
specialize it to the case of ground state electroluminescence, calculating both the single-polariton and double-polariton
transition rates. Finally, in Sec. V E, we compare the fermionic results with the bosonic calculations, finding excellent
agreement.

I. TRACING OUT THE ENVIRONMENT

We begin by considering Eq. (1) of the main text,

H = ωca
†a+

∑

n

(
ω1c
†
1,nc1,n + ω2c

†
2,nc2,n

)
+D(a+ a†)2 + χ(a+ a†)

∑

n

(c†2,nc1,n + c†1,nc2,n), (S1)

which describes light-matter interaction in the model system under study. We are interested in studying the effects of
three environments on this model: a left (L) and right (R) electronic reservoir, and the extra-cavity electromagnetic
modes. The aim of this section is to compute the transition rates among eigenstates of the system induced by a generic
Hamiltonian HI = HI

el + HI
cav representing the physical interaction with the electronic and bosonic environmental

degrees of freedom. By considering HI as a perturbation over the coherent dynamics, the electron scattering rates
can be computed by using the Fermi golden rule

Γα→βel = 2π
∑

i

ρFD
i

∑

f

|〈β, f |HI
el|α, i〉|2δ(∆̃), (S2)

where α (i) and β (f) are the initial and final states for the system (environment). The fermionic part of the
environment follows a Fermi-Dirac distribution ρFD, diagonal in the basis |i〉. This distribution depends on macroscopic
parameters characterizing the reservoir, such as the temperature and chemical potential. The energy conservation
is imposed by the delta function with argument ∆̃ = ωf − ωi + ∆αβ , with ∆αβ = ωβ − ωα, where ωβ and ωα are
the final and initial frequencies of the system. Specifically, we model the interaction with the electronic reservoirs as
HI

el = HI
L +HI

R, where

HI
L = λ

∑

n,ζ

[(c1,n + c2,n)c†L;n,ζ + (c†1,n + c†2,n)cL;n,ζ ], (S3)

and similarly for HI
R, thus assuming that the energy scale, λ, is equal for the two fermionic reservoirs. The operators

cL(R);n,ζ label the annihilation operators for a fermion associated with a degree of freedom n and ζ in the left (right)

reservoir. The label ζ represents a continuum of properties, so we replace
∑
ζ →

∫
dζ ν(ζ) with a density of states ν(ζ).

*These two authors contributed equally to this work.
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By introducing a generic dispersion relation of the kind E = f(ζ) we can further write
∑
ζ →

∫
dζ ν(ζ) =

∫
dE ν(E),

so that ν(ζ) = dζ
dE ν(E) and we obtain

Γα→βel =
∑

n

Γα→βel,n (S4)

with

Γα→βel,n = 2πλ2
∑

i

ρFD
i

[∫
dE ν(E) [1− ni(E)] δ(∆̃)|〈β|(c1,n + c2,n)|α〉|2

+

∫
dE ν(E)ni(E)δ(∆̃)|〈β|(c†1,n + c†2,n)|α〉|2

]
= Γα→βout,n + Γα→βin,n , (S5)

where ni(E) counts the number of electrons with energy E in the state |i〉 of the reservoir according to the Fermi-

Dirac distribution ρFD
i . The rate Γα→βout,n (Γα→βin,n ) appearing in the r.h.s. of Eq. (S5) accounts for processes in which

the environment has one more (less) electron associated with some quantum number ζ, hence the definition of in/out
rates:

Γα→βout =
∑

n

Γα→βout,n =
∑

n

2πλ2 [1− n̄FD(−∆αβ)] ν(−∆αβ)|〈β|(c1,n + c2,n)|α〉|2, (S6a)

Γα→βin =
∑

n

Γα→βin,n =
∑

n

2πλ2n̄FD(∆αβ)ν(∆αβ)|〈β|(c†1,n + c†2,n)|α〉|2, (S6b)

where n̄FD(E) =
∑
i ρ

FD
i ni(E) is the average electron number in the left or right electronic reservoir with energy

E. In Eqs. (S4),(S5),(S6), the rates can be specified to the left and right reservoir, something we omitted above for
simplicity, but which will hereafter be labelled for clarity in the electron-current transition rates

Γα→βL(R) = Γα→βL(R),out + Γα→βL(R),in. (S7)

If the electronic reservoirs are at zero temperature, the Fermi-Dirac distribution is only a function of the chemical
potential, µL and µR respectively, such that we obtain a very compact expression relating the transition matrix
elements to the “in” and “out” electron-current transition rates

Γα→βL(R),out = Γel θ(−µL(R) −∆αβ)
∑
n |Mn

αβ |2,
Γα→βL(R),in = Γel θ(µL(R) −∆αβ)

∑
n |Mn

βα|2,
(S8)

where Γel = 2πλ2ν and θ(x) is the Heaviside function. At zero temperature it is possible to define a frequency-
independent density of states ν for the two electronic reservoirs. We recall that the electron-current transition matrix
element, introduced in Eq. (3) in the main text, reads

Mn
αβ = 〈β|(c1,n + c2,n)|α〉, (S9)

where we consider that an electron in the upper or lower band can be lost, given the fact that, as we will show in the
next Section, the light-matter ground state of the Hamiltonian in Eq. (1), also Eq. (S1), contains a superposition of
such populations.

Similarly to Eq. (S3), the interaction of the cavity field with the extra-cavity electromagnetic modes is described
by

HI
cav = λcav

∑

ζ

(a+ a†)(aζ + a†ζ), (S10)

where λcav is the photon-photon coupling strength and aξ is the annihilation operator for the ξth extra-cavity mode.
By analyzing this formula, in analogy to what done for the electronic environment, we can derive the cavity-photon
emission rate,

Γα→βcav = 2π
∑

i

ρBE
i

∑

f

|〈β, f |HI
cav|α, i〉|2δ(∆̃) = 2πλ2

cav[n̄BE(∆αβ)νEM(∆αβ) + [1 + n̄BE(−∆αβ)] νEM(−∆αβ)]M cav
αβ

2,

(S11)
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where ρBE
i is the Bose-Einstein distribution for photons in the state |i〉 and n̄BE counts the average number of photons

in the electromagnetic reservoir. Defining the cavity-photon transition matrix elements as

M cav
αβ = 〈β|(a+ a†)|α〉. (S12)

At zero temperature and for a frequency-independent photonic density of states, νEM(ω) ' νEM, we obtain

Γα→βcav = ΓcavM
cav
αβ

2, (S13)

where Γcav = 2πλ2
cavνEM is the characteristic emission rate of the photonic cavity.

II. DICKE MODEL

We can rewrite Eq. (S1) in terms of spin angular momentum operators. We define S± =
∑
n S
±
n , with S+

n = c†2,nc1,n
and thus

2S3 = 2
∑

n

S3
n =

∑

n

σz,n =
∑

n

[S+
n , S

−
n ] =

∑

n

(
c†2,nc2,n − c†1,nc1,n

)
. (S14)

We immediately find that the total angular momentum, S2, is a symmetry of the model. We obtain

H = ωca
†a+ ω0S

3 + χ(a+ a†)(S− + S+) +D(a+ a†)2 + Ẽ0(N,N2), (S15)

where we shifted the energy to absorb a term

E0(N,N2) = ω1N + 2ω1N2 + ω0(jN +N2) (S16)

with jN = N/2. We performed a fermion-to-spin transformation which, with respect to Eq. (S1), involves no approx-
imations. In order to absorb the diamagnetic term, we rewrite the bosonic operator for the light field as a displaced
operator,

ã = cosh(λ)a+ sinh(λ)a†, (S17)

which allows us to rewrite the Hamiltonian of Eq. (1) in the main text, repeated as

HN,N2 = ω̃cã
†ã+ ω0S

3 + χ̃(ã+ ã†)(S− + S+) + Ẽ0(N,N2), (S18)

where

ω̃c = ωce
2λ, (S19)

χ̃ = χe−λ, (S20)

Ẽ0 =
ωc
2

(
e−2λ − 1

)
+ E0, (S21)

λ =
1

2
arctanh[D/(ωc + 2D)]. (S22)

Renaming ã → a, ω̃c → ωc, and χ̃ → χ as implicitly assumed elsewhere in the text, and reabsorbing the constant
term Ẽ0, we obtain Eq. (2) of the main text, the Hamiltonian of the Dicke model,

H = ωca
†a+ ω0S

3 + χ(a+ a†)(S− + S+). (S23)

III. BOSONIC MODEL: PERTURBATIVE THEORY OF THE BOSONIC MODEL

In the main text, the polariton modes of the JC model are defined in terms of the rotating-wave part of the bosonic
Hamiltonian, Eq. (4). Here we illustrate explicitly the passages involved to derive the polariton eigenstates involved
in the transition processes, developing them perturbatively onto the bosonic Jaynes-Cummings polariton eigenstates.
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A. Holstein-Primakoff transformation

The introduction of bosonic operators for the matter-excitations, S+ =
√
Nb† + O(|b†b/

√
N |), and Sz = b†b − jN

allow us to rewrite Eq. (S23) as

Hbos = ωca
†a+ ω0b

†b+ gN (a† + a)(b+ b†), (S24)

by performing an approximation that is valid in the dilute regime, |b†b/
√
N | � 1. In the following subsections we

provide the explicit derivation of the perturbed polariton eigenstates on the RWA part of this bosonic Hamiltonian.

B. Perturbative eigenstates of the bosonic model

In the main text, we restricted ourselves to diagonalize the Jaynes-Cummings part of the bosonic Hamiltonian in
Eq. (4), rewritten above as Eq. (S24), i.e.,

HJC = ωca
†a+ ω0b

†b+ gN (a†b+ b†a), (S25)

whose kernel reads

H̄ =



ωc 0 gN 0
0 −ωc 0 −gN
gN 0 ω0 0
0 −gN 0 −ω0


 . (S26)

and its polariton modes are given as

p†± = α±a a
† + α±b b

†, (S27)

with

α±a = ±
(√

4 + x2 ∓ x
2
√

4 + x2

) 1
2

,

α±b =

(
2√

4 + x2
(√

4 + x2 ∓ x
)
) 1

2

,

(S28)

where

x = ∆/gN (S29)

with

∆ = ω0 − ωc. (S30)

Note that through Eq. (S28), it becomes explicit the dependence on N of the polariton modes, p± = pN± , which is
implicit in Eq. (S27). Hereafter, for simplicity, we will omit this explicit dependence besides for the expressions in
which it will be clearer to highlight it.

In terms of these modes the bosonic Jaynes-Cummings Hamiltonian reads

HJC = ω+p†+p+ + ω−p†−p−, (S31)

with

ω± =
1

2

(
ω0 + ωc ±

√
4g2
N + ∆2

)
. (S32)

As a consequence, the full Hamiltonian now reads

H = HJC + V, (S33)
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with

V = gN

[
−α+

a α
+
b p
†
−p
†
− − α−a α−b p

†
+p
†
+ + (α+

b α
−
a + α−b α

+
a )p†−p

†
+

]
+ H.c. (S34)

where we used the identity α−a α
+
b − α−b α+

a = −1 to write the operators a and b in terms of the Jaynes-Cummings
polaritons of Eq. (S27). We can then define the eigenstates of the bosonic Jaynes-Cummings Hamiltonian as

|G(0)
N 〉 =

⊗

n∈N
c†1,n|0el〉|0ph〉, (S35a)

|±(0)
N 〉 = p†±|G(0)

N 〉, (S35b)

| ± ±(0)
N 〉 =

p†±p
†
±√

2
|G(0)

N 〉, (S35c)

|+−(0)
N 〉 = p†+p

†
−|G(0)

N 〉, (S35d)

where |0el〉 and |0ph〉 are the electron and photonic vacuum, respectively. By using first-order perturbation theory in
the potential V we then find that

|GN 〉 = |G(0)
N 〉 − β++|+ +

(0)
N 〉 − β−−| − −

(0)
N 〉 − β+−|+−(0)

N 〉, (S36a)

|±N 〉 = |±(0)
N 〉+ · · · , (S36b)

| ± ±N 〉 = | ± ±(0)
N 〉+ β±±|G(0)

N 〉+ · · · , (S36c)

|+−N 〉 = |+−(0)
N 〉+ β+−|G(0)

N 〉+ · · · , (S36d)

with

β++ = 〈+ +
(0)
N |V |G

(0)
N 〉 = −

√
2
gN

2ω+
α−a α

−
b , (S37a)

β−− = 〈− −(0)
N |V |G

(0)
N 〉 = −

√
2
gN

2ω−
α+
a α

+
b , (S37b)

β+− = 〈+−(0)
N |V |G

(0)
N 〉 =

gN
ω+ + ω−

(α+
b α
−
a + α−b α

+
a ), (S37c)

which are the results used in the main text. Note that also the coefficients βxy have a dependence on N .

C. Commutation relations between Jaynes-Cummings polaritons and electrons

We wish to calculate the commutators

C1,n = [b†, c1,n], C2,n = [b†, c2,n], (S38)

in order to calculate the electron-current transition matrix elements within the RWA bosonic model. Using the
approximate Holstein-Primakoff transformation

b† =
S+√
N

=
∑

n̄

c†2,n̄c1,n̄√
N

, (S39)

we obtain
√
NC1,n =

∑
n̄ c
†
2,n̄c1,n̄c1,n − c1,nc†2,n̄c1,n̄,√

NC2,n =
∑
n̄ c
†
2,n̄c1,n̄c2,n − c2,nc†2,n̄c1,n̄.

(S40)

We now note that, if n̄ 6= n the fermionic anticommutation rules give zero. As a consequence, the sum only contributes
for n̄ = n giving

√
NC1,n = c†2,nc1,nc1,n − c1,nc†2,nc1,n = 0√
NC2,n = c†2,nc1,nc2,n − c2,nc†2,nc1,n = −c1,n,

(S41)
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where we used again the fermionic anticommutation rules.
Similarly, it is possible to calculate the analogous commutators involving b, resulting in the following commutators

[b, c1,n] = − 1√
N
c2,n,

[b, c2,n] = 0,
[b†, c1,n] = 0,

[b†, c2,n] = − 1√
N
c1,n,

(S42)

which provides a prescription for the actual calculation of the electron-current transition matrix elements, performed
in the following subsection.

D. Transition matrix elements in the bosonic model using Jaynes-Cummings polaritons

We now calculate the transition matrix elements between the ground state and the first excited states. The transition
to single-polariton states, Mn

G±, using the results of the perturbation theory, Eqs. (S35),(S36),(S37), gives, to first
order in the perturbative parameters βij given in Eq. (S36)

Mn
G± = 〈±N−1|(c1,n + c2,n)|GN 〉 = 〈G(0)

N−1|p±(c1,n + c2,n)|GN 〉

= 〈G(0)
N−1|p±(c1,n + c2,n)|G(0)

N 〉 −
β++√

2
〈G(0)

N−1|p±(c1,n + c2,n)p†+p
†
+|G(0)

N 〉

−β−−√
2
〈G(0)

N−1|p±(c1,n + c2,n)p†−p
†
−|G(0)

N 〉 − β+−〈G(0)
N−1|p±(c1,n + c2,n)p†+p

†
−|G(0)

N 〉. (S43)

The first term on the r.h.s. of Eq. (S43) is 0, as c2,n is annihilated on the Fermi sea at zero temperature and c1,n
describes the Fermi sea without one electron, i.e.,

c2,n|G(0)
N 〉 = 0 (S44a)

c1,n|G(0)
N 〉 = |G(0)

N−1〉. (S44b)

In Eq. (S43), the average of a polariton creation operator on the ground state is zero. To unravel the other terms in
Eq. (S43) it is useful to calculate

[c1,n + c2,n, p
†
±] = α±b [c1,n + c2,n, b

†] = α±b
c1,n√
N
. (S45)

Equation (S45) implies that the second term on the r.h.s. of Eq. (S43), proportional to β++, can be written as

〈G(0)
N−1|p±(c1,n + c2,n)p†+p

†
+|G(0)

N 〉 = α±b
1√
N
〈G(0)

N−1|p±c1,np†+|G
(0)
N 〉+ 〈G(0)

N−1|p±p†+(c1,n + c2,n)p†+|G(0)
N 〉

= 2α±b
1√
N
〈G(0)

N−1|p±p†+c1,n|G
(0)
N 〉+ 〈G(0)

N−1|p±p†+p†+(c1,n + c2,n)|G(0)
N 〉

= 2α±b
1√
N
〈G(0)

N−1|p±p†+|G
(0)
N−1〉+ 〈G(0)

N−1|p±p†+p†+|G
(0)
N−1〉 = δ±,+

2α±b√
N
, (S46)

where δ±,+ is the Krönecker delta giving 1 for Mn
G+ and 0 for Mn

G−. As shown by the commutator in Eq. (S45), this
matrix element depends on the presence of c2,n in the interaction Hamiltonian, which means that this process relies
on a c2,n electron to tunnel out of the system.

Similarly to Eq. (S46), one can calculate the third and fourth term in Eq. (S43), proportional to β−− and β+−,
respectively. The result is then

Mn
G± =

√
2β±±α

±
b + β+−α

∓
b√

N
. (S47)
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We now consider the transition to double-polariton states, characterized by the matrix elements Mn
G±±,

Mn
G±± = 〈± ±N−1 |(c1,n + c2,n)|GN 〉 = βN±±〈G(0)

N−1|(c1,n + c2,n)|G(0)
N 〉 −

βN−1
±±
2
〈G(0)

N−1|p+p+(c1,n + c2,n)p†±p
†
±|G(0)

N 〉.
(S48)

We already see a major difference with respect to the previous case. In fact, the first element is non-zero because
of the c1,n term. We also immediately see that, when calculating a commutator, the second term ends up with an
odd number of electrons and vanishes. This means that the only non-zero result will be when no commutators are
computed. At that point only c1,n will contribute to transform the Fermi sea with N electrons to a Fermi sea with
(N − 1) electrons. Therefore,

Mn
G±± = βN±± − βN−1

±± '∂NβN±±, (S49)

which needs to be compared with the transition matrix element calculated in the full bosonic model, Eq. (4), and the
same applies for the single-polariton rates, Eq. (S47).

IV. BOSONIC MODEL: FULL BOSONIC MODEL DIAGONALIZATION BEYOND PERTURBATION
THEORY

Here we derive the full polariton spectrum of the Hamiltonian in Eq. (4), as well as its eigenstates, and use them
to calculate the transition rates between the ground state and the relevant excited states.

A. Polariton spectrum of the full bosonic model

We reconsider Eq. (4) by writing it as

H = ωca
†a+ ω0b

†b+ gN (a+ a†)(b+ b†), (S50)

whose normal modes v̂ can be found by solving the Hopfield equation

[H, v̂] = Ev v̂. (S51)

The commutator structure of this equation implies a built-in “time reversal” symmetry which simply reads

[H, v̂†] = −E±v̂†. (S52)

By writing a generic operator v̂ as

v̂ = c1a
† + c2a+ c3b

† + c4b =
∑

i

vi · Ôi, (S53)

where ~v ∈ R4 and ~̂O = {a†, a, b†, b}, we obtain

∑

i

[H, Ôi]vi = Ev
∑

i

viÔi. (S54)

Since the set of operators in ~O is closed under commutations with the Hamiltonian we can define a Hamiltonian kernel
H̄, such that

[H, Ôi] =
∑

j

H̄jiÔj . (S55)

This leads to
∑
j

∑
i H̄jiviÔj = Ev

∑
i viÔi, or, equivalently

∑

j

∑

i

H̄jiviÔj = Ev
∑

j

vjÔj , (S56)
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whose solution can be found by solving
∑
j H̄ijvj = Evvj , (S57)

or, equivalently,

H̄~v = Ev~v. (S58)

Explicitly, the matrix H̄ can be constructed column by column, taking the commutator of H with a† (first column),
a (second column), b† (third column), and b (fourth column). The entry of the first (second) row corresponds to
taking the component proportional to a† (a) of the column by column procedure. The entry of the third (fourth) row
corresponds to taking the component proportional to b† (b) of the column by column procedure. Explicitly we have

H̄ =



ωc 0 gN −gN
0 −ωc gN −gN
gN −gN ω0 0
gN −gN 0 −ω0


 . (S59)

There are two eigenvectors ~v± of the previous equation with positive energy and they correspond to the polariton
modes of the full bosonic model

p̃†± =
∑

i

v±i Ôi. (S60)

The normalization follows from the imposition [p̃±, p̃
†
±] = 1 and requires

v±1
2

+ v±3
2 − v±2

2 − v±4
2

= 1. (S61)

Notice that, if we used p̃± in the definition of Eq. (S60), a similar analysis for the operators p̃± we would have imposed
v2

2 + v2
4 − v2

1 − v2
3 = 1 instead.

To summarize, we now write explicitly the solution of

H̄~v± = λ±~v±, (S62)

such that λ± > 0. We have that the eigenenergies of the upper and lower polariton branches are then given by

λ± =


ω

2
0 + ω2

c ±
(
ω4

0 + 16g2
Nω0ωc − 2ω2

0ω
2
c + ω4

c

) 1
2

2




1
2

, (S63)

and the eigenvectors are defined by

v±1 = gN (λ± + ω0)(λ± + ωc)/Z±,
v±2 = −gN (λ± + ω0)(λ± − ωc)/Z±,
v±3 = [2g2

Nωc + (λ± + ω0)(λ2
± − ω2

c )]/Z±,
v±4 = −2g2

Nωc/Z±,

(S64)

where Z± is set to ensure Eq. (S61). The final expression for the polaritonic modes for the full bosonic Hamiltonian
of Eq. (S50) is then

p̃†± =
∑
i v
±
i Ôi = v±1 a

† + v±2 a+ v±3 b
† + v±4 b. (S65)

Note that we can also relate ~̂p = {p̃†+, p̃+, p̃
†
−, p̃−}T to ~̂O. By defining

P =



v1

+ v2
+ v3

+ v4
+

v2
+ v1

+ v4
+ v3

+

v1
− v2

− v3
− v4

−
v2
− v1

− v4
− v3

−


 , (S66)

we can finally write the compact expression

~̂p = P · ~̂O, (S67)

which greatly simplifies the calculation of the emission rates in terms of the Pij matrix elements. We recall that, as
in the previous sections, with regard to the Jaynes-Cummings polaritons, also the polariton modes of Eq. (S65) do
depend on N , a feature that will appear in the next section in the calculation of matrix elements between states with
different particle number, and it will be exploited to give intuitive estimates on the order of each of such effects.
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B. Transition rates in terms of the polariton eigenstates of the full bosonic model

While in the main text the rates were derived in perturbation theory for clarity of exposition, it is also straight-
forward to compute them after exact diagonalization. Essential for this calculation are the commutation relations in
Eq. (S42) and the definition of the polaritonic excitations in Eq. (S65) and their matrix form in Eq. (S67).
We start calculating the single-polariton states matrix elements, Mn

G±. We have

Mn
G+ = 〈+N−1|(c1,n + c2,n)|GN 〉 = 〈GN−1|p̃N−1

± (c1,n + c2,n)|GN 〉 ' −P23〈GN−1|[b†, c2,n]|GN 〉 = − P23√
N
,

Mn
G− = 〈−N−1|(c1,n + c2,n)|GN 〉 ' −

P43√
N
,

(S68)

where the symbol ' implies keeping only the lowest non-trivial order in the asymptotic expansion in 1/N , and where
we made explicit the dependence of the polariton mode operator on the number of single-excited fermionic sites, N ,
writing p̃± = p̃N−1

± for the mode operator coming from the definition of the bra. The coefficients Mn
G±± can be

computed similarly. However, the lowest non-trivial order in an asymptotic expansion in 1/N requires a little bit
more work as

√
2Mn

G++ =
√

2〈+ +N−1 |(c1,n + c2,n)|GN 〉 = 〈GN−1|p̃N−1
+ p̃N−1

+ (c1,n + c2,n)|GN 〉
= 〈GN−1|(p̃N+ − ∂N p̃N+ )(p̃N+ − ∂N p̃N+ )(c1,n + c2,n)|GN 〉
' 〈GN−1|p̃N+ p̃N+ (c1,n + c2,n)|GN 〉 − 〈GN−1|p̃N+∂N p̃N+ (c1,n + c2,n)|GN 〉 − 〈GN−1|∂N p̃N+ p̃N+ (c1,n + c2,n)|GN 〉

' − 1√
N
〈GN−1|p̃N+ (P24c2,n + P23c1,n)|GN 〉 − 〈GN−1|p̃N+ (

∑

j

∂NP1j)P
−1
jk p̂k(c1,n + c2,n)|GN−1〉

−〈GN−1|∂N p̃N+ p̃N+ (c1,n + c2,n)|GN 〉 '
1

N
P24P23 −

∑

j

∂NP2jP
−1
j1 (S69)

where, in the second line of the equation above, we transformed

p̃N−1
+ = (p̃N+ − ∂N p̃N+ ), (S70)

and, in the third and fourth line of the equation above, we took advantage of the matrix notation of Eq. (S67) to
evaluate the operator derivative only on the matrix of coefficients P , approximating to leading order in 1/N the
dependence on N only in gN .

Finally, in order to compute the term

〈GN−1|p̃N+ (
∑

j

∂NP1j)P
−1
jk p̂k(c1,n + c2,n)|GN−1〉 (S71)

in the last step of the equation above, we considered that, since we want to calculate the transition matrix elements
up to order O(1/N), we could at that point commute the polaritonic operators with the fermionic ones and annihilate
the ground state on the right. Hence, the only non-zero contribution in the sum is given by j = 1 leading to that
result. We also used

(c1,n + c2,n) |GN 〉 = |GN−1〉 = O

(
1√
N

)
(S72)

and the fact that since the only dependence on N is through gN , the derivative in N can be written as

∂N = gN/(2N) ∂gN . (S73)

Following the same steps, we can calculate the rates towards the other two-polariton states. We obtain

Mn
G++ =

P24P23√
2N

−
gN
∑
j ∂gN (P2j)P

−1
j1

2
√

2N
,

Mn
G−− =

P44P43√
2N

−
gN
∑
j ∂gN (P4j)P

−1
j3

2
√

2N
,

Mn
G+− =

P24P43

N
−
gN
∑
j ∂gN (P2j)P

−1
j3

2N
,

=
P44P23

N
−
gN
∑
j ∂gN (P4j)P

−1
j1

2N
,

(S74)
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which in this form shows clearly that, even in the full-bosonic model, the double-polariton transition rates have a 1/N
attenuation with respect to the single-polariton channels, Eq. (S68). Moreover, the form of Eq. (S74) clearly hints
at the interpretation of the electron-subtraction processes as an effective non-adiabatic modulation of the light-matter
coupling, hence allowing to draw a connection with previous experiments in which such process was investigated [1–3].

C. Photon-scattering transition matrix elements

In a real quantum device, the photon emission rate cannot have a perfect efficiency conversion from cavity polariton
to emitted light. This quantity is the one measured in photo-detection in a spectroscopic experiment. The photonic
emission rate arising from GSE is the product of two processes: First, there is the polariton scattering due to the
extraction of an electron, calculated using ΓGSE, with

ΓGSE =
∑

E={±,±±,±∓,... }

ΓG→Eel , (S75)

and which we have shown to be dependent on the |GN 〉 → |±N−1〉 channel. Then there is a second relaxation process
that involves the emission of a photon, |±N−1〉 → |GN−1〉, occurring with a probability |α±ph|2, proportional to the
Hopfield coefficients associated with light.

Note that in ΓGSE and elsewhere in rates, in the subscripts of matrix elements and superscripts of rate emissions we
omit defining the number of electrons in the initial and final states, where the transition is always |GN 〉 → |EN−1〉,
and in the sum we omit the transition |GN 〉 → |GN−1〉, which leads only to a dark electron current with no photon
emission.

Here we calculate explicitly |α±ph|2, the probability of photon emission associated to the decay of the system from

the polariton branches, |±N−1〉, to the ground state (|GN−1〉 for the RWA case, |G̃N−1〉 in the non-RWA bosonic
case). This is a fast process occurring after the electron scattering process quantified in the sections above. We can
calculate |α±ph|2 in the RWA boson model from

|α±ph|2 = |〈+N−1|(a+ a†)|GN−1〉|2 = |(α±a )∗ + α±a
β±±√

2
|2. (S76)

In the polariton ground state of the non-RWA Hamiltonian we also have a photonic component for that state,
which complicates the calculation. Yet, for any fixed N , it is always valid the quantum harmonic oscillator relation
p̃±|G̃〉 = 0, so all we need to compute is the commutator

[p̃±,N , (a+ a†)] = v±2 − v±1 (S77)

and obtain, for the full boson case (non-RWA)

|α±ph|2 = |〈G̃N−1|p̃±,N−1(a+ a†)|G̃N−1〉|2 = |v±1 − v±2 |2. (S78)

As mentioned in the main text, this calculation allows us to derive the effective total photon emission rate, Γtot =
Γ+

tot + Γ−tot.
The efficiency of this conversion is determined by the cavity characteristic rate, Γcav, and by the rate of conversion

of the bright polaritons into dark polaritons, Γ±dark. If we assume Γcav � Γ±dark, we obtain

Γ±tot = |α±ph|2
Γ±emΓcav

Γ±dark + Γcav

' |α±ph|2Γ±em. (S79)

Note that |α±ph|2 is included in the plots in Figure 2 of the main text, here reproduced for clarity as Figure S1, to
estimate the effective light emission of the GSE process in both the RWA and non-RWA bosonic models. In Figure S2,
we resolve the total signals of Figure 3, into the contributions of the upper and lower polariton branches, shown in
the upper and lower panels, respectively. For different coupling strengths, the lower (upper) polariton emission rates
and fluxes are peaked at negative (positive) frequency detuning. As shown by the darker shading in the contour plots
of Figure S2, the lower polariton signal is stronger than the upper polariton one, especially at stronger light-matter
couplings.

In Figure S3 and Figure S4, we report the contour plots for the total extra-cavity emission, showing that the
extraction of photons from the GSE is efficient. In particular in Figure S3 it is visible that this second decay process
makes the intensity of the total extra-cavity flux symmetric with respect to detuning of the cavity-matter frequency.
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FIG. S1: (a,c) Polariton scattering rates ΓB′
em and fluxes, ωB′ΓB′

em, in units of the total electron transport rate Γel for the upper
polariton (B′ = +, blue curves) and lower polariton (B′ = −, green curves), and sum of the two signals (black curves), as a
function of the normalized detuning for g/ω0 = 0.05. (b,d) Total photon emission rates and fluxes. The resonance condition
is marked by a dashed black vertical line and markers for the different quantities: blue open square for the upper polariton,
green cross for the lower polariton, red star for the total signal. Solid curves correspond to the bosonic RWA quantities, dashed
curves to the full boson model developed in the SM.

V. FERMIONIC MODEL: PERTURBATIVE EIGENSTATES

We now consider the full model in Eq. (2). By neglecting the counter-rotating terms which do not conserve the
number of bare excitations, we can write the Dicke model in the rotating wave approximation (RWA), i.e. the
Tavis-Cummings (TC) model,

HRWA = ωca
†a+ ω0S

3 + χ(aS+ + a†S−) + E0(N,N2). (S80)

The eigenstates of Eq. (S80) can be written in terms of the bare-basis states

|ψ〉 = |j,m〉 ⊗ |N2〉 ⊗ |γ〉, (S81)

where |j,m〉 = |j,m〉N is the Dicke state of N two-level systems with total angular momentum j and third component
m, defined onto the partition of electronic sites containing single excitations, |N2〉 counts the double-occupied electron
states, which cannot be accounted for in the spin basis, and |γ〉 counts γ photons in the photonic subspace.

While Eq. (S81) is in an intuitive form and can be used to find the states diagonalizing Eq. (S80), it will be more
convenient to use a different notation, which will be more transparent when the electron-scattering terms of the
interaction Hamiltonian will be considered, explicitly showing the dependence on N and N2,

|ψ〉 = |j,m;N,N2, γ〉, (S82)

where the dependence on ψ of the quantum numbers j, m, N , N2, and γ will be be highlighted when necessary. We
thus express the eigenstates of the TC Hamiltonian, Eq. (S80), as

|β(0)〉 =
∑

mγ

U (0)β
mγ |jβ ,m;Nβ , Nβ

2 , γ〉, (S83)

where the factor U
(0)β
mγ can be written as

U (0)β
mγ = u(0)β

γ δm,mβγ , (S84)
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FIG. S2: Polariton emission rate ΓB′
em [panels (a,c)] and flux [panels (b,d)] as a function of the frequency detuning and coupling

strength, setting χ = 3 · 10−3ω0 fixed and varying N , on a logarithmic scale, and thus varying g =
√
Nχ, up to g = 0.1ω0. The

vertical solid blue and green lines correspond to cut shown Figure 2 in the main text. The blue open square and green cross
correspond to the resonance point at g = 0.05ω0 for the upper and lower polariton, respectively. The contour plots of panels
(a,c) are normalized by a common quantity, as well as those of panels (b,d), showing that the lower polariton rate reaches
higher values at fixed g, limited in the case of fluxes, ωΓem.
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tot [panel (a)] and flux,

∑
B′ ω

B′ΓB′
tot[panel (b)], in units of the

total electron scattering rate Γel.

in terms of a
(
nβ + 1

)
-dimensional eigenvector uβ of the RWA Hamiltonian in the subspace with nβ = jβ + m + γ

bare excitations (derived explicitly in Sec. V A) and where we defined mβ
γ = −jβ + nβ − γ. We will further denote
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FIG. S4: Total extra-cavity photon emission rate ΓB′
tot [panels (a,c)] and flux [panels (b,d)], for the upper and lower polariton,

as a function of the frequency detuning and coupling strength, setting setting χ = 3 · 10−3ω0 fixed and varying N and thus
g =

√
Nχ. The vertical solid blue and green lines correspond to the parameter ranges of the plots of Figure 2 in the main

text. The blue open square and green cross correspond to the resonance point at g = 0.05ω0 for the upper and lower polariton,
respectively.

the energies of the associated states by E
(0)
β .

Using perturbation theory in the potential V = χ(S+a+ +S−a), it is now possible to compute the coefficients Uβmγ
for the full Hamiltonian of the Dicke model. To first order,

|β〉 = |β(0)〉 −
∑

β̄

〈β̄(0)|V |β(0)〉
∆Eββ̄

|β̄(0)〉 =
∑

mγ

Uβmγ |jβ ,m;Nβ , Nβ
2 , γ〉, (S85)

where ∆Eββ̄ = E
(0)

β̄
− E(0)

β , and we introduced the matrix elements Uβmγ . Equivalently, we can write

Uβmγ = u
(0)β
γ δm,mβγ −

∑

β̄

(cββ̄+ + cββ̄− )u(0)β̄
γ δ

m,mβ̄γ
, (S86)

where

cββ̄± =
χ

∆Eββ̄

∑

γ̄

ū
(0)β̄
γ̄±1u

(0)β
γ̄ Aβ±,γ̄ δnβ̄ ,nβ±2 δjβ̄jβδN β̄NβδN β̄2 N

β
2

, (S87)

and

Aβ+,γ =
√

(γ + 1)(2jβ − nβ + γ)(nβ − γ + 1), (S88)

Aβ−,γ =
√
γ(nβ − γ)(2jβ − nβ + γ + 1). (S89)

The result of this section is thus the formal definition of the eigenstates of the light-matter system, retaining the full
fermionic nonlinearity of Eq. (1), recasting the problem in terms of collective pseudo-spin states. The calculation of

the eigenstates has been reduced to finding the matrix elements u
(0)β
γ , a task that is performed in the next subsection.
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A. Single-excitation states of the Tavis-Cummings Hamiltonian

In this subsection, we derive an explicit expression for the eigenstates of the rotating wave Hamiltonian in Eq. (S80).
To do this, we consider sets of basis states with fixed total angular momentum j and relative number of bare excitations
n = j + 〈

(
a†a+ S3

)
〉β = j + γ +m. In this subspace the matrix elements for the Hamiltonian kernel, H̄j,N,N2,n, read

H̄j,N,N2,n
ik = 〈j,mi;N,N2, γi|HRWA|j,mk;N,N2, γk〉 (S90)

= 〈j,mi;N,N2, γi|
[
ωca
†a+ ω0S

3 + χ(aS+ + a†S−) + E0(N,N2)
]
|j,mk;N,N2, γk〉 (S91)

= [ ωcγk + ω0mk + E0(N,N2)] δγi,γk + 〈j,mi;N,N2, γi|χ(aS+ + a†S−)|j,mk;N,N2, γk〉 (S92)

= [ ωcγk + ω0mk + E0(N,N2)] δγi,γk

+χ
√
γk + 1

√
(j +mk)(j −mk + 1)δγi,γk+1 + χ

√
γk
√

(j −mk)(j +mk + 1)δγi,γk−1, (S93)

with γk = n− k, mk = −j + n− γk = −j + k where k = 0, . . . , n. We define mk dependent on γk because the total
number of total excitations in each subspace is fixed and equal to n. In the previous equation, the Krönecker deltas
on m quantum number translated into Krönecker deltas on γ.

Using the definitions of γj and mj , we then immediately find the matrix elements

H̄j,N,N2,n
k−1,k = χ

√
n− k + 1

√
k(2j − k + 1),

H̄j,N,N2,n
k,k = (n− k)ωc + kω0 + Ẽ0(N,N2),

H̄j,N,N2,n
k+1,k = χ

√
n− k

√
(k + 1)(2j − k),

(S94)

where

Ẽ0 = E0(N,N2)− jω0. (S95)

Since we are interested in perturbations over the eigenstates of the rotating wave Hamiltonian in Eq. (S80), we can

specialize the general notation allowing the label β to specify not only jβ , Nβ , Nβ
2 , but also the total number of bare

excitations nβ .
All of the

(
nβ + 1

)
eigenvectors u(0)β of the matrix H̄jβ,N

β
,N

β
2,,n

β

, defined by Eq. (S93), can then be used in Eq. (S84)

to compute the matrix elements U
(0)β
mγ in the rotating wave approximation.

We now explicitly compute the eigenstates for the first excited states in the rotating wave approximation. The
Hamiltonian kernel for the excited states with n = 1 total excitation takes the form

H̄j,N,N2,1 =

(
ωc + Ẽ0 χ

√
2j

χ
√

2j ω0 + Ẽ0

)
. (S96)

The corresponding first two excited polaritonic states have the form

|β′(0)
N 〉 = cos θNβ′ |j,−j + 1;N,N2, 0〉+ sin θNβ′ |j,−j;N,N2, 1〉 (S97)

where |β′N 〉 = {|+N 〉, |−N 〉}, labels the upper and lower polaritonic modes, respectively, with the prime denoting the
odd parity of these states. We have

tan θ+ = (−∆ +
√

4g2
N + ∆2)/2gN , (S98)

θ+ = θ− − π/2 with ∆ = ω0 − ωc, and as always gN = χ
√
N . This corresponds to

U+N
mγ

(0)
= δm,−j+1δγ,0 cos θ+ − δm,−jδγ,1 sin θ+

and

U−Nmγ
(0)

= δm,−j+1δγ,0 sin θ− − δm,−jδγ,1 cos θ−

in Eq. (S84).
Now that the single-polariton eigenstates involved in the transition matrix elements of the Fermi golden rule rates

are explicitly defined, in order to perform the calculation in Eq. (S8), it suffices to calculate the action of the fermionic
operators describing the electron scattering processes. We will assess this problem in the next subsection, in which
the Clebsch-Gordan formalism will be extended to a fermionic Hilbert space in second quantization.
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B. Macroscopic states and fermionic master equation

The light-matter states of Eq. (S82) retain the full fermionic nonlinearity and, as shown in the precedent subsections,
can be used to diagonalize the light-matter Hamiltonian of the system. In order to describe all the different microscopic
states which constitute a basis for the Hilbert space of the full fermionic Hamiltonian, Eq. (1) one needs to consider
sets for the single-occupied and double-occupied electron sites, N and N2, of cardinality N and N2. For each of those
sets, and for each total angular momentum j and third component m, we should also take into account the presence of
d inequivalent irreducible representations of su(2). We will use the label r = 1, . . . , d to characterize this degeneracy.
As a consequence, the states for the full fermionic model can be defined as

|α〉 = |j,m, r;N,N2, γ〉 (S99)

where γ is the number of photons. The microscopic information contained in these states is much more than what
we need to compute macroscopic effects due to the current flowing through the system. For this reason, to describe
electron scattering processes in full generality, we are interested in defining equivalence classes of these states only
characterized by the cardinalities of these sets N and N2. Furthermore, in order to be able to derive a closed analytical
form for the rates induced by adding electronic reservoirs to the model, we extend these equivalence classes to all
possible inequivalent representations of su(2). The equivalence classes can be explicitly defined as

|A〉 = |j,m;N,N2, γ〉 = {|α〉 : Nα = N,Nα
2 = N2, j

α = j,mα = m; γα = γ}. (S100)

In order to find the relation between microscopic and macroscopic rates, it is instructive to write the microscopic rate
equation for electron scattering

ρ̇α = −
∑

β

Γα→βel ρα +
∑

β

Γβ→αel ρβ , (S101)

and the corresponding macroscopic version by summing over the equivalence classes previously defined

ρ̇A =
∑

α∈A
ρ̇α =

∑

α∈A

∑

B,β∈B

(
Γβ→αel ρβ − Γα→βel ρα

)
. (S102)

Note here that ρα (ρA) is the density matrix on the microscopic Hilbert space whose states are described in Eq. (S99)
(Eq. (S100)).

To proceed further we need to make a critical assumption. We suppose that any coherence present in the system
is averaged out in the macroscopic representation, as every electron scattering process needs not to be traced to the
different microscopic processes. The density matrix of the system is then proportional to the identity within each set
of states which only differ by the representation label r, i.e., we suppose that ρα = ρα̃/dα, where we denoted with
α̃ = {j,m,N,N2, γ} the remaining degrees of freedom. This allows to write

ρ̇A = −
∑

B

∑′ ∑

rα,rβ

Γα→βel

ρα̃
dα

+
∑

B

∑′ ∑

rα,rβ

Γβ→αel

ρβ̃
dβ
, (S103)

where we used the short-hand notation
∑′

:=
∑

Nα=NA,Nα2 =NA2

∑

Nβ=NB ,Nβ2 =NB2

. (S104)

C. General transition rates in the fermionic model

In this subsection we finally evaluate the rates for transitions between the states α and β of the system. By inserting
Eq. (S4) in Eq. (S103) we see that this task requires to calculate objects of the form

∑

rα,rβ

Γα→βel,n ∝ Qn, (S105)

where

Qn =
∑

rα,rβ

|〈α|Ôn|β〉|2, (S106)
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J = j2 + 1
2

J = j2 − 1
2

m1 = 1
2

√
J+M

2J
−
√

J−M+1
2J+2

,

m2 = − 1
2

√
J−M

2J

√
J+M+1

2J+2
.

TABLE I: Values of the Clebsch-Gordan coefficients CJ,M
j1,m1;j2,m2

for j1 = 1/2.

where Ôn = (c1,n + c2,n) or its hermitian conjugate. To proceed, we consider how to define a basis within the
degeneracies labelled by r. To this goal, we first write explicitly the following standard basis transformation for the
Dicke states introduced in Eq. (S81)

|j1, j2; J,M〉 =
∑

m1,m2

CJ,Mj1,m1;j2,m2
|j1,m1〉 ⊗ |j2,m2〉, (S107)

where mi = −ji,−ji + 1, · · · , ji − 1, ji, for i = 1, 2, and where we introduced the Clebsch-Gordan coefficients

CJ,Mj1,m1;j2,m2
= (〈j1,m1| ⊗ 〈j2,m2|) J,M〉, reported also in Table I.

For clarity, we also write the inverse transformation which reads

|j1,m1〉 ⊗ |j2,m2〉 =
∑

J

∑

M

CJ,Mj1,m1;j2,m2
|j1, j2; J,M〉, (S108)

where J = |j1 − j2|, · · · , j1 + j2 and M = −J, · · · , J .
In particular, we will only be using j1 = 1/2 in Eq. (S107) in which case the Clebsch-Gordan coefficients are

explicitly given by and the condition CJ,Mj1,m1;j2,m2
= 0, if m1 +m2 6= M .

As mentioned in Sections V, V B, there can exist inequivalent representations of su(2) with the same quantum
numbers j,m and N . The basis within each of these representations can be explicitly obtained by iteratively applying
Eq. (S108). However, the Hamiltonian has the same action in all these inequivalent representations. We would then
have a problem in defining which basis should be used in the Fermi Golden rule. The solution of this problem comes
from our previous assumption of describing these degeneracies with a density matrix proportional to the identity. This
led us to consider a sum over rα and rβ in Eq. (S103). Thanks to this assumption, Eq. (S106) is valid for any basis in
this subspace. In particular, this allows us to fix a preferential order by which electrons populate the system in the
calculations without any loss of generality. Plugging Eq. (S108) into Eq. (S99) allows to fully specify the degeneracy
rα of a state with unchanged number of photons γα,

|α〉 = |jα1 , jα2 ; Jα,Mα, rα;Nα,Nα
2 , γ

α〉 (S109)

as a function of Jα, jα2 and the label rα,2 for the degeneracy of the representation with total angular momentum jα2
(we do not need consider the same for jα1 = 1/2 since it is the fundamental representation for the additional electron).
Otherwise stated, we have that rα = r(Jα, jα2 , rα,2).

With this in mind, we can then consider the following identity
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|X〉 = (c1,n + c2,n)|j1, j2; J,M, rX ;N,N2, γ〉 =

• n ∈ N

• j2 = J + 1
2

|X〉 = CJM1
2 ,−

1
2 ;J+ 1

2 ,M+ 1
2

(c1,n+c2,n)| 12 ,− 1
2 〉⊗|j2,M + 1

2 , rX,2;N−n,N2, γ〉

+CJM1
2 ,

1
2 ;J+ 1

2 ,M−
1
2

(c1,n + c2,n)| 12 , 1
2 〉 ⊗ |j2,M − 1

2 , rX,2;N− n,N2, γ〉

= CJM1
2 ,−

1
2 ;J+ 1

2 ,M+ 1
2

|j2,M + 1
2 , rX,2;N− n,N2, γ〉

+CJM1
2 ,

1
2 ;J+ 1

2 ,M−
1
2

|j2,M − 1
2 , rX,2;N− n,N2, γ〉

• j2 = J − 1
2

|X〉 = CJM1
2 ,−

1
2 ;J− 1

2 ,M+ 1
2

(c1,n+c2,n)| 12 ,− 1
2 〉⊗|j2,M + 1

2 , rX,2;N−n,N2, γ〉

+CJM1
2 ,

1
2 ;J− 1

2 ,M−
1
2

(c1,n + c2,n)| 12 , 1
2 〉 ⊗ |j2,M − 1

2 , rX,2;N− n,N2, γ〉

= CJM1
2 ,−

1
2 ;J− 1

2 ,M+ 1
2

|j2,M + 1
2 , rX,2;N− n,N2, γ〉

+CJM1
2 ,

1
2 ;J− 1

2 ,M−
1
2

|j2,M − 1
2 , rX,2;N− n,N2, γ〉

• n ∈ N2

|X〉 = | 12 , 1
2 〉⊗ |J,M, rX ;N,N2−n, γ〉+ | 12 ,− 1

2 〉⊗ |J,M, rX ;N,N2−n, γ〉

= C
J− 1

2 ,M+ 1
2

1
2 ,

1
2 ;J−,M |

1
2 , J ; J − 1

2 ,M + 1
2 , r(J − 1

2 , J, rX),N + n,N2 − n, γ〉

+C
J+ 1

2 ,M+ 1
2

1
2 ,

1
2 ;J,M

| 12 , J ; J + 1
2 ,M + 1

2 , r(J + 1
2 , J, rX);N + n,N2 − n, γ〉

+C
J− 1

2 ,M−
1
2

1
2 ,−

1
2 ;J,M

| 12 , J ; J − 1
2 ,M − 1

2 , r(J − 1
2 , J, rX);N + n,N2 − n, γ〉

+C
J+ 1

2 ,M−
1
2

1
2 ,−

1
2 ;J,M

| 12 , J ; J + 1
2 ,M − 1

2 , r(J + 1
2 , J, rX);N + n,N2 − n, γ〉

• n /∈ N,N2

|X〉 = 0,

(S110)
where we highlighted in blue (red) the terms arising from the scattering of a lower (upper) fermion. As it can be seen
above, in Eq. (S110) there are four possible results of the action of the fermionic destruction operators at position n,
depending on the state of the system at site n. If the site n is occupied by a single electron, n ∈ N, then the population
of the electrons effectively coupled to light diminishes by one. The ket becomes the state |j2,M± 1

2 , rX,2;N−n,N2, γ〉
by the action of c1,n (c2,n), with a different Clebsch-Gordan coefficient depending on the value of j2. If the site n
is occupied by two electrons, n ∈ N2, then the population of the electrons effectively coupled to light increases by
one. The ket then becomes of the form of Eq. (S109) and the averaging of the processes involved in the macroscopic
state scattering eventually leads to a ket of the form of Eq. (S99). If the site n is not occupied by any electron, no
scattering occurs.

We thus can appreciate how Eq. (S110) is fundamental for the use of Dicke state formalism in the open dynamics
considered here, bridging a connection with the second-quantization formalism and which can be used also for the
study of other processes. Note that Ref. [4] contains related independent work in first quantization, in the context of
superradiant lasing.
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By inserting these results in Eq. (S106), we find

Qn =
∑

rα,rβ

|〈β|(c1,n + c2,n)|α〉|2 (S111)

=
∑

rα,rβ

∣∣∣
[
δNβ ,Nα−nδNβ

2 ,N
α
2
δrβ ,rα,2δJβ ,Jα+ 1

2

(
δmβ ,m+ 1

2
CJ

αmα
Jα+ 1

2 ,mα+ 1
2

+ δmβ ,mα− 1
2
DJαmα
Jα+ 1

2 ,mα−
1
2

)

+δNβ ,Nα−nδNβ
2 ,N

α
2
δJβ ,Jα− 1

2
δrβ ,rα,2

(
δmβ ,mα+ 1

2
CJ

αmα
Jα− 1

2 ,mα+ 1
2

+ δmβ ,mα− 1
2
DJαmα
Jα− 1

2 ,mα−
1
2

)

+δNβ ,Nα+nδNβ
2 ,N

α
2−n

δJβ ,Jα− 1
2
δrβ ,r(Jα− 1

2 ,J
α,rα)

(
δmβ ,mα+ 1

2
D
Jα− 1

2mα+ 1
2

Jβ ,mα
+ δmβ ,mα− 1

2
C
Jα− 1

2mα−
1
2

Jα,mα

)

+δNβ ,Nα+nδNβ
2 ,N

α
2−n

δJβ ,Jα+ 1
2
δrβ ,r(Jα+ 1

2 ,J
α,rα)

(
δmβ ,mα+ 1

2
D
Jα+ 1

2mα+ 1
2

Jα,mα
+ δmβ ,mα− 1

2
C
Jα+ 1

2mα−
1
2

Jα,mα

)]∣∣∣
2

,

(S112)

which, in turn, allows to perform the two sums over the representation indexes to obtain

Qn = dα

∣∣∣
[
δNβ ,Nα−nδNβ2 ,Nα2

δJβ ,Jα+ 1
2

(
δmβ ,mα+ 1

2
CJ

αmα
Jα+ 1

2 ,mα+ 1
2

+ δmβ ,mα− 1
2
DJαmα
Jα+ 1

2 ,mα−
1
2

)

+δNβ ,Nα−nδNβ
2 ,N

α
2
δJβ ,Jα− 1

2

(
δmβ ,mα+ 1

2
CJ

αmα
Jα− 1

2 ,mα+ 1
2

+ δmβ ,mα− 1
2
DJαmα
Jα− 1

2 ,mα−
1
2

)

+δNβ ,Nα+nδNβ
2 ,N

α
2−n

δJβ ,Jα− 1
2

(
δmβ ,mα+ 1

2
D
Jα− 1

2mα+ 1
2

Jβ ,mα
+ δmβ ,mα− 1

2
C
Jα− 1

2mα−
1
2

Jα,mα

)

+δNβ ,Nα+nδNβ
2 ,N

α
2−n

δJβ ,Jα+ 1
2

(
δmβ ,mα+ 1

2
D
Jα+ 1

2mα+ 1
2

Jα,mα
+ δmβ ,mα− 1

2
C
Jα+ 1

2mα−
1
2

Jα,mα

)]∣∣∣
2

. (S113)

The coefficients C and D appearing in Eqs. (S112),(S113) are the Clebsch-Gordan coefficients defined as

CJ,Mj,m =
(
δJ,j+ 1

2

√
J−M

2J + δJ,j− 1
2

√
J+M+1

2J+2

)
δM,m− 1

2
,

DJ,M
j,m =

(
δJ,j+ 1

2

√
J+M

2J − δJ,j− 1
2

√
J−M+1

2J+2

)
δM,m+ 1

2
,

(S114)

for which the different coefficients connecting different pseudo-spin states are summarized in Table I.
Having performed the sum over the representation index allows to write Eq. (S103) as

ρ̇A = −
∑

B

∑

Nα=NA,Nα2 =NA2

∑

n

∑

Nβ=NB ,Nβ2 =NB2

∑

i

λiαβQn
ρNα,Nα

2 ,jα,mα,γα

dα

+
∑

B

∑

Nα=NA,Nα2 =NA2

∑

n

∑

Nβ=NB ,Nβ2 =NB2

∑

i

λiαβQn
ρNβ ,Nβ

2 ,jβ ,mβ ,γβ

dβ
,

(S115)

where i = in, out, following the definition inspired by Eq. (S6),

λout
n = 2πλ2(1− n̄(−∆αβ))ν(−∆αβ) (S116)

and

λin
n = 2πλ2(n̄(∆αβ))ν(∆αβ). (S117)

We also arranged the sums in the order we will perform them. We now give the arguments to simplify the calculations
on the first line of the above formula. Analogous considerations can be applied to the second line.

For a fixed Nα and Nα
2 , and for each n the sum over Nβ and Nβ

2 can be performed using the deltas in the expression
for Qn. The net effect of this operation is to limit the range of the sum over n to those electrons which can be added

or removed to turn the sets Nα into Nβ or Nα
2 into Nβ

2 . Since nothing depends explicitly on such a specific n, the
sum over n will return the number of microscopioc ways κA→B to go from a specific set characterized by NA, NA

2 to

one charaterized by NB and NB
2 . The last sum over {Nβ} and {Nβ

2 } can now be used to sum over the probability
density

∑

Nα=NA,Nα2 =NA2

ρNα,Nα2 ,jα,mα (S118)
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to give ρA to obtain

ρ̇A = −
∑

B

ΓA→BL/R ρA +
∑

B

ΓB→AL/R ρB , (S119)

where

ΓA→BL/R,in/out = θAB
L/R,in/outκA→B

∣∣∣∣∣
∑

m̄,m,γ

[
δNB ,NA−1δ

in/out

NB2 ,N
A
2
δJB ,JA+ 1

2

(
UBm̄γ

)∗
UAmγ

×
(
δm̄,m+ 1

2
CJ

Am
JA+ 1

2 ,m+ 1
2

+ δm̄,m− 1
2
DJAm
JA+ 1

2 ,m−
1
2

)

+δNB ,NA−1δ
in/out

NB2 ,N
A
2
δJB ,JA− 1

2

(
UBm̄γ

)∗
UAmγ

(
δm̄,m+ 1

2
CJ

Am
JA− 1

2 ,m+ 1
2

+ δm̄,m− 1
2
DJAm
JA− 1

2 ,m−
1
2

)

+δNB ,NA+1δ
in/out

NB2 ,N
A
2 −1

δJB ,JA− 1
2

(
UBm̄γ

)∗
UAmγ

(
δm̄,m+ 1

2
D
JA− 1

2m+ 1
2

JB ,m
+ δm̄,m− 1

2
C
JA− 1

2m−
1
2

JA,m

)

+δNB ,NA+1δ
in/out

NB2 ,N
A
2 −1

δJB ,JA+ 1
2

(
UBm̄γ

)∗
UAmγ

(
δm̄,m+ 1

2
D
JA+ 1

2m+ 1
2

JA,m
+ δm̄,m− 1

2
C
JA+ 1

2m−
1
2

JA,m

)]∣∣∣
2

,

(S120)

where

θAB
L/R,out = Γel[1 + θ(µL/R + ∆AB)], (S121)

θAB
L/R,in = Γθ(µL/R −∆AB), (S122)

δout
a,b = δa,b, and δin

a,b = δa,b+1 and where

κ(N,N2)→(N+1,N2) = NT −N −N2,
κ(N,N2)→(N−1,N2) = N,
κ(N,N2)→(N−1,N2+1) = N,
κ(N,N2)→(N+1,N2−1) = N2,

(S123)

where NT is the number of total electron sites.
While Eq. (S120) contains all the information needed to compute the transition rates, it is worth to proceed a little

further to obtain an expression which more clearly highlights its physical content. To achieve this, we decompose the
coefficients UBmγ as

UBmγ =
∑

n

uBγ (n)δm,−jB+n−γ , (S124)

where the coefficients uBγ (n) account for the coherences of the state B within the subspace with n bare excitations.
For example, at first order in the perturbation potential V , we have

uBγ (nB) = u
(0)B
γ

uBγ (nB ± 2) = −
∑

B̄

cBB̄± u(0)B̄
γ , (S125)

while all other coefficients are zero. Note that the range of γ is constrained inside each u
(0)B
γ so that, for each n, we

have 0 ≤ γ ≤ n. However, both Eq. (S120) and Eq. (S125) are general and can, in principle, be applied to higher
order cases. Using this notation in Eq. (S120) leads to quantities of the form

Q̄ =
∑

m,m̄,γ

(
UBm̄,m

)∗
UAm,γδm̄,m+aδjB, jA+bF (m), (S126)

where a, b ∈ R and F a generic function. We have

Q̄ =
∑

n,n̄

∑

m,γ

ūBγ (n̄)uAγ (n)F (m)δm+a,−jB+n̄−γδm,−jA+n−γδjB, jA+b

=
∑

n,γ

ūBγ (n+ a+ b)uAγ (n)F (−jA + n− γ)δjB, jA+b = δjB, jA+b〈A,B〉a+b
F ,

(S127)
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where we defined the following pseudo-inner product

〈A,B〉xF =
∑

n

∑

γ

ūBγ (n+ x)uAγ (n)F (−jA + n− γ), (S128)

which quantifies an effective overlap between coherent components of A and B which belongs to subspaces having
total number of bare excitations which differ by x. With this notation at hand, we can rewrite Eq. (S120) as

ΓA→BL/R,in/out = θAB
L/R,in/outκA→B

∣∣∣
[
δ∆N,−1δ

in/out

NB2,N
A
2
δ∆N

J ,−1

(
〈A,B〉1

C↓AB
+ 〈A,B〉0

D↓AB

)

+δ∆N,−1δ
in/out

NB2,N
A
2
δ∆N

J ,0

(
〈A,B〉0

C↓AB
+ 〈A,B〉−1

D↓AB

)
+ δ∆N,1δ

in/out

NB2,N
A
2 −1

δ∆N
J ,0

(
〈A,B〉1

D↑BA
+ 〈A,B〉0

C↑BA

)

+ δ∆N,1δ
in/out

NB2,N
A
2 −1

δ∆N
J ,1

(
〈A,B〉0

D↑BA
+ 〈A,B〉−1

C↑BA

)]∣∣∣
2

,

(S129)

where C↓AB(m) = Cj
A,m

jB ,m+ 1
2

, C↑AB(m) = C
jA,m− 1

2

jB ,m
, D↓AB(m) = DjA,m

jB ,m− 1
2

, D↑AB(m) = D
jA,m+ 1

2

jB ,m
. We also defined

∆N = NB −NA and changed the notation to highlight the quantity

∆N
J = (jNB − jB)− (jNA − jA) = (NB −NA)/2− (jB − jA), (S130)

which identifies changes in the symmetry of the state. For example, ∆N
J < 0 indicates a transition towards a state

more symmetric than the original one.
This notation highlights some of the physical content of these expressions. For example, transitions between states
with equal (different) parity take contributions only from factors proportional to 〈A,B〉n with an even (odd) n.

D. Emission rate for ground state electroluminescence

In this subsection we analytically estimate the population for the lowest energy states as current passes through the
system. Each of the results will be given at lowest non-trivial order in the normalized light-matter coupling η = gN̄/ω0

and the light-matter coupling η/ω0. To simplify the analysis we will further assume that N2 = 0, which allow a closed
analytical treatment. Hereafter, the notation B′ (B′′) will indicate one-polariton (two-polariton) eigenstates.

Essential in the discussion, the expression for the ground state with N electrons is identified by

uGNγ (n) = δγ,0δn,0 − δn,2
∑

B̄′′

gN
∆EB′′

ū
(0)B′′

1 u(0)B̄′′

γ , (S131)

This formula shows explicitly that the ground state is a coherent superposition of states with different number of
bare excitations. These are the coherences necessary for ground state electroluminescence.

The virtual polaritonic population present in the ground state highlighted in Eq. (S131) allows for new non-zero
out-rates. As a consequence, in the case Γcav � Γel, we will estimate the total emission rate from the decay of the
polariton B = B′, B′′ using the shorthand notation

〈G,B′〉 = 〈GN , B′N−1〉−1

D↓
GNB

′
N−1

,

〈G,B′′〉 = 〈GN , B′′N−1〉0C↓
GNB

′′
N−1

,
(S132)

where as elsewhere, B′ and B′′ indicate the one-polariton and two-polariton eigenstates, respectively. For clarity,
we stop a moment to anticipate some future results. The behaviour of the pseudoinner products in the previous
expression are, at lowest non-trivial order, given by

〈G,B′〉 ∝ D↓GN ,BN−1
= O

(
1

N

)
(S133)

and

〈G,B′′〉 ∝ ∂NgN C↓GN ,B′′N−1
= O

(
1

N2

)
. (S134)
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FIG. S5: Single-polariton emission rates in the fermionic and bosonic models. Emission rates ΓB′
em in units of the

emission rate Γel for B′ = + (monotonically increasing blue curves) and B′ = − (monotonically decreasing green curves),
for the upper and lower polariton, respectively, and the sum of the two contributions (black thick curves) as a function of
the normalized detuning (ωc − ω0)/ω0 for gN̄/ω0 = 0.1, with ∆ = ω0 − ωc. The solid curves correspond to the perturbative
bosonic model, in terms of the Jaynes-Cummings polaritons, used in the main text. The dashed curves correspond to the full
bosonic model, where the Hamiltonian is directly diagonalized. The dot-dashed curves represent the rates obtained from the
fermionic model, with a perturbative calculation of the eigenstates in terms of the fermionic RWA Hamiltonian. The bosonic
approximations fit very well the fermionic model to an extent such that the two curves are barely distinguishable in the scale
used for the plot, up to large detuning.

More explicitly, the pseudo-inner products can be calculated as

〈GN , B′N−1〉 =
∑

n,γ

ū
B′N−1
γ (n− 1)uGNγ (n)D

jGN ,m
GN
γ

jGN− 1
2 ,m

GN
γ,n− 1

2

=

1∑

γ=0

ū
B′N−1
γ (1)uGNγ (2)

√
2− γ
N

. (S135)

where

mB
γ,n = −jB + n− γ. (S136)

Interestingly, the suppression O(1/N) in the pseudo-inner product between states with different parity has a statistical
origin encapsulated in the Clebsch-Gordan coefficients. We can then obtain, assuming the chemical potential to be
sufficiently low

ΓGN→B
′
N−1 = Γel

[
gN

ω0(ωc cos θB′ + gN sin θB′)

(ω0 + ωc)(ω0ωc − g2
N )

]2

, (S137)

with tan θ+ = (−∆ +
√

4g2
N + ∆2)/(2gN ), given by Eq. (S98), and θ+ = θ− − π/2 with ∆ = ω0 − ωc, and g =

gN = χ
√
N . This expression for the single-polariton rates is plotted as a function of the cavity-matter detuning,

in Figure S5 valid in the fermionic case (dot-dashed curves), where it is compared with the corresponding estimates
obtained in the full bosonic model (dashed curves) and perturbative bosonic model (solid curves), showing an excellent
quantitative agreement between the three models up to large detuning, |ωc − ω0| = 0.5ω0. The values for the plot is
g = gN = 0.1ω0, with I ≡ Γel.

E. Model comparisons and limitations

In order to ascertain the validity of the perturbative bosonic approximation, we derived the full bosonic Hamiltonian
(non-perturbative in light-matter coupling) and we developed a fully fermionic theory, which allows to retain the results
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for the double-polariton states. To test the quantitative predictions gained with such simple and intuitive bosonic
model, we have also developed a full second-quantization fermionic theory which clearly shows that the results hold
even if this more refined approach is employed. Both approaches are in good qualitative and quantitative agreement
with the perturbative bosonic theory.

The fermionic transport analysis performed here is not limited to solid-state semiconductor devices, but it can be
mapped to an open Dicke model with scattering. However, in that setting, which has so far been realized experi-
mentally in lattices of trapped atoms, it could be challenging to engineer and modulate a process equivalent to the
electron current we describe herein.

For simplicity, we have here assumed that the electron and photonic reservoirs were unstructured. It is an open
question how ground-state electroluminescence could be affected by structured baths. Our calculations show that the
effect is visible already in a dilute-current regime, yet at higher current flows, more complex effects could arise. The
effect of electron-electron scattering, a second-order process in the dilute regime could also be addressed. The effect
of a multi-mode model for the cavity might give rise to nonlinear quantum phenomena.

[1] G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer,
and R. Huber, Sub-cycle switch-on of ultrastrong light-matter interaction, Nature 458, 178 (2009).
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