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In this Supplementary Material we provide additional technical details, which should help in-
terested readers to derive Eqs. (6) and (10) of the main text. We also derive the modification of
Eq. (10) for the case of strong interaction.

I. EFFECTIVE FORM OF THE INTERACTION HAMILTONIAN

In this Section, we will explain the derivation of the effective interaction Hamiltonian, Eq. (6) of the main text.
Starting with the low-energy single-electron theory, our goal here is to derive an effective Hamiltonian with electron-
electron interactions.
As described in the main text, the low-energy sector of the tBLG consists of four single-electron bands. Near the

Dirac points, two of these bands have electron-like near-linear dispersion, and two bands have hole-like dispersion.
Let us introduce the symbols eµ (hµ), with µ = ±1, to denote these electron (hole) bands. We also denote the energies

and wave functions of these bands as Ee,h
pµ and Φeµ,hµ

pGis , respectively. The single-particle part of the effective low-energy
Hamiltonian then becomes

Ĥeff
0 =

∑
pµσ

[
Ee

pµê
†
pµσ êpµσ + Eh

pµĥ
†
pµσĥpµσ

]
, (S1)

where ê†pµσ and êpµσ (ĥ†pµσ and ĥpµσ) are the creation and annihilation operators of the quasiparticle in the band eµ
(hµ) with momentum p and spin projection σ.
At finite bias voltage, bands e−1 and h+1 cross the Fermi level EF , forming a Fermi surface. For a given band the

Fermi surface consists of two sheets, one is centered at K1 point, another is at K2 point. At small bias, the sheets are
approximated by circles centered at the Dirac points. The radii of all four circles are identical, and equal to q∗F ∝ Vb.
This fulfills the condition of the perfect Fermi surface nesting. The nesting vector is q = 0. At stronger bias, the
energy of the tBLG van Hove singularity approaches EF . As this happens, the sheets shape experiences stronger
trigonal warping. For example, in Fig. S1 it is possible to notice visually that the sheets deviate slightly from ideal
circles. Formally, near Dirac point K1 the Fermi surface curve is given by qF (φ) = qF (φ){cosφ, sinφ}, where the
function qF (φ) with a good accuracy can be fitted as

qF (φ) = q∗F + δqF cos [3(φ− φ0)] .

The last term describes the trigonal warping. Trigonal warping is more pronounced for larger Vb and smaller twist
angles. Near Dirac point K2 we should replace φ → φ+ π.

However, even in this regime, with very good accuracy, the following condition holds true: Ee
p−1 = Eh

p+1 = EF .
One can say that the Fermi surface is doubly degenerate: electron sheets coincide with hole sheets. Thus, despite the
warping, the nesting is preserved.
Yet, a more detailed numerical analysis shows that small de-nesting between electron and hole Fermi surface sheets

is present. However, in majority of superstructures and bias voltages considered the characteristic energy of this
de-nesting does not exceed the value about 10−4t. For the values of the exciton gap interesting from experimental
point of view, ∆+ & 10−2t, such small deviations can be disregarded. If we neglect de-nesting, the Fermi surface can
be considered consisting of two doubly degenerate closed near-circular curves around Dirac points K1,2. This is one
of the simplifying conditions of our formalism.
The momentum summation in Eq. (S1) is performed over the reciprocal unit cell of the superlattice. For further

consideration, it is convenient to separate this region into two valleys, as shown in Fig. S1. These regions have the
form of regular triangles centered at the Dirac points K1,2. For each valley, we introduce electron operators as

êwpµσ = êKw+pµσ , ĥwpµσ = ĥKw+pµσ , (S2)
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FIG. S1: (Left panel) Band structure calculated for a sample with m0 = 5, r = 1 (θ ∼= 6.009◦); Vb = 0.15t. The vertical double-
arrows show the bands, which are coupled by the electron-electron interaction. (Right panel) Fermi surface corresponding to
the band structure shown on the left. A slight trigonal warping of the Fermi surface curves can be seen. The dot-dashed
line separates the reciprocal unit cell of the superlattice into two valleys. The dashed circle with radius q0 is used to find an
approximate solution to the gap equation in the limit of strong interaction (see the text).

where the momentum p is now counted from the Dirac point Kw.
Let us now consider the interaction part of the Hamiltonian. The most general form of the interaction Hamiltonian

reads

Ĥint =
1

2

∑
injm
ss′σσ′

d̂†nisσ d̂nisσ Uij(r
is
n − rjs

′

m ) d̂†mjs′σ′ d̂mjs′σ′ . (S3)

In this equation, d̂†nisσ and d̂nisσ are the creation and annihilation operators of the electron with spin projection σ,
located at site n in the layer i (= 1, 2) in the sublattice s. In momentum space, we can write

Ĥint=
1

2N
∑
isσ

js′σ′

∑
p1p2
p′
1p′

2

∑
G1G2
G′

1G′
2

∑
G

δG,k1+k2−k′
1−k′

2
d̂†p1G1isσ

d̂p′
1G

′
1isσ

Uis;js′(k1 − k′
1;G) d̂†p2G2js′σ′ d̂p′

2G
′
2js

′σ′ ,

where N is the number of graphene unit cells in the sample in one layer, k1,2 = p1,2 +G1,2, k
′
1,2 = p′

1,2 +G′
1,2, and

Uis;js′ (k;G) =
1

Nsc

∑′

nm

exp[−ik(rin − rjm)] exp(−iGrjm)U(risn − rjs
′

m ) . (S4)

In the equation above, the symbol of summation with prime means that the summation over m is performed over
sites inside the zeroth supercell, while the summation over n is performed over all sites in the sample. Because
of the superlattice, interaction Eq. (S4) depends on two momenta, k and G. This is unlike the interaction in free
space, which depends on a single momentum variable. In the function Uis;js′ (k;G) the momentum k is the usual
transmitted momentum. The second argument, G, describes the non-conservation of the momentum due to presence
of the superlattice: as expected, in a periodic structure the momentum must be conserved up to a reciprocal lattice
vector G. The latter condition is enforced by the delta-function δG,k1+k2−k′

1−k′
2
in Eq. (S4). Thus, Uis;js′ (k;G) with

G ̸= 0 corresponds to an umklapp scattering process.
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Naturally, the interaction between electrons in the same layer differs from the interaction between electrons in
different layers. Formally, for intralayer (i = j) interaction, one can separate the summation on n and m by the
substitution n → n+m. As a result, we obtain

Uis;is′ (k;G) =

(∑
bi

δbi,G

)∑
n

exp(−ikrin)U(rin + δis − δis
′
) , (S5)

where the first and second summations are performed over all reciprocal lattice vectors (bi) and all lattice sites of the

layer i, correspondingly. Let us introduce the symbol k̃i = k̃i(k) to denote the vector k ‘modulo’ bi. Mathematically,
it is

k̃i(k) = min
bi

(k− bi) . (S6)

In other words, the vector k̃i is the vector lying in the first Brillouin zone of the layer i, such that the difference
(k̃i − k) equals some reciprocal lattice vector bi. From equation (S5), we have Uis;is′(k;G) = Uis;is′(k̃

i;G). Below
we will use the continuum (low-k) approximation for Uis;is′ (k;G), when one can replace the summation over lattice
sites by the 2D integration. As a result, we obtain

Uis;is′ (k;G) =
1

Vc

(∑
bi

δbi,G

)∑
bi

Uii(k− bi) exp[i(k− bi)(δis − δis
′
)] ≈ 1

Vc
Uii(k̃

i) exp[ik̃i(δis − δis
′
)]
∑
bi

δbi,G ,

(S7)

where Vc =
√
3a2/2 is the graphene unit cell area, and Uii(k) =

∫
d2r U(r) e−ikr is the Fourier transform of the

function U(r).
We introduce also the Fourier transform for interlayer interaction as U12(k) =

∫
d2r U(dez + r) e−ikr. Substituting

this equation into Eq. (S4), one obtains

U1s;2s′ (k;G) =
1

Vc

∑
b1

U12

(
k+ b1

)
exp[i(k+ b1)(δ1s − δ2s

′
)]
∑
b2

δb2,b1+G . (S8)

For the functions Uij(k), we use expressions for the screened Coulomb potential in the form [S1,S2]:

Uij(q) =
vq

1 + Πqvq

(
1 e−qd

e−qd 1

)
. (S9)

In this expression, the bare Coulomb potential is vq = 2πe2/ϵq. The permittivity of the substrate is ϵ and Πq ≡
−P (ω = 0,q), where P (ω,q) is the polarization operator of the bilayer. In the low-k limit, we can keep a single term
in the sum over b1 in Eq. (S8). The retained term corresponds to the smallest value of |k + b1|. Formally, such b1

satisfies k+ b1 = k̃1. We already used this simplification to derive Eq. (S7). For Eq. (S8) this approximation works
even better, since the interlayer potential U12(q) decays exponentially with q and exp(−|b1,2|d) ≈ 5 × 10−5. Below,
we will use the long wavelength limit for the function Πq. In this case, it is independent of q and equals to the density
of states of the bilayer at the Fermi level. We calculate the latter quantity numerically as described below.
Note that in some of our numerical calculations a more general form for the interaction function was used

Uij(k) → Uij(k) + U0δijδss′δσσ̄′ ,

where σ̄ means ‘not σ’. The first term here is the screened Coulomb interaction, while the second one is purely local
Hubbard interaction. Our numerical analysis shows that, as long as U0 is not extremely large, it does not affect the
obtained results. This is because the considered excitonic order couples electrons and holes, which mostly inhabit
different layers. All results presented in the main text are obtained for U0 = 0.

A. Effective interaction Hamiltonian

Projecting the full interaction Hamiltonian, Eq. (S4), onto the low-energy bands eµ and hµ, we obtain the effective
interaction Hamiltonian Heff

int. Since the interaction is described by the product of four electron operators, even this
truncated Hamiltonian will contain a large number of terms. Here we keep only those terms which affect the ordered
phase at the mean-field level. Therefore, we obtain

Ĥeff
int =

1

2N
∑
pq

∑
µν

∑
σσ′

[
Aµν

pq ĥ
†
pµσ ĥqνσ ê

†
qν̄σ′ êpµ̄σ′ +Bµν

pq ĥ†pµσ êqν̄σ ĥ
†
qνσ′ êpµ̄σ′ + h.c.

]
, (S10)
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where µ̄ = −µ, and the projected coupling parameters are

Aµν
pq =

∑
is
js′

∑
G1G2
G′

1G′
2

Φhµ∗
pG1is

Φhν
qG′

1is
Φeν̄∗

qG2js
′Φ

eµ̄
pG′

2js
′Uis;js′(p−q+G1−G′

1;G1+G2−G′
1−G′

2) , (S11)

Bµν
pq =

∑
is
js′

∑
G1G2
G′

1G′
2

Φhµ∗
pG1is

Φeν̄
qG′

1is
Φhν∗

qG2js
′Φ

eµ̄
pG′

2js
′Uis;js′(p−q+G1−G′

1;G1+G2−G′
1−G′

2) . (S12)

For a given superstructure, bias voltage, and interaction strength, we calculate the functions Aµν
pq and Bµν

pq numerically.
Our analysis shows that, with good accuracy, the following relations hold

Aµν
pq ≈ δµνApq , Bµν

pq ≈ δµν̄Bpq . (S13)

The deviations from these equalities do not exceed 1% for any of the superstructures considered. Note that in the limit
of uncoupled graphene layers, t0 = 0, Eqs. (S13) become exact. This follows from the symmetry of the wave functions

Φe,hµ
pGis: for uncoupled layers the electrons are localized either in layer 1 or 2. Further, by choosing appropriate phases

of Φeµ
pGis and Φhµ

pGis, one can make Apq and Bpq purely real. Numerical results demonstrate also that, if momenta p

and q are located near the same Dirac point Kw (belonging to the same valley w), the functions Apq and Bpq can
be approximated as

Apq ≈ cos2
(
φp − φq

2

)
U12(p− q) , Bpq ≈ sin2

(
φp − φq

2

)
U12(p− q) , (S14)

where φp is the polar angle corresponding to the momentum p counted from the Dirac point Kw. The factors

cos2[(φp−φq)/2] and sin2[(φp−φq)/2] before the potential U12 are inherited from the wave functions. The deviation
from equalities (S14) is larger for smaller θ. If p and q belong to different valleys, we have

Apq ≈ 0 , Bpq ≈ 0 . (S15)

The latter equations demonstrate that, for interaction terms relevant to the formation of the excitonic order, the
inter-valley scattering is suppressed. Thus, using these equations alongside with Eq. (S13), we can rewrite the effective
interaction Hamiltonian in the form

Ĥeff
int =

1

2N
∑′

pq

∑
µw

∑
σσ′

[
Aw

pq ĥ
w†
pµσ ĥ

w
qµσ ê

w†
qµ̄σ′ ê

w
pµ̄σ′ +Bw

pq ĥ
w†
pµσ ê

w
qµσ ĥ

w†
qµ̄σ′ ê

w
pµ̄σ′ + h.c.

]
, (S16)

where the electron operators ĥwpµσ and êwpµσ are given by Eq. (S2), the prime near the sum means that the summation
is performed over momenta laying in one valley only, and Aw

pq = AKw+pKw+q, Bw
pq = BKw+pKw+q. Thus, the

total effective Hamiltonian Heff = Heff
0 +Heff

int is diagonal in the valley index. This allows us to consider two valleys
independently. Let us consider the valley around the Dirac point K1. Below we suppress the valley index and count
the momenta from the Dirac point K1.

B. Mean-field equations

We now study the effective Hamiltonian in the mean-field approximation. To this end, we define the following
symmetry-breaking expectation values

ηpµσ = ⟨ĥ†pµσ êpµ̄σ̄⟩ . (S17)

The expectation value ηp+1σ couples electrons and holes belonging to the bands forming the Fermi surface, while the
parameter ηp−1σ corresponds to the next pair of electron and hole bands (see Fig. S1). Note that the definition (S17)
involves electrons and holes with opposite spin projections. Thus, this exciton order corresponds to the planar spin-
density wave.
The matrix elements η’s may be used in the usual mean-field decoupling scheme: a product of two operators O1O2

is replaced by a simpler expression according to the rule O1O2 → O1⟨O2⟩+ ⟨O1⟩O2 −⟨O1⟩⟨O2⟩, where ⟨O1,2⟩ ∝ ηpµσ.

Thus, Heff
int becomes quadratic in the êpµσ and ĥpµσ operators. Let us now introduce the following four-component

operator Ψ̂pµ = (ĥpµ↑, êpµ̄↑, ĥpµ↓, êpµ̄↓)
T. The effective mean-field Hamiltonian can then be written in the form

Ĥeff
MF =

∑
pµ

Ψ̂†
pµHpµΨ̂pµ + Uc , (S18)
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where Uc is the c-number

Uc =
1

2N
∑
pqµσ

[
Apq η

∗
pµσ ηqµσ +Bpq η

∗
pµσ η

∗
qµσ̄ + c.c.

]
. (S19)

In equation (S18), Hpµ is a 4× 4 matrix, which has the form

Hpµ =


Eh

pµ 0 0 −∆∗
pµ↑

0 Ee
pµ −∆pµ↓ 0

0 −∆∗
pµ↓ Eh

pµ 0
−∆pµ↑ 0 0 Ee

pµ

 , (S20)

where ∆pµσ is the order parameter

∆pµσ =
1

N
∑
q

[
Apq ηqµσ +Bpq η

∗
qµσ̄

]
. (S21)

Note that, in principle, one can introduce also the expectation values of the form ⟨ĥ†pµσ êpµσ̄⟩ making effective mean-
field Hamiltonian non-diagonal in terms of index µ. However, the corresponding interaction constants turn out to be
much smaller than functions Apq and Bpq. Thus, we neglect these order parameters. Finally, the charge-density-wave

state represented by order parameter
∑

σ⟨ĥw†
pµσ ê

w
pµ̄σ⟩ is energetically unfavorable in comparison to the SDW one.

We now assume that ∆pµσ are real-valued functions satisfying the relations ∆pµ↑ = ∆pµ↓ ≡ ∆pµ. Minimizing the
total energy, at zero temperature and at half-filling, we obtain the system of equations for the order parameters:

∆pµ =
1

2

∫
d2q

vBZ

 Apq∆qµ√
∆2

qµ + E2
qµ

+
Bpq∆qµ̄√
∆2

qµ̄ + E2
qµ̄

 , (S22)

where Epµ = (Ee
pµ̄ −Eh

pµ)/2, vBZ = 8π2/(a2
√
3) is the area of the graphene Brillouin zone (BZ), and the integration

is performed over the momenta laying in one valley.

II. APPROXIMATE MEAN-FIELD EQUATIONS

Equations (S22) are the system of integral equations for the gap functions ∆p+1 and ∆p−1. One can find approx-
imate solutions to these equations assuming an appropriate ansatz for the gap functions ∆pµ. In this section, we
derive approximate transcendental equations for these order parameters assuming a step-like form for the functions
∆pµ. These equations will be different for weak and strong interaction strength. The criterion that distinguishes the
strong interaction from the weak one will be given below.

A. Weak-interaction limit

The main interest now is the value of the function ∆p+1 at the Fermi surface, since this provides the energy gap.
The Fermi surface near each Dirac point is a closed curve having near-circular shape. Below we neglect the trigonal
warping and approximate the Fermi surface by a circle with radius q∗F , calculated numerically by averaging over the
Fermi surface. We assume that ∆pµ are step-like functions, described by the equations

∆pµ = ∆µΘ(qΛ − |p− q∗F |), (S23)

where the cutoff momentum qΛ will be specified below. Thus, if qΛ < q∗F , the region of integration in Eq. (S22) is a
ring centered at the Dirac point K1 and having radii (q∗F − qΛ) and (q∗F + qΛ). Otherwise, when qΛ > q∗F , it is the
circle with radius (q∗F + qΛ).
In a subsequent approximation, we replace the functions Apq and Bpq by constants Ā and B̄, obtained by averaging

Apq and Bpq over the Fermi surface. For numerical calculations of Ā and B̄, we consider Apq =
∑

µ A
µµ
pq/2 and

Bpq =
∑

µ B
µµ̄
pq/2, with Aµν

pq and Bµν
pq calculated according to Eqs. (S12).

We now also approximate the energies Eqµ by linear functions

Eqµ ≈ v∗F(|q| − µq∗F ) , (S24)
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where the renormalized Fermi velocity is calculated numerically by averaging the function
∑

µ |∂Eqµ∂q|/2 over the
Fermi surface. Thus, the system of equations for the order parameters becomes

∆µ =
1

2

q2∫
q1

dq

 qλA∆µ√
∆2

µ + v∗2F (q − µq∗F )
2
+

qλB∆µ̄√
∆2

µ̄ + v∗2F (q + µq∗F )
2

 , (S25)

where q1 = max(0, q∗F − qΛ), and q2 = q∗F + qΛ. The interaction parameters are λA = 2πĀ/vBZ and λB = 2πB̄/vBZ.
The magnitude of the order parameters ∆µ depends on the values of Ā and B̄, as well as on the cut-off momentum
qΛ. The main contribution to the functions Apq and Bpq comes from the interlayer interaction [see Eq. (S14)].
Following Refs. [S1,S2], we define qΛ from the condition U12(qΛ) = U12(0)/2. Assuming that qΛd ≪ 1 (which is
correct for Vb . t0 and e2/ϵvF . 1), from Eqs. (S9) we obtain the estimate qΛ ≈ 2πΠ0vFα, where Π0 is the density

of states of the bilayer at the Fermi level, α = e2/ϵvF is the graphene fine structure constant, and vF = ta
√
3/2 is

the Fermi velocity of the single-layer graphene. Neglecting the trigonal warping, the density of states is expressed as
Π0 ≈ 4q∗F /(πv

∗
F). Thus, we obtain

qΛ = 8
vF
v∗F

αq∗F . (S26)

The integrals in Eq. (S25) can be evaluated explicitly. Performing the integration, we derive the system of tran-
scendental equations for the parameters ∆µ. Assuming that qλ ≪ q∗F and ∆µ ≪ Vb, one can solve the system of
equations (S25) analytically. This gives

∆+1 ≈ 2 vF q∗F α exp(−1/Λ + 4α∗), ∆−1 =
B̄

Ā
∆+1 , (S27)

where α∗ = e2/(ϵv∗F) is the ‘renormalized α’ and

Λ ≈ 2πĀ q∗F
vBZv∗F

. (S28)

Using the approximation (S14) for Apq, we obtain

Ā ≈
⟨
cos2

(
φ/2

)
U12

(
2q∗F | sin(φ/2)|

)⟩
, (S29)

where φ is the polar angle parameterizing points on the Fermi surface, while the averaging is performed over this
angle. Substituting this expression into Eq. (S28), we obtain

Λ ≈ 1

8

⟨
cos2(φ/2)

1 +
1

4α∗ | sin(φ/2)|

⟩
. (S30)

Deriving the above approximation, we assumed that q∗F d ≪ 1, which is valid for all bias voltages considered. According
to Eq. (S30), the parameter Λ increases when α∗ increases. When α∗ ≪ 1, we have Λ ∝ α∗ ln(1/α∗). Since α∗ is
inversely proportional to v∗F, the quantity Λ and, consequently, ∆+1 increases when v∗F decreases. Therefore, the order
parameter ∆+1 increases with θ, because v∗F decreases with the twist angle [S3,S4,S5]. Numerical calculations also
show that the actual value of Ā is greater than the estimate (S29). This can be explained by the fact that at finite
interlayer hybridization, the quasiparticles are no longer localized in one particular layer. As a result, the intralayer
potential contributes to Ā, and this effect is stronger for smaller twist angles.

B. Approximate solution, strong interaction limit

The limit of weak coupling corresponds to the case of α ≪ 1. Simple estimates show, however, that for a bilayer
suspended in vacuum, ϵ = 1, the parameter α ≈ 2.6. When α increases, the cut-off momentum can exceed the size
of the superlattice Brillouin zone. In this case, we should increase the number of bands in our effective Hamiltonian.
Simultaneously, we should increase the number of order parameters ∆pµ, with µ now changing from 1 to some N > 2.
The rank of the matrix functions Aµν and Bµν becomes equal to N . This consideration can be substantially simplified
if we consider the additional ‘high-energy’ bands in the limit of decoupled (t0 = 0) graphene layers. The decoupled
layer approximation is justified for sufficiently large energies. Due to its importance, let us discuss this approximation
in some detail.



7

1. Decoupled layer approximation

Imagine that we have no interlayer hopping. In such a situation the tBLG single-electron spectrum coincides with
the spectrum of two graphene layers folded inside the tBLG superlattice Brillouin zone. As the interlayer coupling
increases, this spectrum changes as well. One of the well-known features which emerges at finite interlayer hopping

is a series of van Hove singularities at finite energies ±E
(u)
vH , where the integer super-index u orders the singularities

linearly: E
(u+1)
vH > E

(u)
vH . In the limit of vanishing interlayer hopping, the singularity energies may be estimated with

the help of perturbation theory in t0. Exactly at t0 = 0, the tBLG spectrum has multiple degeneracy lines defined by
the condition:

vF|k+K1| = vF|k+K2 +G| , where G = nG1 +mG2, n, m are integers . (S31)

This relation equates electron energies in different layers at different valleys. The momentum conservation is enforced
up to a reciprocal superlattice vector G. It is convenient to rewrite Eq. (S31) as

vF|k| = vF|k+G′| , where G′ = G+K2 −K1 = (n+ 1/3)G1 + (m− 1/3)G2 . (S32)

The solution of this equation is a straight line defined by the formula k = −G′/2 + p0ℓ, where ℓ is a scalar variable
and the vector p0 is normal to G′, that is (p0 ·G′) = 0. The energy corresponding to the degenerate states is equal
to

E(0) = vF

√
(G′/2)2 + p2

0ℓ
2. (S33)

At small, but finite, tunneling, these degeneracies are lifted as follows: E± = E(0)±∆E(1), where the correction ∆E(1)

is proportional to |t0|. When this degeneracy is lifted, the van Hove singularity appears. They are approximately
located at ∂E(0)/∂ℓ = 0, or, equivalently, at EvH ≈ vF|G′|.
However, despite the importance of the van Hove singularities for general properties of solids, for us the renormal-

ization of the low-energy spectrum (|ε| < E
(1)
vH ) is more relevant. The feature we are specifically interested in is the

renormalized Fermi velocity v∗F < vF. Both, the first van Hove singularity and the low-energy renormalizations are

due to the interlayer hybridization amplitudes t̃ss
′

12 (k;G)|G=0, t̃
ss′

12 (k;G)|G=−G1
, and t̃ss

′

12 (k;G)|G=G2
. These three

choices for the momentum G correspond to the lowest value of the parameter G′ = |G′|: for such values of G one can

calculate G′ = G′
min = |G1|/

√
3. For all other choices of G, the following inequality is valid: G′ ≥ 2G′

min. As it was

demonstrated in Ref. [S6], the tunneling amplitude t̃ss
′

12 (k;G) is very sensitive to the value of G′: it decays quickly
for larger G′. Thus, we neglect the interlayer tunneling for single-electron states with momentum |q| > |G1,2|, and
approximate these states by wave functions localized inside an individual layer.

2. Derivation of the strong coupling equations

Using the decoupled-layer approximation we will now derive the strong-coupling equations. Our formal goal now
is to modify Eq. (S22) to account for momenta q & |G1|. For decoupled layers, one can associate the band index S
to the momentum p laying in the Brillouin zone of the layer 1 or 2; that is, one can perform the band unfolding [S7].
Therefore, one can assume that the number of order parameters ∆pµ is still equal to 2, but the integration in Eq. (S22)

is extended to momenta exceeding q0 = |G1,2|/(2
√
3).

To complete the procedure, we need an approximation for Eqµ for q > q0. Applying the decoupled-layer approach,
we write

Eq+1 ≈ Eq−1 ≈ vF|q| . (S34)

This expression assumes that at high energies: (i) one must use the non-renormalized Fermi velocity vF, and (ii) the
bias voltage may be neglected, since Vb . t0. Equation (S34) supplements Eq. (S24) at higher momenta. Therefore,
approximate equations for the order parameters ∆µ become

∆µ =

q0∫
0

dq
1
2qλA∆µ√

∆2
µ + v∗2F (q − µq∗F )

2
+

qΛ∫
q0

dq
1
2qλA∆µ√
∆2

µ + v2Fq
2
+

q0∫
0

dq
1
2qλB∆µ̄√

∆2
µ̄ + v∗2F (q + µq∗F )

2
+

qΛ∫
q0

dq
1
2qλB∆µ̄√
∆2

µ̄ + v2Fq
2
. (S35)

Similarly to Eq. (S25), integrals here can be evaluated explicitly, and, thus, we obtain the system of transcendental
equations for the parameters ∆µ.
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Finally, we note that even in the strong-coupling regime, the two valleys should be still considered independently.
In other words, there is no coupling between the order parameters in different valleys. To understand why this is the
case, it is useful to re-examine the formalism in the unfolded Brillouin zone. Layer 1 has two non-equivalent Dirac
points, K and K′ (= −K). A rotation by the twist angle θ transforms K and K′ into the layer-2 Dirac points, Kθ

and K′
θ (= −Kθ). The order parameter we study in this work describes the condensation of the electron-hole pairs

which are composed of an electron with momentum (K + p) and a hole with momentum (K′
θ + p) (valley 1), or an

electron with momentum (K′+p′) and a hole with momentum (Kθ +p′) (valley 2) [S8]. Let us denote by êK+pσ and

ĥK′
θ+pσ the corresponding electron and hole operators in valley 1, and by êK′+p′σ and ĥKθ+p′σ the electron and hole

operators in valley 2. For simplicity, only bands crossing the Fermi level are considered. There are two terms which
may couple the order parameter in different valleys. One of them is proportional to

− Ũ1(Q) ê†K+pσ ĥK′
θ+pσ̄ ê

†
K′+p′σ̄ ĥKθ+p′σ + h.c. (S36)

The quantity Ũ1 > 0 is the effective coupling constant in this channel. It depends on the transfer momentum
Q = K −Kθ + p − p′. The contribution of this term to the mean-field energy is ∼ (ηwηw

′
+ c.c.), where the valley

indices w and w′ are unequal: w ̸= w′. Another term

− Ũ2(Q) ê†K+pσ ĥK′
θ+pσ̄ ĥ

†
Kθ+p′σ̄ êK′+p′σ + h.c. , (S37)

with transfer momentum Q = K−K′+p−p′, and its own effective coupling constant Ũ2 > 0, generates a contribution
∼ [ηw(ηw

′
)∗ + c.c.], where w ̸= w′. Although this term does not conserve momentum, for commensurate angles it

is allowed due to the presence of the superlattice: the non-conserved momentum ∆Ktot is a reciprocal superlattice
vector, ∆Ktot = 2(K+Kθ) = 2(2m0 + r)G2 ∼ 0 [S9].

The effective inter-valley interaction constants Ũ1,2 are obtained by projection of the bare interaction, Eq. (S9), on
the e and h bands, as explained above. In the limit of uncoupled layers, the electrons and the holes exist in different
layers. Thus, Ũ1 will be strictly zero. For Ũ2 we can write Ũ2 ∼ U12(Q). Since for this term the transfer momentum
is large, Q = K − K′ + p − p′ ∼ 2K ∼ b1,2, the term (S37) will be negligible due to the exponent in U12(Q), see

Eq. (S9). For finite inter-layer hybridization, Ũ1 will be non-zero. Likewise, the value of Ũ2 will be larger than that
for uncoupled layers. Our numerical analysis shows, however, that the inter-valley interaction is much smaller than
the intra-valley one for any superstructures and model parameters studied. The above analysis allows the derivation
of Eq. (S15). A similar considerations can be done for the upper bands, not forming the Fermi surface. Thus, we can
neglect the inter-valley scattering.
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