
Supplemental Material for

Interaction of Mechanical Oscillators

Mediated by the Exchange of Virtual Photon Pairs

I. DIAGONALIZATION OF THE STANDARD OPTOMECHANICS HAMILTO-

NIAN

We consider a system constituted by two vibrating mirrors interacting via radiation pres-

sure [see Fig. 1(a) in the main paper]. Both the cavity field and the displacements of the

mirrors are treated as dynamical variables and a canonical quantization procedure is adopted

[1, 2].

By considering only one mechanical mode for each mirror, with resonance frequency ωi

(i = 1, 2) and bosonic operators b̂i and b̂†i , the displacement operators can be expressed

as x̂i = X
(i)
zpf(b̂

†
i + b̂i), where X

(i)
zpf is the zero-point-fluctuation amplitude of the ith mirror.

We also consider a single-mode optical resonator with frequency ωc and bosonic photon

operators â and â†. The system Hamiltonian can be written as Ĥs = Ĥ0 + ĤI , where

Ĥ0 = ωcâ
†â+ ω1b̂

†
1b̂1 + ω2b̂

†
2b̂2 , (S1)

is the unperturbed Hamiltonian. The Hamiltonian describing the mirror-field interaction is

ĤI = (â+ â†)2 ∑
i=1,2

gi
2 (b̂i + b̂†i ) , (S2)

where gi are the coupling rates. Eq. (S2) is a direct generalization of the Law optomechan-

ical Hamiltonian [1]. The linear dependence of the interaction Hamiltonian on the mirror

operators is a consequence of the usual small-displacement assumption [1]. Once such linear

dependence is assumed, the generalization (S2) to two mirrors, coupled to the same optical

resonator, is straightforward. Equation (S2) has a clear physical meaning: the radiation

pressure force acting on the mechanical resonators is proportional to the square modulus of

the electric field.

By developing the photonic operators in normal order, and by defining new bosonic

phonon and photon operators and a renormalized photon frequency, Ĥs can be written as

Ĥs = Ĥom + V̂DCE , (S3)
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where V̂DCE is the DCE interaction term:

V̂DCE = (â2 + â†2)
∑
i=1,2

gi
2 (b̂i + b̂†i ) , (S4)

and Ĥom is the standard optomechanics Hamiltonian:

Ĥom = Ĥ0 + V̂om (S5)

with

V̂om = â†â
∑
i=1,2

gi(b̂i + b̂†i ) . (S6)

Ĥom can be easily diagonalized defining the displacement operators for the two mirrors. In

particular, defining (i = 1, 2)

B̂i = b̂i + βiâ
†â (S7)

with βi = gi/ωi, we obtain

Ĥom = ωc

[
1−

(
β2

1ω1

ωc
+ β2

2ω2

ωc

)
â†â

]
â†â+ ω1B̂

†
1B̂1 + ω2B̂

†
2B̂2 . (S8)

It is possible to separate the Hilbert space spanned by the Hamiltonian eigenvectors into

subspaces with a definite number of photons n. The eigenstates of Ĥom can be labelled by

three indexes: the first two labelling the mechanical occupation numbers (phonons) of the

two mirrors, dressed by the presence of n cavity photons while the third label describes the

number n of cavity photons. We use the following notation

|ψk,q,n〉 = |kn〉 ⊗ |qn〉 ⊗ |n〉c ≡ |k, q, n〉 . (S9)

In particular, the photon occupation number n determines the nth cavity-photon subspace,

while the first two kets (|kn〉 and |qn〉) are the displaced mechanical Fock states, respectively,

for the first and second mirror. The action of the dressed phonon operators on the eigenstates

satisfy the relations

B̂1 |kn, qn, n〉 =
√
k |(k − 1)n, qn, n〉 , B̂2 |kn, qn, n〉 = √q |kn, (q − 1)n, n〉 ,

B̂†1 |kn, qn, n〉 =
√

(k + 1) |(k + 1)n, qn, n〉, B̂†2 |kn, qn, n〉 =
√

(q + 1) |kn, (q + 1)n, n〉.

(S10)
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The explicit expression of the single displaced Fock state |kn〉i for the ith mirror is (note

that from Eq. (S7) and in the subspace with n cavity photons we have B̂†i = b̂†i + nβiÎi)

|kn〉i = 1√
k!
B̂†ki |0n〉i = 1√

k!
(b̂†i + nβiÎi)k|0n〉i , (S11)

where n-photons manifold and |0n〉i is the coherent ground state for mirror i with n cavity

photons, as is shown by the relation

b̂i|0n〉i = −nβi|0n〉i , (S12)

obtained using Eq. (S7) in B̂i|0n〉i = 0. Using the displacement operator D̂(nβi) =

exp[nβi(b̂i − b̂†i )], we have

|0n〉i = D̂(nβi)|0〉i =
∑
j

e−|nβi|2/2 (−nβi)j√
j!
|j〉i . (S13)

In addition, from the relation D̂(nβ)b̂†D̂†(nβ) = b†+ nβ [3], using Eqs. (S11) and (S13), we

obtain

|kn〉i = 1√
k!

(b̂†i +nβiÎi)k|0n〉i = 1√
k!

(b̂†i +nβiÎi)kD̂(nβi)|0〉 = D̂(nβi)
1√
k!
b̂†ki |0〉 = D̂(nβi)|k0〉

(S14)

Finally, after a little bit of algebra, we have

i〈k′0|kn〉i = i〈k′0|[D̂(nβi)]|k0〉i = Dk′,k(nβi) =
√
k!/k′!(nβi)k

′−ke−|nβi|2/2Lk
′−k
k (|nβi|2) , (S15)

where Lpk(x) are the associated Laguerre polynomials.

In conclusion, the standard optomecanical Hamiltonian can be diagonalized as shown

above and we obtain

Ĥ|k, q, n〉 = Ek,q,n|k, q, n〉 , (S16)

where

Ek,q,n = ωcn

[
1−

(
β2

1ω1

ωc
+ β2

2ω2

ωc

)
n

]
+ ω1k + ω2q , (S17)

or, in more compact form [replacing for clarity the phonon labels as (k, q)→ (k1, k2)]

Ek1,k2,n = ωcn−
∑
i

g2
i n

2/ωi +
∑
i

ωiki. (S18)
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II. THE DCE INTERACTION HAMILTONIAN AS A PERTURBATION

In this section, we introduce the DCE interaction term. We consider this additional

contribution as a perturbation to the optomechanical Hamiltonian Ĥom. This additional

term creates and destroys photon pairs. Here we consider processes at the lowest nonzero

perturbation order. Thus we limit our calculations to the subspace containing zero and

two cavity photons. The DCE interaction Hamiltonian V̂DCE is calculated using second-

order perturbation theory. These perturbative calculations are carried out using the James’

method [4]:

Ĥ
(2)
eff = 1

i
V̂
I(0,2)

DCE (t)
∫ t

0
V̂
I(0,2)

DCE (t′)dt′ , (S19)

where

V̂
I(0,2)

DCE (t) = eiĤtV̂
(0,2)

DCE e
−iĤt

is the projection operator V̂DCE acting in the subspace containing 0 and 2 photons expressed

in the interaction picture. After some algebra, we obtain (we assume g1 = g2 ≡ g):

V̂
I(0,2)

DCE (t) = g

2
∑
k q
k′ q′

Ak
′ q′

k q |k2, q2, 2〉〈k′0, q′0, 0| e
iωk′ q′

k q
t + (Ak

′ q′

k q )† |k′0, q′0, 0〉〈k2, q2, 2| e−iω
k′ q′

k q
t

(S20)

where

ωk
′ q′

k q = 2Ωc + (k′ − k)ω1 + (q′ − q)ω2; (S21)

with Ωc = 1 + β̃1 + β̃2, β̃i = g2/(ωiωc) . We also have:

Ak
′ q′

k q =
〈
k2, q2, 2

∣∣∣V̂DCE

∣∣∣ k′0, q′0, 0〉 ;

that can be expressed in more explicit form as

Ak
′ q′

k q =
√

2
{
[
√
k′〈k2|(k′ − 1)0〉+

√
k′ + 1〈k2|(k′ + 1)0〉]〈q2|q′0〉+

[
√
q′〈q2|(q′ − 1)0〉+

√
q′ + 1〈q2|(q′ + 1)0〉]〈k2|k′0〉

}
. (S22)

Note that Ak
′ q′

k q = A†k q
k′ q′ . Using Dk′,k(2βi) = 〈k′2|k0〉, we have:

Ak
′ q′

k q =
√

2[
√
k′Dk,k′−1(2β1) +

√
k′ + 1Dk,k′+1(2β1)]Dq,q′(2β2)+

√
2[
√
q′Dq,q′−1(2β2) +

√
q′ + 1Dq,q′+1(2β2)]Dk,k′(2β1) , (S23)

where the matrix elements of the displacement operators can be expressed in terms of asso-

ciated Laguerre polynomials: Dk′,k(α) =
√
k!/k′!αk′−ke−|α|

2/2Lk
′−k
k (|α|2).
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A. One phonon – zero photons subspace

The (1 + 0) subspace containing zero photons and one phonon excitation is spanned by

the eigenvectors |1, 0, 0〉 and |0, 1, 0〉. At ω2 ∼ ω1, these states are degenerate in absence of

the V̂DCE interaction. In presence of such interaction, degeneracy is removed and an avoided

level crossing can be observed. This effect can be described by introducing an effective

Hamiltonian. Specifically: a) we introduce Eq. (S20) into Eq. (S19); b) we perform the

integration; c) we limit the calculations to matrix elements containing zero photons; d) we

transform back to the Schrödinger picture; e) finally, we project the result into the (1 + 0)

subspace spanned by the vectors |1, 0, 0〉, |0, 1, 0〉. We obtain

Ĥeff = Ĥ0
eff + [λ10

01 |0, 1, 0〉〈1, 0, 0|+ H.c.], (S24)

where

Ĥ0
eff = Ω1 |1, 0, 0〉〈1, 0, 0|+Ω2 |0, 1, 0〉〈0, 1, 0| , (S25)

with Ω1 = ω1 +∆10 and Ω2 = ω2 +∆01, and with

∆10 = −g
2

4
∑
k q

A1 0†
k q A

1 0
k q

2Ωc + (k − 1)ω1 + qω2
; (S26)

∆01 = −g
2

4
∑
k q

A0 1†
k q A

0 1
k q

2Ωc + kω1 + (q − 1)ω2
; (S27)

λ10
01 = −g

2

4
∑
k q

A0 1†
k q A

1 0
k q

2Ωc + (k − 1)ω1 + qω2
. (S28)

In Fig. S1, we show a comparison between the numerically calculated normalized Rabi

splitting (2λ10
01ω1) between the two one-phonon states |1, 0, 0〉 and |0, 1, 0〉 and the corre-

sponding theoretical value calculated using second-order perturbation theory as a function

of the normalized optomechanical coupling g/ω1. The agreement is very good for g/ω1 below

0.1.
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Figure S1. Comparison between the numerically calculated normalized Rabi splitting (red points)

(corresponding to twice the effective coupling between the two one-phonon states |1, 0, 0〉 and

|0, 1, 0〉) and the corresponding calculation using second-order perturbation theory (solid blue

curve).

B. Two phonons – zero photons subspace

The (2 + 0) subspace with zero photons in the cavity and containing two phonon ex-

citations is spanned by the eigenvectors: |2, 0, 0〉, |0, 2, 0〉 and |1, 1, 0〉. Also in this case,

at ω2 ∼ ω1, these states are degenerate in the absence of the V̂DCE interaction. With the

introduction of V̂DCE, degeneracy is removed, and an avoided level crossing can be observed.

Following the same procedure described in the previous subsection, this effect can be de-

scribed by introducing an effective Hamiltonian acting on the (2 + 0) subspace. We obtain:

Ĥeff = Ĥ0
eff + [λ02

20 |2, 0, 0〉〈0, 2, 0|+ λ11
20 |2, 0, 0〉〈1, 1, 0|+ +λ11

02 |0, 2, 0〉〈1, 1, 0|+ H.c.]; (S29)

where

Ĥ0
eff = Ω20 |0, 2, 0〉〈0, 2, 0|+Ω02 |2, 0, 0〉〈2, 0, 0|+Ω11 |1, 1, 0〉〈1, 1, 0| ; (S30)

with Ω20 = 2ω1 +∆20, Ω11 = ω1 + ω2 +∆11 and Ω02 = 2ω2 +∆02, and

λ02
20 = −g

2

4
∑
k q

A0 2†
k q A

2 0
k q

2Ωc + (k − 2)ω1 + qω2
, (S31)
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λ11
20 = −g

2

4
∑
k q

A1 1†
k q A

2 0
k q

2Ωc + (k − 2)ω1 + qω2
, (S32)

λ11
02 = −g

2

4
∑
k q

A1 1†
k q A

0 2
k q

2Ωc + kω1 + (q − 2)ω2
, (S33)

∆20 = −g
2

4
∑
k q

A2 0†
k q A

2 0
k q

2Ωc + (k − 2)ω1 + qω2
, (S34)

∆02 = −g
2

4
∑
k q

A0 2†
k q A

0 2
k q

2Ωc + kω1 + (q − 2)ω2
, (S35)

∆11 = −g
2

4
∑
k q

A1 1†
k q A

1 1
k q

2Ωc + (k − 1)ω1 + (q − 1)ω2
. (S36)

A comparison of these perturbative analytical results with the numerical result is provided

in the Tables I and II. The discrepancies can be ascribed to higher-order terms that at a

coupling strength g/ω1 = 0.1 provide non-negligible contributions.

2λ10
01 2λ11

20 2λ02
20 2λ11

02

Numerical ' 0.0217 0.0217 0.0384 0.0167

Theoretical ' 0.0170 0.0171 0.0348 0.0177

Table I. Comparison between the effective splittings calculated both numerically (as difference be-

tween the eigenvalues) and analytically using the James’ method [4]. In particular, the theoretical

values corresponding to 2λ11
20, 2λ02

20 and 2λ11
02 are obtained by the diagonalization of a 3 × 3 ma-

trix representing the effective Hamiltonian in the subspace with two phonon excitations and zero

photons. The cavity-mode resonance frequency is ωc = 0.85ω1 and ω2 = ω1.
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∆10 ∆01 ∆11 ∆02 ∆20

Numerical ' −0.0131 −0.0159 −0.0221 −0.0239 −0.0217

Theoretical ' −0.0120 −0.0121 −0.0207 −0.0199 −0.0207

Table II. Comparison between the numerically calculated energy shifts and the analytical calcula-

tions obtained using the James’ method. The mechanical frequency of mirror 2 is ω2 = 0.94ω1. For

this value the energy levels investigated do not interact significantly, and hence the energy shifts

are not affected by the level-repulsion effect that occurs when the mirrors are on resonance with

each other. The cavity-mode resonance frequency is ωc = 0.85ω1.

III. ENERGY LEVELS AND SPLITTINGS FOR DIFFERENT OPTOMECHAN-

ICAL COUPLINGS.

(Debug) Out[70]=

10.8 1.2

2

0.8

1.2

1.6

Figure S2. Lowest energy levels of the system Hamiltonian as a function of ω2/ω1. We used

g/ω1 = 0.1 and ωc/ω1 = 0.8.
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Figure S3. Relevant lowest energy levels of the system Hamiltonian as a function of ω2/ω1. Panel

(a) has been obtained using g/ω1 = 0.01 and ωc/ω1 = 0.475. Panel (b) has been obtained with the

same parameters of Fig. S2.

Figure S2 displays the lowest energy levels Ej−E0 of the system Hamiltonian as a function

of the ratio between the mechanical frequency of mirror 2 and that of mirror 1. An optome-

chanical coupling g/ω1 = 0.1 has been used, the cavity-mode resonance frequency is ωc =

0.8ω1. Starting from the lowest energy levels, we first avoided level crossing originates from

the coherent coupling of the zero-photon states |1, 0, 0〉 and |0, 1, 0〉. At the minimum energy

splitting, the resulting states are well approximated by |ψ2,3〉 ' (1/
√

2)(|1, 0, 0〉 ± |0, 1, 0〉).

As shown in the main paper and in the previous section, this mirror-mirror interaction is a

result of virtual exchange of cavity photon pairs. This coherent coupling is greatly enhanced

by the presence of a cavity photon, resulting in the larger splitting (E6−E5), corresponding

to the states |ψ5,6〉 ' (1/
√

2)(|1, 0, 1〉 ± |0, 1, 1〉). At higher energy, at ω2/ω1 ∼ 1, V̂DCE

removes the degeneracy between the three states |2, 0, 0〉, |0, 2, 0〉, and |1, 1, 0〉, determining

a two-phonon coupling between the two mirrors.

Figure S3 shows the relevant energy levels of the system Hamiltonian Ĥs as a function of

the ratio ω2/ω1. For the panel (a) an optomechanical coupling g/ω1 = 0.01 has been used

and the cavity-mode resonance frequency is ωc = 0.475ω1. The lowest energy anticrossing

corresponds to the resonance condition for the DCE. The higher energy one is the signature
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of the mirror-mirror interaction mediated by the virtual DCE photons. At the minimum

energy splitting 2λ01
10 ' 1, 85×10−2ω1, the resulting states are well approximated by |ψ3,4〉 '

(1/
√

2)(|1, 0, 0〉 ± |0, 1, 0〉). In panel (b) we use g/ω1 = 0.1. In this case the cavity-mode

resonance frequency is ωc = 0.8ω1. Also in this case, the anticrossing is the signature

of the mirror-mirror interaction mediated by the virtual DCE photons. At the minimum

energy splitting 2λ01
10 ' 2, 56×10−2ω1, the resulting states are well approximated by |ψ2,3〉 '

(1/
√

2)(|1, 0, 0〉 ± |0, 1, 0〉).

IV. SYSTEM DYNAMICS UNDER A SINGLE-TONE CONTINUOUS-WAVE

MECHANICAL DRIVE: ADDITIONAL RESULTS

We start investigating the system dynamics at T = 0, with the system starting from its

ground state, and introducing the excitation of mirror 1 by a single-tone continuous-wave

mechanical drive F1(t) = A cos (ωdt), with ωd = ω1. Figure S4 shows the time evolution of

the mean phonon numbers of the two mirrors 〈B̂†i B̂i〉 and of the intracavity mean photon

number 〈Â†Â〉. Here Â, B̂i are the physical photon and phonon operators (see main paper).

We assume a zero-temperature reservoir and use γ1 = γ2 = γ = ω1/260 and κ = γ for the

mechanical and photonic loss rates. We consider a weak (A/γ = 0.95) resonant excitation

of mirror 1. Panel (a) has been obtained using g/ω1 = 0.1 and ωc/ω1 = 0.8. Panel (b) using

g/ω1 = 0.03 and ωc/ω1 = 0.495. Panel (c) using g/ω1 = 0.01 and ωc/ω1 = 0.475. We set

ω2 = ω1. The results shown in Fig. S4 demonstrate that the excitation transfer mechanism

via virtual DCE photon pairs, proposed here, works properly. In steady state, mirror 2

reaches almost the same excitation intensity as the driven mirror 1 at normalized couplings

g = 0.1 and g = 0.03. The photon population remains very low throughout the considered

time window. In Fig. S5, in order to obtain the maximum excitation transfer between the

two mirrors (despite the small coupling strength g/ω1 = 0.01), we investigate the system

dynamics using ωc = 0.5ω1. We also consider the system initially in a thermal state with

a normalized thermal energy kT/ω1 = 0.208, corresponding to a temperature T = 60 mK

for ω1/2π = 6 GHz. During, its time evolution, the system interacts with thermal baths

with the same temperature T . The obtained results show that a good mechanical transfer

is achieved. However, in this case, a significant amount of real photon pairs are generated.

This configuration can be used to probe the DCE effect in the presence of thermal photons.
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Figure S4. System dynamics under continuous-wave drive of mirror 1 for different optomechanical

coupling strengths. The blue solid and red dashed curves describe the mean phonon numbers

〈B̂†1B̂1〉 and 〈B̂†2B̂2〉, respectively, while the black dotted curve describes the mean intracavity

photon number 〈Â†Â〉. Parameters are given in the text.

V. MECHANICAL EXCITATION TRANSFER: PULSED EXCITATION

We now investigate the transfer of mechanical excitations mediated by virtual photon

pairs by exciting mirror 1 with a resonant Gaussian pulse:

F1(t) = AG(t− t0) cos (ωd t),

where ωd = ω1, and G(t) is a normalized Gaussian function with standard deviation σ =

1/(10λ01
10). We consider the case of the strong coupling regime, when the mirror-mirror
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Figure S5. System dynamics for ωc = 0.5ω1 under continuous-wave drive of mirror 1, normalized

coupling g/ω1 = 0.01 and T= 60 mK. The blue solid and red dashed curves describe the mean

phonon numbers 〈B̂†1B̂1〉 and 〈B̂†2B̂2〉, respectively, while the black dotted curve describes the mean

intracavity photon number 〈Â†Â〉 arising due to the DCE.

Figure S6. Time evolution of the mean phonon numbers of the two mirrors after the arrival of

the pulse. We consider two different amplitudes which increase from top to bottom: A = 0.25π

(a), 0.45π (b). Specifically, panels (a-b) display the mean phonon numbers 〈B̂†i B̂i〉. Panels (α-β)

display the Fourier transform of the mean phonon number shown in the corresponding panel on

the left. Other parameters are given in the text.
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coupling strength λ01
10 is larger than the total decoherence rate γ1 +γ2. We set the resonance

frequency of mirror 2 to ω2 ' ω1 providing the minimum level splitting 2λ01
10. The system

starts in its ground state. Figure S6 displays the system dynamics after the pulse arrival

and the Fourier transform of the mean phonon number of mirror 1 (no relevant changes

occur for mirror 2), obtained for pulses with amplitudes increasing from top to bottom: A =

0.25π, 0.45π. Panels S6(a) and S6(α) have been obtained using the loss rates γ = 3.5×10−3ω1

and κ = 0.5γ. Figure S6(a) displays coherent and reversible sinusoidal oscillations (with

peak amplitudes decaying exponentially), showing that the mechanical state of the spatially

separated mirrors is transferred from one to the other at a rate ω3,2 ≡ E3 − E2 = λ01
10, as

confirmed by the peak in the Fourier transform in Fig. S6(α). We notice that the position

and broadening of the peak at ω3,2 in Fig. S6(α) is influenced by the initial dynamics of

〈B̂†1B̂1〉, which in turn is affected by the pulse shape (Fig. S7 displays the corresponding

spectrum for mirror 2). The higher peak at ω = 0 originates from the exponential decay of

the signal. These results clearly show that, for the weaker excitation amplitude (A = 0.25π),

only the one-phonon states |1, 0, 0〉 and |0, 1, 0〉 are excited significantly and contribute to

the dynamics.

Figure S7. Fourier transform of the mean phonon number of mirror 2 obtained for a pulse with

amplitude A = 0.25π.

By increasing the pulse amplitude [Fig. S6(b)], the mean phonon numbers grow sig-

nificantly and the signals are no more sinusoidal, owing to the additional excitation of the

states |2, 0, 0〉, |1, 1, 0〉, and |0, 2, 0〉, whose DCE-induced coupling gives rise to the hybridized
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energy eigenstates |ψ7〉, |ψ8〉, and |ψ9〉. In order to better distinguish the nonsinusoidal be-

haviour, we used much lower loss rates: γ = 8 × 10−5ω and κ = 0.5γ. Figure S6(β) shows

the appearence of an additional peak at ω = ω8,7, confirming that higher-energy mechanical

states get excited. We observe that the frequency splitting ω9,8 is very close to ω3,2, hence, it

does not give rise to a new peak in Fig. S6(β). Moreover, the frequency splitting at ω9,7 does

not contribute significantly to the dynamics as confirmed by the spectrum in Fig. S6(β). An

analytic calculation based on three coupled levels confirms that the used parameters give

rise to a negligible contribution at ω9,7.

VI. MECHANICAL EXCITATION TRANSFER: NONADIABATIC EFFECTIVE

SWITCHING OF THE INTERACTION

As pointed out in the last paragraph of the main paper, if it is possible to control the

interaction time (as currently realized in superconducting artificial atoms), e.g., by rapidly

changing the resonance frequencies of the mechanical oscillators, the interaction scheme

proposed here would represent an attractive architecture for quantum information processing

with optomechanical systems. Here we provide some examples of quantum state transfer. In

Fig. S8, we show the phonon population dynamics obtained preparing the system in three

different initial states (a) |1, 0, 0〉, (b) 1√
2(|0, 0, 0〉+ |1, 0, 0〉), (c) |2, 0, 0〉. Mirror 2 is initially

set at a mechanical frequency ωin
2 . This value must be chosen sufficiently far from the value

ωmin
2 ' 0.99ω1 corresponding to the minimum splitting between states |1, 0, 0〉 and |0, 1, 0〉.

In particular, we have fixed ωin
2 = ωmin

2 −δ with δ = 0.069ω1. This value is also sufficiently far

from the region where the avoided three-level crossing between the states |ψi〉 with i = 7, 8, 9

appears. Subsequently, a time-dependent perturbation Hna = f(t)B̂†2B̂2 [with f(t) ≈ θ(t −

t0)] is introduced in order to modify the resonance frequency of mirror 2 (θ is the Heaviside

step function). More specifically f(t) = δ [sin2[Ω(t− t0)θ(t− t0) + sin2[Ω(t− tf )θ(t− tf )]]

is a smoothed step function, where δ fixes the change in mechanical frequency of mirror 2,

t0 is the time when the frequency starts to change, tf = t0 +π/(2A), and Ω is the frequency

setting the smoothness.

This enables a non-adiabatic transition from the frequency region with ω2 = ωin
2 , where

the states |2, 0, 0〉, |1, 0, 0〉 and |0, 1, 0〉 are eigenstates of the system, to the frequency region

ω2 = ωmin
2 where the former states are no longer eigenstates of the system. As a consequence,
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Figure S8. Time evolution of the mean phonon numbers of the two mirrors obtained preparing the

system in an initial state (a) |1, 0, 0〉, (b) 1√
2(|1, 0, 0〉+ |0, 0, 1〉), (c) |2, 0, 0〉. Mirror 2 is initially set

at a mechanical frequency ωin
2 (details are given in the text). We note that the dynamics display

oscillations, (a) and (b), due to the avoided level crossing between the states |ψ3〉 and |ψ2〉 with

frequency equal to ω3,2; (c) due to the splittings between the states |ψ9〉, |ψ8〉 and |ψ7〉, whose

transitions from higher to lower levels give rise to beats (the details are given in the text).

the dynamics of the phonon populations of the two mirrors display quantum Rabi-like os-

cillations [see Fig. S8(a) and (b)] due to the avoided level crossing between the states |ψ3〉

and |ψ2〉 (the eigenstates of the systems are, in this frequency region, the symmetric and
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Figure S9. Time evolution of the mean phonon numbers of the two mirrors calculated after a

non-adiabatic switching of the interaction, as explained in Fig. S8, but in the presence of losses

both in mirrors and cavity. The parameters are the same as in Fig. S8; in addition we have

γ = γ1 = γ2 = ω1/650 and κ = 0.5 γ. The system is initially preparated in the states (a)

|1, 0, 0〉, (b) 1√
2(|1, 0, 0〉+ |0, 0, 1〉), (c) |2, 0, 0〉. As we can observe, the oscillations are damped and

disappear after a few periods. In (c) the losses do not allow for observations of beats oscillations

having a longer time period. The dotted gray lines show how the frequency of mirror 2 is tuned

into resonance with mirror 1 (details are given in the text).
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antisymmetric superpositions of |1, 0, 0〉 and |0, 1, 0〉; see Fig. 1b in the main paper). In

Fig. S8(c), the avoided level crossing between the states |ψ9〉, |ψ8〉, and |ψ7〉 gives rise to

transitions from higher to lower levels. As a consequence, we observe beats between the two

transition frequencies ω8,9 and ω8,7 (with the chosen parameters the other frequency transi-

tion ω9,7 does not contribute to the beats). Finally, in Fig. S9, we show the time evolution

of the mean phonon numbers for the same cases discussed above, but in the presence of

losses both in mirrors and cavity. We observe the damping of the population dynamics as

expected in presence of losses.

VII. EXPERIMENTAL PLATFORM FOR THE OBSERVATION OF THE PRO-

POSED EFFECT

A platform to experimentally demonstrate these results is circuit optomechanics using

ultra-high-frequency (ω1 at 4-6 GHz) dilatational resonators [5]. These mechanical oscil-

lators have a resonance frequency fm = v/2d, where v is the average speed of sound and

d is the resonator thickness. Their resonant quantum interaction with a superconducting

phase qubit, described by the quantum Rabi (or also the Jaynes-Cummings) Hamiltonian,

has been experimentally demonstrated [5, 6]. In the present case, we want to estimate the

radiation-pressure interaction strength between the high-frequency mechanical resonator and

an electromagnetic resonator. In order to estimate the achievable coupling strength, we be-

gin by analyzing the coupling between a mechanical resonator and a flux qubit, experimen-

tally realized in Ref. [5]. Then we use the experimentally achieved qubit-oscillator coupling

strength to derive an accurate estimate of the presently achievable radiation-pressure cou-

pling strength between this mechanical resonator and an electromagnetic resonator. Note

that the mechanical oscillator considered in Ref. [5] has a quality factor equal to that used

in our calculations: Q = 260. Moreover, it has been shown that lowering fm can strongly

increase the quality factor [7].

The mechanical resonator is coupled to a superconducting artificial atom through a ca-

pacitor [5]. An elastic strain in the vibrational resonator produces, through the piezoelectric

effect, a charge on the capacitor enclosing it, which results in a charge Q on the coupling

capacitor giving a current Q̇. The coupling energy is V̂ ′ = (~/2e) ϕ̂ ˙̂
Q, where ϕ̂ is the phase-

difference operator of the Josephson junction. Considering only the two lowest energy levels
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(qubit) of the artificial atom, the phase operator can be expanded as φ̂ = (2E ′C/E ′J)1/4 σ̂x,

resulting in the Rabi-like interaction Hamiltonian

V̂ ′qm = ~ (2E ′C/E ′J)1/4 σ̂x ( ˙̂
Q/2e) , (S37)

where E ′C and E ′J are the charging energy and the Josephson energy, respectively, of the

phase qubit (with E ′C � E ′J), and
˙̂
Q is proportional to the vibrational strain velocity ˙̂x =

iω1Xzpf (b̂†1− b̂1) (Xzpf is the zero-point fluctuation amplitude of the mechanical coordinate).

Finally, this interaction Hamiltonian can also be expressed in the standard Rabi interaction

form:

V̂ ′qm = −ig′m(b̂− b̂†)σ̂x , (S38)

where g′m is the resulting coupling strength and b̂ and b̂† are, respectively, the annihilation

and creation operators for a generic mechanical oscillator.

For the observation of the effects described in this paper, optomechanical systems dis-

playing a radiation-pressure interaction Hamiltonian are required. Moreover a strong op-

tomechanical coupling (at least g/ω1 ∼ 0.01) is needed. This kind of interaction with a

reasonable coupling strength can be obtained by considering a tripartite system consisting

of an electromagnetic resonator, an ultra-high-frequency mechanical resonator, and a su-

perconducting charge qubit mediating the interaction between the former two parts [8, 9].

It has been shown that the presence of the qubit can strongly enhance the optomechanical

coupling.

Without presenting a detailed circuit-optomechanical setup, which goes beyond the scope

of the present work, we can provide an estimate of the resulting coupling strength which

can be achieved within state-of-the-art technology. Specifically, considering one generic

mechanical oscillator, coupled through a capacitor to a charge qubit, the qubit-mechanical

oscillator interaction Hamiltonian can be written as V̂qm = 8EC n̂ (Q̂/2e), where n̂ is the

number operator for the Cooper pairs transferred across the junction. In the full charge qubit

limit, EJ � EC , the bare qubit transition energy is ωq ≈ 4EC , and the mechanical coupling

is longitudinal, i.e., in the two-state representation n̂ → σ̂z/2. The resulting interaction

Hamiltonian is

V̂qm = ~ωq σ̂z(Q/2e) , (S39)

which can also be expressed as

V̂qm = gm(b̂+ b̂†)σ̂z . (S40)
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Assuming that the same mechanical oscillator is coupled through the same capacitor to

the two different kinds of superconducting qubits, it is possible to compare the two qubit-

mechanical oscillator coupling strengths. From Eqs (S37) and (S39), disregarding the phase

difference, we obtain

gm
g′m

=
(
E ′J

2E ′C

) 1
4 ωq
ω1
. (S41)

Below we will consider the case 2ωq ∼ ω1. Assuming the energies E ′J and E ′C for a typical

phase qubit (see, e.g. Ref. [7]), we obtain gm/g
′
m & 12.

Now, following Refs. [8] and [9], we consider the additional interaction of the charge qubit

with an electromagnetic resonator, described by the Hamiltonian

V̂qc = gc(â+ â†)σ̂x , (S42)

where â is the destruction operator of the cavity mode. In the dispersive regime, the qubit-

cavity interaction can be well approximated by [10]

V̂qc = (g2
c/2∆)σ̂z(â+ â†)2 , (S43)

where ∆ = ωq − ωc. Corrections of the qubit energy not depending on photon operators

have been disregarded. Equation (S40) shows that the coupling of the charge qubit with the

mechanical oscillator induces a qubit energy shift depending on the mechanical displacement,

so that ωq → ωq + 2gm(b̂+ b̂†). Replacing ∆ with ∆(x̂) = ωq + 2gm(b̂+ b̂†)−ωc in Eq. (S43),

assuming small displacements, and considering the qubit in its ground state, from Eq. (S43)

we obtain the following optomechanical interaction,

ĤI = g

2(â+ â†)2(b̂+ b̂†) , (S44)

with

g = 2gmg2
c

∆2 . (S45)

Using gm = 0.02ω1, corresponding to the value of the electromechanical system em-

ployed for the demonstration of single-phonon control of a mechanical resonator [5], assum-

ing gm/g
′
m = 12, and considering a detuning ∆ = 5gc, we obtain g ' 0.02ω1. The achievable

value could be even higher, noting that the electromechanical system used in Ref. [5] was

designed to limit gm in order to optimize the transfer process [7].

Beyond the direct observation of the energy transfer between the mechanical oscillators

(see Fig. 1 in the main text), the effective coherent coupling between the two mirrors can also
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be demonstrated by looking at the system response (e.g., 〈B̂†1B̂1〉 ) under continuous-wave

weak excitation as a function of the excitation frequency. For ω1 = ω2, if λ > γ, two peaks

should be observed, corresponding, e.g., to the avoided level crossing at higher energy in

Fig. 2(b) in the main text or to that in Fig. S3(a). In order to confirm that the two observed

peaks originate from virtual DCE photons, it would be useful to perform measurements

changing the optomechanical coupling. This coupling can be tuned by modifying the gate

charge of the qubit mediating the interaction [9]. If the energy splitting originates from

virtual DCE photons, as predicted by Eq. (3) in the main text, it should grow quadratically

with the optomechanical coupling g (see Fig. S1). The anticrossing behaviour could also be

probed, changing d of one of the two dilatational resonators and detecting, e.g., 〈B̂†1B̂1〉 at

steady state as a function of the thickness d (note that ω2 = v/d). Two peaks with a splitting

determined by the thickness, following the avoided level crossing should be observed (see,

e.g., Fig. S3). The detection of the mechanical excitations can be performed following the

procedures used in Refs. [7, 11].
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