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Second-Order Topological Phases in Non-Hermitian Systems
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A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d — 2)-
dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy
modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only at one
corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes, which are localized
not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-
order 2D (3D) non-Hermitian system breaks down. The winding number (Chern number) based on
complex wave vectors is used to characterize the second-order topological phases in 2D (3D). A possible
experimental situation with ultracold atoms is also discussed. Our work lays the cornerstone for exploring
higher-order topological phenomena in non-Hermitian systems.
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Introduction.—Recent years have witnessed a surge of
theoretical and experimental interest in studying topolo-
gical phases [1-3] in insulators [4-9], superconductors
[10-12], ultracold atoms [13-18], and classical waves
[19-22]. These topologically nontrivial phases are charac-
terized by the topological index of gapped bulk-energy
bands and exhibit gapless states on their boundaries. Such
gapless boundary states cannot be gapped out by local
perturbations that preserve both bulk gap and symmetry.

Topological phases have widely been studied in closed
systems, which are described by Hermitian Hamiltonians
featuring real eigenenergies and orthogonal eigenstates.
Recently, there has been a great deal of effort in exploring
topological invariants of open systems governed by non-
Hermitian operators [23,24]. Non-Hermitian Hamiltonians
can find applications in a wide range of systems including
optical and mechanical structures subjected to gain and loss
[25-40], and solid-state systems with finite quasiparticle
lifetimes [41-45]. In particular, topological phases of non-
Hermitian Hamiltonians have recently been investigated in
these systems [43—70]. The most prominent feature of non-
Hermitian Hamiltonians is the existence of exceptional
points (EPs), where more than one eigenstate coalesces
[24,71,72]. This coalescence of eigenstates at EPs makes
the corresponding eigenspace no longer complete, and the
non-Hermitian Hamiltonian becomes nondiagonalizable.
These unique features of EPs can lead to rich topological
features in non-Hermitian topological systems with no
counterpart in Hermitian cases such as Weyl exceptional
rings [51], bulk Fermi arcs, and half-integer topological
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charges [57]. Furthermore, the interplay between non-
Hermiticity and topology can lead to the breakdown of the
usual bulk-boundary correspondence [50,52,58,63,65-67]
due to the non-Bloch-wave behavior of open-boundary
eigenstates, where the conventional Bloch wave functions
do not precisely describe topological-phase transitions under
the open-boundary conditions. The non-Bloch winding
(Chern) number defined via complex wave vectors in 1D
(2D) has recently been introduced to fill this gap [65,66].

More recently, the concept of topological insulators (TIs)
has been generalized to second-order [73-91] and third-
order [74,92,93] TIs in Hermitian systems. In contrast to
conventional first-order TIs, a d-dimensional second-order
topological insulator (SOTI) only hosts topologically pro-
tected (d — 2)-dimensional gapless boundary states. For
example, a 2D SOTI has zero-energy states localized at its
corners, and a 3D SOTI hosts 1D gapless modes along its
hinges. Therefore, the conventional bulk-boundary corre-
spondence is no longer applicable to SOTIs. Up to now,
studies of the second-order and third-order topological
phases have been restricted to Hermitian systems. We now
ask: is it possible for a non-Hermitian system to exhibit
second-order topological phases? If yes, how can we define
a topological invariant to characterize them?

In this Letter, we investigate 2D and 3D SOTIs described
by non-Hermitian Hamiltonians. Even though the bulk
bands are first-order topologically trivial insulators, there
are degenerate second-order bound states. In contrast to the
Hermitian case, these zero-energy states in 2D are localized
only at one corner protected by mirror-rotation symmetry
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and sublattice symmetry. Moreover, the second-order
boundary modes in 3D are localized not along the hinges
but anomalously at a corner. The winding number (Chern
number) characterizes its second-order topological phase in
2D (3D), where the non-Bloch-wave behavior of open-
boundary eigenstates is included due to the breakdown of
the usual bulk-corner (hinge) correspondence in second-
order non-Hermitian systems. The proposed non-Hermitian
model can experimentally be realized in ultracold atoms.

2D SOTI.—We consider a 2D non-Hermitian Hamiltonian
H,p that respects both twofold mirror-rotation symmetry
M,, and sublattice symmetry S

MxyHZD(km kv)M;vl = HZD(kyv kx)v (1)

SH (k. k,)S™" = —H(k,. k), (2)
and [S, M,,]| = 0. Note that the Hermitian counterpart with
the same symmetries was investigated in Ref. [81]. Because of
the mirror-rotation symmetry in Eq. (1), we can express the
Hamiltonian H,p, on the high-symmetry line k, = k, as

H. (k) 0 )

U‘leD(k,k)U:< 0 H. (3)

where U is a unitary operator, and H (k) acts on the mirror-
rotation subspace. Since H_ (k) respects sublattice symmetry
&' defined in each mirror-rotation subspace [note that S in
Eq. (2) is defined in the entire lattice space], we can define the
winding number as follows:

Wy = 71{3 ) f—]]:i Tr [S'H; (k) ‘ﬂ%(")} : (4)

The topological index that characterizes the second-order
topological phases in 2D is given by

W= w, —w_. (5)

We investigate a concrete model of a 2D SOTI on a
square lattice, where each unit cell contains four orbitals
and asymmetric particle hopping within each unit cell is
introduced, as shown in Fig. 1(a). The Bloch Hamiltonian
is written as

Hyop = [t + Acos(ky)]z, — [Asin(k,) + iy]z,0,
+ [t + Acos(k,)]zy0, + [Asin(k,) + iy]z,0,,  (6)

where we have set the lattice constant a, = 1, 4 is a real-
valued intercell hopping amplitude, 7=+ 7y denote real-
valued asymmetric intracell hopping amplitudes, and o;
and z; (i = x, y, z) are Pauli matrices for the degrees of
freedom within a unit cell. The Hamiltonian H,p can be
implemented experimentally using ultracold atoms in
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FIG. 1. Non-Hermitian SOTI in 2D. (a) Tight-binding repre-

sentation of the model [Eq. (6)] on a square lattice. Each unit cell
contains four orbitals (blue solid circles). The orange lines denote
intercell coupling, and the red and black lines with arrows
represent asymmetric intracell hopping. The dashed lines indicate
hopping terms with a negative sign, accounting for a flux of =
piercing each plaquette. (b) Schematic illustration of a proposed
experimental setup using ultracold atoms [94]. The primary
lattice together with a pair of Raman lasers gives rise to a
Hermitian SOTI, where the Raman lasers are used for inducing
effective particle hopping. The asymmetric hopping amplitudes
are introduced via coherent coupling to a dissipative auxiliary
lattice.

optical lattices with engineered dissipation [see Fig. 1(b)
and Sec. VIII in the Supplemental Material [94] for details].
The Hermitian part of H,p(Kk) preserves mirror and four-
fold rotational symmetries with M, = 7,6, M, = 1,0,,
and Cy = [(z, — ity)og — (7, + ity)(ioy)]/2. While they
are broken by asymmetric hopping, H,p stays invariant
under sublattice symmetry S =7, and mirror-rotation
symmetry M,, = C;M,, and [S, M,,] = 0.

Bulk and edge states.—The upper and lower bands
E.(k) of H(k) are twofold degenerate [94], and these
bands coalesce at EPs with £ (kgp) =0 forz = £4+y or

++/y? — 2%. Figure 2 shows the complex energy spectra
with open and periodic boundaries along the x and y direc-
tions, respectively. The non-Hermitian system supports
gapped complex edge states for |7| < |y| + |A|, as shown
in the red curves in Figs. 2(a) and 2(b). On the other hand,
for |t| > |y| + |4, there are no edge states [see Figs. 2(c)
and 2(d)]. In spite of their existence, edge states can

FIG. 2. Complex energy spectra of the non-Hermitian SOTI
described by Eq. (6) with open boundaries along the x direction
and periodic boundaries along the y direction. The edge states
(red curves) are gapped for (a),(b) = 0.6. No edge states exist
for (c),(d) t = 2.0. An EP exists for t =1+ y = 1.9, where a
phase transition occurs. The number of unit cells along the x
direction is N = 20 with A = 1.5 and y = 0.4.
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FIG. 3. Corner states in the non-Hermitian SOTI described

by the Hamiltonian (6). (a) Probability density distributions
>4 |prinl* (n is the index of an eigenstate and R specifies
a unit cell) of four zero-energy states under the open-boundary
condition along the x and y directions. The zero-energy modes
are localized only at the lower-left corner. (b),(c) Real and
imaginary parts of complex eigenenergies around zero energy.
The red dots represent eigenenergies of the corner modes. The
imaginary parts of the bulk eigenenergies of a finite-size sample
vanish over a wide range of parameters. (d) Probability density
distribution of a typical bulk state under the open-boundary
condition along the x and y directions. The bulk state is
exponentially localized at the lower-left corner. The number of
unit cells is 20 x 20 with t = 0.6, A = 1.5, and y = 0.4.

continuously be absorbed into bulk bands and therefore
are not topologically protected. In fact, the bulk bands are
topologically trivial, characterized by zero Chern number
(see Sec. I'in Ref. [94]) over the entire range of parameters.

Corner states.—While the bulk bands of H(k) are
topologically trivial, the system with open-boundary con-
ditions in the x and y directions hosts four zero-energy
modes at its corners, as shown in Figs. 3(a)-3(c). Moreover,
these zero-energy states are localized only at the lower-left
corner [see Fig. 3(a)]. Note that the midgap modes can be
localized at the upper-right corner if the sign of hopping
amplitude ¢ is reversed (see Fig. S1 in Ref. [94]). This
midgap-state localization at one corner results from the
interplay between the symmetry M, and non-Hermiticity,
where each corner mode is a simultaneously topological
state of two intersecting nontrivial edges (see Sec. III in
Ref. [94]). Furthermore, these corner modes are topologi-
cally protected against disorder preserving M, symmetry
and sublattice symmetry (see Sec. IV in Ref. [94]). Note
that when the mirror-rotation symmetry is broken, the
midgap modes can be localized at more than one corner,
and the sites at which mode localization occurs can be
diagnosed by considering the type of asymmetric hopping
and non-Hermiticity in non-Hermitian SOTIs (see Sec. V
in Ref. [94]).

Moreover, the bulk bands of the open-boundary system
are considerably different from those of the periodic system.
As shown in Figs. 3(b) and 3(c), the bulk eigenenergies in
the case of open boundaries are entirely real over a wide
range of system parameters as a consequence of pseudo-
Hermiticity of the open-boundary system [94], while they
are complex in the case of the periodic boundaries.
Furthermore, we find that, in contrast to the Hermitian
SOTI, the bulk modes are exponentially localized at the
lower-left corner due to the non-Hermiticity caused by the

asymmetric hopping (see Sec. VI and VII in Ref. [94]), as
shown in Fig. 3(d).

Topological index.—The topology of the non-Hermitian
Hamiltonian H,p, is characterized by the winding number w
[see Egs. (1)—(5)]. One of the boundaries of the topological-
phase transition calculated by this index is t =1 +y = 1.9
(i.e., one of the EPs) using the parameters in Fig. 2. How-
ever, numerical calculations for the open-boundary system

show that corner states exist only for ¢ < /4> +y%~1.55.
Therefore, this topological index cannot correctly deter-
mine the phase boundary between topologically trivial
and nontrivial regimes, indicating the breakdown of the
usual bulk-corner correspondence in non-Hermitian sys-
tems. This breakdown results from the non-Bloch-wave
behavior of open-boundary eigenstates of a non-Hermitian
Hamiltonian, as studied in first-order topological insulators
in Refs. [65,66]. To figure out this unexpected non-Bloch-
wave behavior, complex wave vectors, instead of real ones,
are suggested for defining the topological index of non-
Hermitian systems [65,66]. Here, we generalize this idea
to the non-Hermitian SOTI (see Sec. VII in Ref. [94] for
details). After replacing real wave vectors k with complex
ones

k = (ke k) = k = (k= iln(fo). k, = iln(By)), (7)

with o = +/|(t = 7)/(¢t + 7)|, the Hamiltonian H . for H,p
in Eq. (3) has the following forms:

H . A
B~ =+ oo + (tﬂ%e—*)o—i, (®)

where 6, = (6, % ic,)/2. Note that the location of the
midgap corner modes depends on f: they are localized at
the lower-left corners for f, < 1, and at the upper-right
corners for f; > 1. Figure 4(a) shows the topological-phase
diagram. The number of zero-energy corner modes is
counted as 2|w|. Furthermore, the phase boundaries are
determined by 2 = 2> + y? and #* = y* — 12, and the phase

2
w=0
0 w=-2
-2
-1.5 0 X 15

FIG. 4. Topological phase diagram in the 2D non-Hermitian
SOTI for y = 0.4. The gray regions represent the topologically
trivial phase with w = 0, while the cyan regions represent the
second-order topological phase with w = —2 that hosts corner
states. The phase boundaries are determined by > = A% + y?
and * = y*> = 2.
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diagram contains the trivial phase (w = 0) and the second-
order topological phase (w = —2).

3D SOTI.—We now consider a 3D non-Hermitian
Hamiltonian H;p that respects twofold mirror-rotation
symmetry

M, Hip (ky, ky, k )My = Hap(ky ko k). (9)

Note that the Hermitian counterpart was investigated in
Ref. [82]. As in the 2D case, due to the mirror-rotation
symmetry in Eq. (9), we can express the Hamiltonian Hsp
along the high-symmetry line k, = k, as

Hokk) 0
0 H_<k,kz>>’ (19

where H.. (k, k.) acts on the corresponding mirror-rotation
subspace. We can define the Chern number

U™ 'Hsp (k, k, k,)U = (

1
Cit -

= Tr[dAi + lAi A Ai]’
27 BZ

(11)

where A? = i(y% (k. k,)|d¢/. (k. k,)) with a and f§ taken
over the filled bands, and |¢%) ([y%)) is a right (left)
eigenstate of H_ (k, k_). This formula is a natural gener-
alization of the single-band non-Hermitian Chern number
discussed in Ref. [53] to multiple bands. Then the topo-
logical index that characterizes the second-order topologi-
cal phases in 3D is

—~
&
=

Re(E)
Re(E)

C=C,-C_. (12)
We investigate a concrete model of a 3D non-Hermitian
SOTI on a cubic lattice described by

H3D = (m + tz COS kl) T, + Z(AI Sin ki + iyi)aifx
(13)

where i runs over x, y, and z, and y, =y, =y,. This
Hamiltonian H;p, only preserves mirror-rotation symmetry
M,, (see Sec. IX in Ref. [94]).

When the bulk bands of H;p are gapped and first-order
topologically trivial, it does not support gapless surface
states, as shown by energy spectra with open boundaries
along the y direction in Figs. 5(a) and 5(b). However, the
system with open boundaries in both x and y directions
hosts fourfold degenerate second-order boundary modes, as
shown in Figs. 5(c) and 5(d). In contrast to the Hermitian
case [82], these second-order boundary modes under the
open-boundary condition along all the directions are
localized not along the hinge but anomalously localized
at one corner [see Fig. 5(e)]. This indicates that the
usual bulk-hinge correspondence is broken for the 3D
non-Hermitian SOTI. Moreover, these second-order
boundary modes are only localized at the corners on the
x =y plane due to the mirror-rotation symmetry M,, (see
Fig. S10 in Ref. [94]). In addition, the second-order
boundary modes can be localized at more than one corner
when the mirror-rotation symmetry is broken or there exists
the balanced gain and loss (see Sec. IX in Ref. [94]).

+ Ay (cos ky — cosk,)zy,

() 5 : !
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FIG. 5.

Three-dimensional non-Hermitian SOTI described by Eq. (13). (a),(b) Complex energy spectrum under the open-boundary

condition along the y direction. (c),(d) Complex energy spectrum under the open-boundary condition along the x and y directions. Red
curves denote fourfold degenerate second-order boundary modes. (e) Probability density distribution |®, ¢|* (n is the index of an
eigenstate and R specifies a lattice site) of midgap modes with open boundaries along the x, y, and z directions. The midgap states (with
eigenenergies of 0.035) are localized only at one corner. The number of unit cells is 20 x 20 x 30 with t =1, yy = 0.7, y, = =0.2,
m= -2, A; = 1.2, and A, = 1.2. (f) Second-order topological-phase diagram characterized by the nonzero Chern number.
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Because of mirror-rotation symmetry, the second-order
topological phase in 3D can be characterized by the Chern
number C [see Egs. (9)-(12)]. To generalize the bulk-
boundary correspondence in 3D non-Hermitian SOTISs,
we take into account the exponential-decay behavior of
non-Hermitian eigenstates with open boundaries along all
the directions. After considering a low-energy continuum
model of the Hamiltonian H;p to capture the essential
physics of the 3D non-Hermitian SOTI with analytical
results, and replacing real wave vectors k with complex
ones (see Sec. IX in Ref. [94] for details), the Hamiltonian
H_ for Hsp in Eq. (10) can be expressed as

_ 1
H(k,k,)=—|m+3t—1t(k— iay)? — E(kz — iocz)2 o,
£ V2[A (k - iay) + iyoloy
- Al(kz - iaz)ax’ (14)
where
i v
aO:A%’ and aZ:A—Z]. (15)

Figure 5(f) shows the topological-phase diagram, where the
second-order topological phases are characterized by the
nonzero Chern number (C = —2). The number of hinge
states is counted as 2|C|.

Conclusions.—In this Letter, we have analyzed 2D and
3D SOTIs in the presence of non-Hermiticity. In spite of
their first-order topologically trivial bulk bands, second-
order boundary modes exist in both 2D and 3D SOTIs. In
contrast to the Hermitian cases, the midgap states in 2D are
localized only at one corner protected by mirror-rotation
symmetry and sublattice symmetry, and the second-order
boundary modes are anomalously localized at a corner in
3D. The winding number (Chern number) defined by
complex wave vectors is used to determine their second-
order topological phases in 2D (3D). An experimental
realization with ultracold atoms is also discussed. Our
study provides a framework to explore richer non-
Hermitian physics in higher-order topological phases.
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