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We present a method to implement two-phonon interactions between mechanical resonators and spin
qubits in hybrid setups, and show that these systems can be applied for the generation of nonclassical
mechanical states even in the presence of dissipation. In particular, we demonstrate that the implementation
of a two-phonon Jaynes-Cummings Hamiltonian under coherent driving of the qubit yields a dissipative
phase transition with similarities to the one predicted in the model of the degenerate parametric oscillator:
beyond a certain threshold in the driving amplitude, the driven-dissipative system sustains a mixed steady
state consisting of a “jumping cat,” i.e., a cat state undergoing random jumps between two phases. We
consider realistic setups and show that, in samples within reach of current technology, the system features
nonclassical transient states, characterized by a negative Wigner function, that persist during timescales of
fractions of a second.
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Introduction.—Over the past decades technological
developments have allowed us to implement new classes
of extremely sensitive nanomechanical oscillators, such as
membranes or microcantilevers, that are finding applica-
tions in a wide variety of areas, from biological detection
[1] to ultrasensitive mass sensing [2–4] or NMR imaging
[5–7]. There has been a growing interest in studying hybrid
systems in which these mechanical elements are coupled
to some other quantum actor, allowing us to explore the
quantum limits of mechanical motion [8–10], with promi-
nent examples such as cavity optomechanics setups
[11–15]. Many of these works aim to explore the quantum
limit of mesoscopic objects consisting of billions of atoms
by cooling them close to the ground state [16–18] and
generating inherently quantum states, such as squeezed
states [19] or quantum superpositions [20].
In this work, we present hybrid setups that are able to

achieve a two-phonon coherent coupling between a
mechanical mode and a spin qubit, described as a two-
level system (TLS). It is known for systems involving some
kind of two-particle interaction plus a nonlinearity [21–36],
that the mechanical system can evolve into motional cat
states. Although these states are ultimately washed out by
decoherence, our proposed setup features nonclassical
transient states, characterized by a negative Wigner func-
tion, during timescales that can extend up to seconds. After
this, the system reaches a mixed steady state that has been
understood as a cat state flipping its phase at random times
[35]. This offers an attractive platform both for the study of
fundamental questions in quantum mechanics—such as

decoherence, spontaneous symmetry breaking and ergo-
dicity in dissipative quantum systems [25,37–39]—and for
practical applications where nonclassical mechanical states
can be envisaged as a technological resource [33,40–44].
Our proposal is based on hybrid devices in which a

single spin qubit embedded in a magnetic field gradient
couples to a mechanical oscillator through the position-
dependent Zeeman shift [45–51]. We consider the qubit to
be given by the electronic spin of nitrogen-vacancy (NV)
centers, which are excellent candidates due to their out-
standing coherence and control properties [52–57]. Several
works [58,59] have analyzed particular geometries in
which the equilibrium position of the system leaves the
spin in a point of null magnetic gradient, leading to a
quadratic dependence of the coupling with the position.
These works proposed to use this dependence to couple two
different modes of the oscillator in order to effectively
enhance the linear coupling between one of these modes
and the TLS. In contrast, we propose here to use these
geometries to achieve degenerate, two-phonon exchange
between one mode of the resonator and the TLS, which
gives rise to physical phenomena with no analogue in
linearly coupled systems [60].
Setup proposal.—We consider an NV center placed on

top of a mechanical oscillator at a position r0 and
surrounded by a magnetic field BðrÞ. An NV center
consists of a nitrogen atom and an adjacent vacancy in
diamond, and its electronic ground state can be described as
a S ¼ 1 spin triplet with states jmsi, with ms ¼ 0, �1. The
Hamiltonian of the system reads (we set ℏ ¼ 1 hereafter)
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H ¼ HNV þHM þ μBgsS ·Bðr0Þ, where HNV stands for
the Hamiltonian of the NV center, HM for the mechanical
mode, and the last term describes a perturbation on the NV
center due to the external magnetic field, where μB is the
Bohr magneton, gs ¼ 2 is the Landé factor of the NV
center, and S is its spin operator. The last term provides the
mechanism that couples the qubit and the mechanical
degree of freedom. We will assume that the mechanical
mode oscillates only along the z axis, so that the position of
the NV center is given by r0 ¼ ð0; 0; zÞ, z being the
displacement of the oscillator with respect to the equilib-
rium point. Setting Bðr0Þ≡BðzÞ, we can expand the
Hamiltonian in terms of z up to second order, H ≈HNVþ
HM þ μBgsS · ½∂B=∂zð0Þð0Þzþ 1

2
∂2B=∂z2ð0Þz2�. Our pro-

posal relies on considering a magnetic field with an
extremum at the position of the NV center, which will
cancel the first derivative in the expansion and provide a
second-order coupling to the mechanical mode. For sim-
plicity, we will consider that the field has also null second
derivatives along the x and y axis, so that the mechanical
mode only couples to Sz. This latter assumption is not
necessary, but we show here a particular proposal in which
this is indeed the case. By writing the position operator of
the mechanical oscillator as z ¼ zzpfðaþ a†Þ, with zzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2meffωmÞ
p

the zero-point fluctuation amplitude, ωm

the resonant mechanical frequency, and a the annihilation
operator, the resulting Hamiltonian becomes

H ≈HNV þHM þ g2ða† þ aÞ2Sz; ð1Þ

where the two-phonon coupling is given by g2 ¼
1
2
μBgszzpf2G2, and G2 ¼ ∂2Bz=∂z2ð0Þ. The critical param-

eters here in order to maximize this coupling are the second
gradient of the magnetic field and the zero-point motion
of the oscillator, which in both cases should be as high as
possible.
Here we focus on cases where the magnetic field is

generated by nanomagnets, which are able to provide high
gradients at short distances [5–7]. In Fig. 1, we propose a
particular arrangement of magnets that yields the required
spatial magnetic field profile. An NV center injected in a
diamond film [61] is placed on top of a resonator of
nanometer-scale thickness that oscillates along the z
direction; the extension of the diamond film should be
much smaller than that of the oscillator to minimize any
possible impact on its properties. Diamond films can be
compatible, for instance, with silicon nitride substrates
[62–64]. The resonator is positioned in the gap between
two cylindrical nanomagnets with saturated magnetization
along the z axis. The size of the gap is considered to be of
the order of tens of nanometers. In the region between the
magnets, this geometry yields a strong magnetic field in the
z direction and a negligible field in the x and y directions, as
we show in Figs. 1(b)–1(c). Moreover, every component of
the field has a null derivative with respect to z at the middle

point. This gives rise to the quadratic coupling between the
NV center and the oscillator.
Two-phonon coupling rates.—In order to estimate the

achievable two-photon coupling rate in realistic setups, we
simulated the magnetic field generated by two cylinders of
nanometer size with saturated magnetization for three
different materials (Dy, Co, and FeCo) [65]. Dy stands
as the best choice due to its high saturation magnetization
[7,87]. Figures 2(b)–2(c) are an example of the simulated
magnetic field for two cylinders of Dy with 30 nm
of diameter, 150 nm of height, and separated by a gap
of 30 nm. In this configuration, one can obtain values of
G2 ≈ 9 × 1015 Tm−2. The resulting two-phonon coupling
rate g2 is determined by the zero-point fluctuation ampli-
tude of the oscillator zzpf, which ranges from tens of
femtometers in systems such as Si3N4 oscillators [88,89]
to hundreds of femtometers in systems such as carbon
nanotubes [90], graphene resonators [91,92], SiC wires
[47] or Si cantilevers [93]. Figures 2(a)–2(b) show g2 versus
zzpf and the separation between the magnets. Residual linear
coupling effects due to imperfect alignment can be disre-
garded at the two-phonon resonance condition [65].
Quantum effects.—To address the possibility of observ-

ing quantum effects, a relevant figure of merit is the

(a)

(b) (c)

FIG. 1. (a) Proposed configuration: an NV center in a diamond
film (red) is placed on top of a mechanical oscillator (e.g., a thin
membrane) and placed between two magnets with aligned
magnetization. Dimensions have been altered for visual clarity.
(b) Magnetic field lines, computed for two Dy magnetized
cylinders of 30 nm diameter separated by a gap of 30 nm.
Red (blue)-shaded areas mark the regions where ∂BzðxÞ=∂z ≈ 0.
Both first derivatives are zero at the position of the NV center—
represented by a circle—when the oscillator is at rest. (c) Mag-
netic field along the z axis for x ¼ 0.
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cooperativity C ¼ 4g22=½γzγmðnth þ 1Þ� [48,94], where γz is
the dephasing rate of the qubit, γm ¼ ωm=Q is the oscillator
decay rate (Q being the quality factor), and nth is the
average number of thermal phonons at the oscillator at
the temperature T. Values of the cooperativity C > 1 mark
the onset of quantum effects. The impact of spin relaxation
is not relevant here, since relaxation times can reach
hundreds of seconds at low temperatures [95]. Regarding
pure dephasing rates, γz can achieve room temperature
values ∼1 Hz [96] using dynamical decoupling techniques,
already employed in very similar setups [48]. Once γz, T
and G2 are established, the cooperativity C is fully
determined by the oscillator parameters, ωm, Q, and zzpf .
Figure 2(c) shows C versus Q and zzpf for ωm ∼MHz
(typical of systems such as SiC wires [47] or Si3N4

nanobeams [88]), γz=ð2πÞ ¼ 10 Hz and T ¼ 10 mK. As
an example, an oscillator with ωm=ð2πÞ ¼ 1.8 MHz, zzpf ≈
43 fm [88] and Q ≈ 4 × 109 [point A in Fig. 2(c)] yields
C ≈ 0.4 at these conditions, and can reach C > 1 by
reducing the dephasing to γz=ð2πÞ < 4.3 Hz, which has
already been achieved experimentally [96,97]. Recently,

room-temperature values Q > 108 have been demonstrated
in oscillators fabricated via soft-clamping and strain
engineering techniques [88,98], with values Q > 109

expected at dilution refrigerator temperatures (14 mK)
[98]. Therefore, although demanding, these conditions
are within reach of state-of-the-art technology. For clarity
of results, we will consider hereafter a slightly more
optimistic value of zzpf≈200 fm [giving g2=ð2πÞ¼ 5Hz],
and set Q ¼ 4.2 × 108 and ωm=ð2πÞ ¼ 1.8 MHz as in
Ref. [88] [this choice is shown as point B in Fig. 2(c)].
We take γz=ð2πÞ ¼ 10 Hz and T ¼ 10 mK, giving nth ≈
115 and C ≈ 20. While the proximity of the NV center to
the surface in a diamond film might render longer dephas-
ing rates than in the bulk, we note that we are also
considering cryogenic temperatures, which are known to
enhance coherence times by several orders of magnitude
[95]. At these low temperatures, several techniques exist in
order to minimize the influence of heat induced by, e.g., rf
voltage; most of these solutions are related to the design of
heat sinks, cooling fins, etc., and the selection of proper
materials for heat dissipation [99].
Dissipative dynamics of the driven, two-phonon Jaynes-

Cummings Hamiltonian.—By adding two oscillating mag-
netic fields, one in the x axis with frequency ωx in the MW
regime, and another in the z axis with frequency ωz ∼ ωm,
we obtain [65] an effective, coherently driven two-phonon
Jaynes-Cummings Hamiltonian:

H ¼ ðωσ − ωzÞσ†σ þ ðωm − ωz=2Þa†a
þΩðσ þ σ†Þ þ g2ða†2σ þ a2σ†Þ; ð2Þ

where σ is the lowering operator of the effective TLS, and
Ω denotes the amplitude of the driving. We will consider
the resonant situation ωσ ¼ 2ωm. In order to describe the
dynamics of the system under dissipation, this Hamiltonian
needs to be supplemented with the usual Lindblad terms
[100], giving the master equation for the dynamics
of the density matrix, _ρ ¼ −i½H; ρ� þ ðγmnth=2ÞLa½ρ�þ
ðγz=2ÞLσ†σ½ρ�, where LO½ρ�≡ 2OρO† −O†Oρ − ρO†O.
We consider the system to be actively cooled to a thermal
phonon population close to zero, which can be done, for
instance, by means of laser cooling [17,101,102] or using
another spin qubit [45]. We therefore exclude incoherent
pumping terms of the kind La† from the master equation, at
the expense of using an increased resonator linewidth
γmnth, with γm the natural linewidth, and nth is the number
of thermal phonons in the oscillator in the absence of
cooling [48].
The two-phonon Hamiltonian (2) is reminiscent of

quantum optical systems with two-photon interactions that
have attracted considerable interest [23,27–29,32–34].
Different systems with two-particle interactions and some
kind of nonlinearity—e.g., two-photon losses in the case of
the degenerate parametric oscillator (DPO) [21–25,30], a

(a)

(b)

(c)

FIG. 2. (a) Two-photon coupling rate versus zero-point fluc-
tuation amplitude zzpf of the oscillator, for two Dy magnets
separated by 30 nm. (b) Two-photon coupling rate versus
the magnet separation for three different magnetic materials,
for a resonator with zzpf ¼ 200 fm. (c) Cooperativity versus
the oscillator quality factor Q and the zero-point fluctuations,
for a magnet separation of 30 nm, oscillator frequency
ωm=ð2πÞ ¼ 1.8 MHz, temperature T ¼ 10 mK, and pure-de-
phasing rate γz=ð2πÞ ¼ 10 Hz. The white line C ¼ 1 marks
the onset of quantum effects. Point A corresponds to a feasible
point for state-of-the-art technology at mK temperatures [88],
with zzpf ¼ 43 fm and Q ¼ 4.2 × 109; B is the point taken in
most part of the text for clarity of results: zzpf ¼ 200 fm
and Q ¼ 4.2 × 108
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Kerr nonlinearity [103,104] or, as in the present case, a TLS
[60]—, have been shown to develop transient cat states
[26,31,32,34,60,104] which, through unavoidable single-
photon losses, tend to a steady state characterized by a
Wigner function with phase bimodality [23–25,36] and no
interference fringes. Research on the DPO has shown that
such steady state corresponds to a succession of random
jumps between cat states of opposite phase when single
trajectories are considered [35], i.e., a sustained “jumping
cat” [105]. In the following, we discuss the appearance of
analogue nonclassical effects in our system.
Figure 3(a) depicts the phonon population and the

variance of the position operator in the steady state versus
the driving amplitude Ω. In close similarity to the DPO
[21–25], we observe a phase transition characterized by the
development of two lobes in the Wigner function, preceded
by some degree of squeezing. This occurs when the phonon
population is ≈1, a point where its dependence with Ω
changes from ∝ Ω2 to ∝ Ω. Note that here, phase bimo-
dality does not originate from the two-level nature of the
driven TLS [106], but is rather a consequence of the phase
symmetry of the master equation, which is invariant under
the change a → −a [25]. Figure 4 shows the transient
dynamics of the oscillator towards the steady state, com-
puted for the density matrix and for a single quantum
trajectory [107] for a system initially in the ground state.
The Wigner function of the oscillator shows an initial
squeezing along two directions that is eventually confined
in phase space due to the TLS nonlinearity [65]. Individual
quantum trajectories reveal that the bimodal steady state
consists of a cat state undergoing random phase flips due to
single-phonon losses [35], as shown in the last two columns

of Fig. 4(b), that capture two times, before and after a
single-phonon emission event. Each of these cat states
has an extremely long lifetime, surviving with fidelities
F > 0.99 for times longer than a millisecond [65].
Transient nonclassical states.—The high quality factors

of state-of-the-art nanoresonators [88] allows for nonclass-
ical states to develop and evolve in timescales of one-tenth
of a second before every trace of coherence is washed out.
We show this by plotting the evolution of the “cattiness”
C ¼ N ðρÞ=N ðρcatÞ, defined by dividing the integrated
negative parts of the Wigner function of the state by that
of a reference cat state [32], so that C > 0 only for non-
classical states and ¼ 1 for cat states. The results shown in
Fig. 5 demonstrate that we can observe unambiguous non-
classical features lastingup to seconds evenwith state-of-the-
art setups [88]. We discuss several routes to detect these
quantum states in Ref. [65]. Once in the steady state, a
feedback protocol has been proposed [35] in order to enhance
the decay rate only when the system is in one of the two
possible cat states, and therefore stabilize the system in the
other. We note that the combination of recently developed
single-phonon detectors [108,109] and the optical control of

(a)

(b)

FIG. 3. Signatures of a dissipative phase transition in the steady
state. (a) Phonon number and fluctuations of the position operator
versus the driving amplitudeΩ. (b)Wigner function for threevalues
of the driving amplitude. Here, g2=ð2πÞ ¼ 5 Hz, Q ¼ 4.2 × 108,
ωm=ð2πÞ ¼ 1.8 MHz, T ¼ 10 mK, γz=ð2πÞ ¼ 10 Hz.

(a)

(b)

FIG. 4. Dynamics of the density matrix and of a single quantum
trajectory. (a) Phonon population versus time. Vertical lines
depict times when a phonon emission process takes place.
(b) Wigner function of the mechanical mode given by the density
matrix (upper) and the wave function of a single trajectory
(lower), at the times marked with arrows on the top of panel (a).
The last two columns of the bottom row depict a jumping cat, at
times before and after a phonon emission process. Parameters are
those of Fig. 3.
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decay via active cooling makes the system proposed here an
attractive platform to implement such feedback protocols,
e.g., switching between two effective quality factors—by
changing the driving amplitude of the cooling laser—
whenever a single phonon is detected.
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