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The main goal of this supplementary material is to present the derivation of the unidirectional wave equations for the
probe field and the chiral cross-Kerr nonlinearity. Also, it discusses the effect of the phase shifter in the lower channel of
the Mach-Zehnder interferometer.

1 Unidirectional wave equations
In this section, we derive the unidirectional wave equations for the forward and backward traveling probe fields in1D
space, shown in Fig. S1. The right-moving (blue) pulse travels in the positive z direction, while the left-moving (red)
pulse propagates in the negative z direction. We also refer to the right-moving (left-moving) mode as the forward-moving
(backward-moving) modes. The medium has length L.

Figure S1: Fields propagating in a 1D space. The right-moving (left-moving) pulse, shown in blue (red), propagates in
the positive (negative) z direction. The waveguide length is L.

We start our derivation of unidirectional wave equations from the general wave equation for the electric field E in a
nonlinear medium, which can be written as

5 × (5 × Ẽ) −
n2

s

c2

∂2Ẽ
∂t2 =

1
ε0c2

∂2P̃NL

∂t2 , (S1)

where c is the speed of light in vacuum, and ε0 is the vacuum permittivity. Here, ns is the usual linear refractive index
of the waveguide without atoms and ns ≈ 1. Also, PNL is the macroscopic nonlinear polarization of the medium. In our
case, the linear susceptibility is negligible because the atomic states related to the probe are depopulated. Therefore, PNL

represents the cross-Kerr nonlinearity controlled by another laser beam, and is linear in terms of E but proportional to the
intensity of that beam. This nonlinearity is attributed to the polarizability of the atoms.

For a right-moving and monochromatic planar wave in a 1D waveguide, we can write the electric field Ẽ and the
polarization P̃NL as the summation of the positive- and negative-frequency components:

Ẽ = Ẽ+ + Ẽ− ,

P̃NL = P̃NL,+ + P̃NL,− ,
(S2)
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with

Ẽ+ = Eei(ωt−kz) , (S3a)

Ẽ− = Ee−i(ωt−kz) , (S3b)

P̃NL,+ = PNLei(ωt−kz) , (S3c)

P̃NL,− = PNLe−i(ωt−kz) , (S3d)

where E and PNL are the slowly-varying envelopes of the electric field and the polarization, respectively. k is the wave
vector of the field. Then we have, for the negative-frequency part,

∂2Ẽ+

∂z2 =

(
∂2E
∂z2 + 2ik

∂E
∂z
− k2E

)
e−i(ωt−kz) , (S4a)

∂2Ẽ+

∂t2 =

(
∂2E
∂t2 − 2iω

∂E
∂t
− ω2E

)
e−i(ωt−kz) , (S4b)

∂2P̃NL,+

∂t2 =

(
∂2PNL

∂t2 − 2iω
∂PNL

∂t
− ω2PNL

)
e−i(ωt−kz) . (S4c)

To derive the unidirectional wave equation in the 1D waveguide, we only need to consider either the positive- or the
negative-frequency components of the field and the polarization. Substituting Eq. S4 into Eq. S1 and applying the condi-
tions

∂2E
∂z2 � 2k

∂E
∂z

, (S5a)

∂2E
∂t2 � 2ω

∂E
∂t

, (S5b)

∂2PNL

∂t2 � ω2PNL , (S5c)

2ω
∂PNL

∂t
� ω2PNL , (S5d)

for a long pulse, we approximately have
∂E
∂z

+
1
c
∂E
∂t

= i
ω

2ε0c
PNL , (S6)

for the right-moving field. Similarly, the unidirectional wave equation of the left-moving field has the form

∂E
∂z
−

1
c
∂E
∂t

= −i
ω

2ε0c
PNL . (S7)

Note that the backward-moving field enters the medium from the right side at z = L and propagates towards z = 0. For
simplicity, we replace z with (L − z′). In doing so, we transform the backward-moving part to propagate in the positive z′

direction. Thus, Eq. S7 becomes
∂E
∂z′

+
1
c
∂E
∂t

= i
ω

2ε0c
PNL . (S8)

In 1D space we can treat the vectors E and PNL as scalar quantities and replace them with E and P, respectively.
Without loss of generality, we assume that the field E drives a transition between two atomic states, namely, the

excited state |e〉 and the ground state |g〉. This field is subject to modification due to the atomic polarizability ρeg. For
an atomic medium, we have P = Na〈µ̂〉ρeg [1, 2], where µ̂ = −er is the electric dipole moment operator associated with
the transition, and −e is the charge of the electron. Na is the number density of atoms. The matrix representation of the
dipole moment operator is µ̂ = µge|g〉〈e| + µeg|e〉〈g|, where µi j = 〈i|m̂u| j〉 (i, j = e, g). We use the notations d = |µeg| for
the average of the electric dipole moment. Thus, P = −Nadρeg for the negative-frequency part. The Rabi frequency of
the field is defined as Ω = dE/~. Thus, in terms of the Rabi frequency, the unidirectionally propagating wave equations
become

∂Ω f

∂z
+

1
c
∂Ω f

∂t
= − iNa

ωd2

2ε0~c
ρeg , (S9a)

∂Ωb

∂z′
+

1
c
∂Ωb

∂t
= − iNa

ωd2

2ε0~c
ρeg . (S9b)

In the above unidirectional wave equation, we neglect the backscattering between two oppositely propagating probe
modes. This is reasonable because: (i) The atoms are mostly trapped in their ground states and therefore the backscattering
due to atomic radiance is negigible [3, 4]. (ii) The forward- and backward-moving probe photons have opposite momenta.
Their coherent coupling, caused by the perturbance of the medium or waveguide structure, is greatly suppressed [5, 6].
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2 Chiral cross-Kerr nonlinearity
Next we derive the chiral XKerr nonlinearity for Eq. S9, i.e. Eqs. (1-2). The key point is to find the atomic polarization
ρeg for our configuration.

Figure S2: (color online) Level diagrams for (a) the co-propagating case and (b) the counter-propagating case. The N-
type atom is driven by the coupling field Ωc, the switching field Ωs and the probe field Ωp, with detunings ∆c, ∆s and
∆p, respectively. The wave vector of these fields are kc, ks and kp. The thermal motion of the jth atom with velocity v j

causes the microscopic Doppler shifts kcv j, ksv j, and kpv j, seen by the corresponding fields Ωc, Ωs and Ωp, respectively.
The shifts are shown by the yellow lines. The coupling and the switching modes are arranged to be left-moving. The
left-moving (right-moving) probe light sees the same (opposite) Doppler shift to the control and signal photons in the
co-propagating (counter-propagating) case.

We consider the configuration shown in Fig. S2. An ensemble of N-type atoms with states | j〉 ( j ∈ {1, 2, 3, 4}),
embedded in a 1D waveguide, is driven by the coupling field Ωc with a wavevector kc, the switching field Ωs with a
wavevector ks, respectively. We now consider that these two fields are backward-moving (left-moving). The probe field
Ωp has a wave vector kp. In the absence of thermal motion, the field Ωc (Ωs, Ωp) is detuned from the transition |2〉 ↔ |3〉
(|1〉 ↔ |2〉, |3〉 ↔ |4〉) by a value ∆c (∆s, ∆p). In the rotating frame, the Hamiltonian describing the field-atom interaction
takes the form

H1 = −∆sσ11 − ∆cσ33 + (∆p − ∆c)σ44 + (Ωsσ21 + Ω∗sσ12) + (Ωsσ21 + Ω∗sσ12) + (Ωpσ43 + Ω∗pσ34) , (S10)

where σi j = |i〉〈 j|. For simplicity, here we neglect the superscript for the jth atom. The excited state |i〉 (i = 2, 4) decays
to the ground state | j〉 ( j = 1, 3) at a rate γi j. The state |3〉 slowly decays to |1〉 at a rate Γ31 and is also pumped from |1〉 at
a rate of Γ13 due to thermal excitations. The decay and dephasing of the atoms can be described by the Lindblad operator:

L [γ, A]ρ = 2AρA† − A†Aρ − ρA†A , (S11)

where γ = {γ21, γ23, γ43, γ31, γ13} and A = {σ12, σ32, σ34, σ13, σ31}. For atoms, we can choose γ13 = γ31 = Γ3. The
polarization, ρeg, in Eq. S9 is ρ43 in our case, i.e. ρeg = ρ43.

Our scheme makes use of the Doppler shifts to create a chiral cross-Kerr nonlinearity for the weak probe laser beam
at room temperature. The above Hamiltonian ignores the Doppler shifts of atomic transitions due to the random thermal
motion of atoms. In the presence of thermal motion, a laser beam with wavevector k moving towards (away) an atom
moving with velocity v “sees” the atomic frequency upshifted (downshifted) by an amount kv. This Doppler shift is
considerable at room temperature. Next, we take into account the effect of thermal motion in our model and calculate the
cross-Kerr nonlinearity. In the presence of the Doppler shift, we need to replace the detunings ∆c, ∆s and ∆p with ∆c +kcv,
∆s + ksv, and ∆p + kpv, respectively. To achieve a large nonlinearity, we simply choose ∆c = ∆s = δ and arrange that the
coupling and switching laser beams co-propagate in the negative z direction. The atom is on two-photon resonance with
these two fields. The probe field can propagate in two opposite (forward and backward) directions in the atomic medium.

Below we will see that the thermal-motion-induced Doppler shift, combining with the unidirectionally propagating
coupling and switching fields, can induce a chiral cross-Kerr (XKerr) nonlinearity in atoms for the probe mode. As a
result, the cross phase modulation and absorption of the probe field due the existence of the switching field becomes
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locked to their relative propagation directions. The equation of motion for the atomic density matrix takes the form

ρ̇11 = 2γ21ρ22 + 2γ31ρ33 − 2γ13ρ11 + i(Ωsρ12 −Ω∗sρ21) (S12a)
ρ̇22 = − 2(γ21 + γ23)ρ22 − i(Ωsρ12 −Ω∗sρ21) − i(Ωcρ32 −Ω∗cρ23) (S12b)
ρ̇33 = 2γ43ρ44 + 2γ13ρ11 − 2γ31ρ33 + 2γ23ρ22 + i(Ωcρ32 −Ω∗cρ23) + i(Ωpρ34 −Ω∗pρ43) (S12c)

ρ̇44 = − 2γ43ρ44 − i(Ωpρ34 −Ω∗pρ43) (S12d)

ρ̇21 = − i(δ + ksv)ρ21 − (γ21 + γ23 + γ13)ρ21 + iΩs(ρ22 − ρ11) − iΩcρ31 , (S12e)
ρ̇31 = − i(ksv − kcv)ρ31 − (γ31 + γ13)ρ31 + iΩsρ32 − iΩ∗cρ21 − iΩ∗pρ41 , (S12f)

ρ̇43 = − i(∆p + kpv + kcv)ρ43 + iΩcρ42 + iΩp(ρ44 − ρ33) − (γ43 + γ31)ρ43 . (S12g)

We solve Eq. S12 using the perturbation method [1, 7–9]. The density matrix elements can be expanded as ρnm =

ρ(0)
nm + ρ(1)

nm + ρ(2)
nm + ρ(3)

nm + · · · . In our case, we have Ωc � Ωs that, to a good approximation, all the populations can
be assumed in the ground state |1〉 to zeroth order, i.e. ρ(0)

11 = 1, ρ(0)
22 = ρ(0)

33 = ρ(0)
44 = 0. Therefore, we also have

ρ(0)
32 = ρ(0)

41 = ρ(0)
43 = 0. We arrange that the probe field is much weaker than the control and signal fields, i.e. Ωp � Ωs,Ωc.

Under the weak-probe approximation, the off-diagonal terms with ρnmΩp (n , m) can be neglected when solving for ρnm.
Solving Eq. S12, we obtain the off-diagonal density-matrix elements, to first order, to be

ρ(1)
21 =

−iΩs

F1
, (S13a)

ρ(1)
31 =

−iΩ∗cρ
(1)
21

i(ksv − kcv) + (γ31 + γ13)
, (S13b)

ρ(1)
32 = ρ(1)

43 = 0 , (S13c)

where
F = i(δ + ksv) + (γ21 + γ23 + γ13) + |Ωc|

2/[i(ksv − kcv) + (γ31 + γ13)] . (S14)

Since the total population in a closed atomic system is conserved, i.e. ρ11 + ρ22 + ρ33 + ρ44 = 1, it is straightforward
to find the second-order diagonal density-matrix elements satisfying the relationship

ρ(2)
11 + ρ(2)

22 + ρ(2)
33 + ρ(2)

44 = 0 . (S15)

Substituting Eqs. S13 and S15 to Eqs. S12(a-d), the second-order diagonal density-matrix elements can be obtained

ρ(2)
33 =

γ23 − Γ3

4Γ3(γ21 + γ23)
|Ωs|

2
(

1
F

+
1

F∗

)
(S16a)

≈
γ23

4Γ3(γ21 + γ23)
|Ωs|

2
(

1
F

+
1

F∗

)
ρ(2)

44 = 0 . (S16b)

Again, substituting Eq. S16 into Eq. S12(g) and solving it, we obtain the third-order atomic polarization for the probe
field

ρ(3)
43 =

−iΩp|Ωs|
2

4Γ3(γ21 + γ23)
γ23

i(∆p + kpv + kcv) + γ43

(
1
F

+
1

F∗

)
. (S17)

Because ρ(0)
43 ≈ ρ

(1)
43 ≈ ρ

(2)
43 ≈ 0 , we have ρ43 ≈ ρ

(3)
43 for the total atomic polarization summed over from the first order to

the third.
The decay rate γ43 is related to the atomic transition frequency ω43 via the relation γ43 = d2ω3

43/(3πε0~c3) [1, 10].
The carrier frequency of the probe laser beam is much larger than its detuning to the atom, so we can take the approxi-
mation ωp ≈ ω43 in the calculation of the cross-Kerr nonlinearity. We assume that |kc| = |ks| = |kp|. In our configuration,
the forward-moving (backward-moving) probe field counter-propagates (co-propagates) with the coupling and switching
fields. Thus we have kpv = −kcv for the forward-moving probe, and kpv = kcv for the backward-moving probe, respec-
tively. The number of atoms is typically large enough that we can convert the sum of atoms into an integral over the
velocity distribution in the 1D space. Substituting Eq. S17 into the unidirectional wave equation Eq. S9, we get

∂Ω f (z, t)
∂z

+
1
c
∂Ω f (z, t)

∂t
= − χ f |Ωs|

2Ω
f
p(z, t) , (S18a)

∂Ωb(z′, t)
∂z′

+
1
c
∂Ωb(z′, t)

∂t
= − χb|Ωs|

2Ωb
p(z′, t) , (S18b)
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Figure S3: (color online) Fidelity (solid curves) and average insertion loss (dashed curves) of a circulator. Red curves are
for ϑ = 0. Blue and green curves for ϑ = 0.01π. Other parameters are Na = 5 × 1012 cm−3, Γ3 = 0.1γ0, Ωc = 20γ0,
Ωs = 4γ0,∆p = 7.77γ0, and L = 3.33 mm.

where the effective cross-Kerr nonlinearity is given by

χ f = X0

∫
γ23

(i∆p + γ43)

(
1
ζ

+
1
ζ∗

)
N(v)dv , (S19)

for the forward-moving probe, and

χb = X0

∫
γ23

[i(∆p + 2kv) + γ43]

(
1
ζ

+
1
ζ∗

)
N(v)dv , (S20)

for the backward-moving probe, and X0 = 3πc2γ43/8ω2
pΓ3(γ21 + γ23), ζ = i(δ + kv) + (γ21 + γ23 + Γ3) + |Ωc|

2/2Γ3.
The velocity distribution is conventionally taken to be Maxwellian, i.e. N(v) = Na exp(−v2/u2)/

√
πu, where u is the

room-mean-square atomic velocity, and ku ≈ 2π × 300 MHz for Rb atoms at room temperature [11].
We are interested in the atomic response to a long pulse such that 1

c
∂Ω f

∂t ≈ 0 and 1
c
∂Ωb
∂t ≈ 0. After passing through the

medium with a length L, the probe fields become

Ω
f
p(L) = ξ f eiφ f Ω

f
p(0) , (S21)

in the 0–z coordinate system, and
Ω

f
p(L) = ξ f eiφ f Ω

f
p(0) , (S22)

in the 0–z′ coordinate system. Also, ξ j = exp(−Re[χ j]|Ωs|
2L) and φ j = −Im[χ j]|Ωs|

2L, with j = f , b, are the correspond-
ing transmission amplitude and phase shift, respectively.

Obviously, the XKerr nonlinearity induced in atoms is crucially dependent on the probe propagation with respect to
the coupling and the switching lasers. It can be very different, i.e. chiral, in a specially engineered medium.

3 Zero phase shift in the lower path
To achieve the optimal performance of the optical circulator, we apply a small phase shift, ϑ = 0.01π, to compensate the
phase modulation on the backward-moving photon in the upper path of the Mach-Zehnder interferometer. However, a
simpler version without this phase shifter (ϑ = 0) only very slightly reduces the performance of the device, see Fig. S3.
In the main paper, we present a general scheme for the optical circulator. Because the phase modulation on the backward
laser beam is very small, one can remove the phase shifter in the lower path to simplify the setup while maintaining a high
performance.
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