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We theoretically study the effects of electron-electron interaction in twisted bilayer graphene in
a transverse dc electric field. When the twist angle is not very small, the electronic spectrum of the bilayer
consists of four Dirac cones inherited from each graphene layer. An applied bias voltage leads to the
appearance of two holelike and two electronlike Fermi surface sheets with perfect nesting among electron
and hole components. Such a band structure is unstable with respect to the exciton band-gap opening due to
the screened Coulomb interaction. The exciton order parameter is accompanied by spin-density-wave
order. The gap depends on the twist angle and can be varied by a bias voltage. This result correlates well
with recent transport measurements [J.-B. Liu et al., Sci. Rep. 5, 15285 (2015)]. Our proposal allows the
coexistence of (i) an externally controlled semiconducting gap and (ii) a nontrivial multicomponent
magnetic order. This is interesting for both fundamental research and applications.
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Introduction.—A transverse electric field modifies prop-
erties of various graphene systems [1]. For example, it
opens a gap in the AB-bilayer electronic spectrum. The gap
is a consequence of the nontrivial chiral structure of the
AB-bilayer Hamiltonian. Since twisted bilayer graphene
(TBLG) [1–12] is in many ways similar to two decoupled
graphene sheets, one might naively assume that a transverse
bias introduces only minor modifications to the TBLG
spectrum. Contrary to this conjecture, our theoretical
analysis demonstrates that biased TBLG exhibits unusual
features, consistent with recent experiments [13], of interest
for both fundamental research and applications. A particu-
larly important aspect of our model is a field-generated
multicomponent Fermi surface, with perfect nesting
between hole and electron sheets. Interactions destabilize
the nested Fermi surface, and the spectrum acquires a gap
of exciton origin. The gap is controlled by the applied
transverse voltage. Together with the gap, two spin-density-
wave (SDW) order parameters, one per graphene valley,
appear in the sample. The presence of the magnetic
properties distinguishes the biased TBLG from the (mag-
netically trivial) biased AB bilayer. Remarkably, biased
TBLG becomes a kind of tunable magnetic semiconductor.
The interplay and interference between two SDW orders is
an additional intriguing aspect of TBLG. Note that systems
with perfect nesting are rare (imperfect or partial nesting is
much more common). The realization of such a Fermi
surface is of fundamental importance: it allows us to test
SDW theories in its simplest setting, without the need for
uncontrolled approximations. Furthermore, upon doping,

such systems can demonstrate half-metallicity [14].
Currently, many-body properties of AA- and AB-bilayer
graphene [15–23] are actively discussed by theorists,
whereas for TBLG this topic is barely touched [24,25].
However, very recent experiments indicate that TBLG
hosts interesting many-body phenomena: Mott insulator
physics [26] and superconductivity [27] at small twist
angles and a tunable semiconducting gap [13] at larger
angles. While our formalism cannot describe the small-
angle physics [26,27], theoretical conclusions for the
higher-angle regime are consistent with experiments [13].
Geometry of twisted bilayer graphene.—A graphene

monolayer has a hexagonal crystal structure consisting
of two triangular sublattices A and B. Coordinates of atoms
in layer 1 are r1An ¼ r1n ≡ na1 þma2 and r1Bn ¼ r1n þ δ,
where n ¼ ðn;mÞ is an integer-valued vector, a1;2 ¼
að ffiffiffi

3
p

;∓ 1Þ=2 are the primitive vectors (a ¼ 2.46 Å),
and δ ¼ að1= ffiffiffi

3
p

; 0Þ. Atoms in layer 2 are located at r2Bn ¼
r2n ≡ dez þ na10 þma20 and r2An ¼ r2n − δ0, where (a1;20,
δ0) are the vectors (a1;2, δ) rotated by an angle θ, and ez
denotes the unit vector along the z axis. The interlayer
distance is d ¼ 3.35 Å. The limiting case θ ¼ 0 corre-
sponds to the AB stacking. The superstructure exists if
cos θ ¼ ð3m2

0 þ 3m0rþ r2=2Þ=ð3m2
0 þ 3m0rþ r2Þ, where

m0 and r are coprime positive integers. The number of
graphene unit cells inside a supercell is Nsc ¼ ð3m2

0 þ
3m0rþ r2Þ=g per layer, where g ¼ 1 if r ≠ 3n, or g ¼ 3
otherwise. The number of carbon atoms in the superlattice
cell is equal to 4Nsc.
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We introduce b1;2 ¼ 2πð1= ffiffiffi
3

p
;∓1Þ=a, which are the

reciprocal lattice vectors for layer 1, and b0
1;2 for layer 2

(b0
1;2 are θ-rotated b1;2). The vectors G1;2 are the elementary

reciprocal vectors for the superlattice. These quantities are
related: b0

1¼b1þrðG1þG2Þ and b0
2¼b2−rG1 if r ≠ 3n, or

b0
1 ¼ b1 þ rðG1 þ 2G2Þ=3 and b0

2 ¼ b2 − rð2G1 þ G2Þ=3,
otherwise. Each graphene layer has two nonequivalent
Dirac points located at the corners of its Brillouin zone.
Thus, the total number of Dirac points for the bilayer is
four. The Brillouin zone of the superlattice is hexagonal
shaped. It can be obtained by Nsc-times folding [28] of the
Brillouin zone of layer 1 or 2. As a result of this folding,
Dirac points of each layer are translated to two nonequiva-
lent corners of the reduced Brillouin zone, K1 and K2.
Points K1;2 can be expressed via vectors G1;2 as K1 ¼
ðG1 þ 2G2Þ=3 and K2 ¼ ð2G1 þ G2Þ=3. The Dirac spec-
trum at K1;2 is doubly degenerate since two nonequivalent
Dirac points of constituent layers lie at each corner of the
Brillouin zone of the superlattice after the folding. For more
details, one may consult Refs. [1,3,29].
Model Hamiltonian.—We investigate the tight-binding

model for pz electrons in undoped TBLG: Ĥ ¼ Ĥ0 þ Ĥint,
where Ĥ0 is a single-electron Hamiltonian and Ĥint
describes electron-electron interaction. Here,

Ĥ0 ¼
X
injm
ss0σ

tðrisn ; rjs
0

m Þd̂†nisσd̂mjs0σ þ
Vb

2

X
n

ðn̂n1 − n̂n2Þ; ð1Þ

where d̂†nisσ and d̂nisσ are the creation and annihilation
operators of the electron with spin projection σ, located at
site n in the layer i (¼1, 2) in the sublattice s (¼A, B), and
n̂ni ¼

P
sσd̂

†
nisσd̂nisσ is the electron density at the unit

cell n of layer i. For intralayer hopping, only the
nearest-neighbor term is included. Its amplitude is −t,
where t ¼ 2.57 eV. The interlayer hopping is parameter-
ized as described in Refs. [11,12], with the largest inter-
layer hopping amplitude being equal to t0 ¼ 0.4 eV.
The second term in Eq. (1) describes the potential
energy difference between layers due to the applied bias
voltage Vb. Switching to the momentum representation,
one can introduce new single-particle operators d̂pGisσ ¼
N −1=2P

ne
−iðpþGÞrin d̂nisσ. Here N is the number of gra-

phene unit cells in the sample in one layer, the momentum
p lies in the first Brillouin zone of the superlattice, while
G ¼ m1G1 þm2G2 is the reciprocal vector of the super-
lattice lying in the first Brillouin zone of the ith layer. The
number of such vectorsG is equal to Nsc for each graphene
layer. Thus, Ĥ0 becomes

Ĥ0 ¼
X
pσ

�X
G1G2

X
ijss0

t̃ss
0

ij ðpþG1;G1 −G2Þd̂†pG1isσ
d̂pG2js0σ

þ Vb

2

X
Gs

ðd̂†pG1sσd̂pG1sσ − d̂†pG2sσd̂pG2sσÞ
�
; ð2Þ

t̃ss
0

ij ðk;GÞ ¼ 1

Nsc

X0

nm

e−ikðrin−r
j
mÞe−iGrjm tðrisn ; rjs

0
m Þ: ð3Þ

The summation with prime
P0

nm denotes that m runs over
sites inside the zeroth supercell, while n runs over all sites
in the sample.
The Hamiltonian (2) can be used to find the single-

electron spectrum EðSÞ
p and eigenvectors ΦðSÞ

pGis, where
S ¼ 1; 2;…; 4Nsc labels 4Nsc single-electron bands. The
spectrum of (2) is well known. Its part inside the energy
window −0.5t < E < 0.5t, calculated for m0 ¼ 5, r ¼ 1
(θ ≅ 6.01°), and Vb ¼ 0.15t, is shown in Fig. 1. When θc <
θ < 60° − θc (θc ≅ 1.89° for hopping parameters used), the
low-energy spectrum consists of four Dirac cones located in
pairs at two Dirac pointsK1;2. Initially, we retain only these
four bands, discarding all other electron states. To label the
four bands, we will use the symbol ewμ (hwμ ) to denote the
electron (hole) band of the Dirac cone μ ¼ �1 at the Dirac
point Kw, where the valley index is w ¼ 1, 2. When
Vb > 0, the energies of the ewþ1 and hwþ1 (ew−1 and hw−1)
bands are shifted to positive (negative) energies.
Considering the momentum p from Kw, we can approxi-
mate the electron energy as Ee;h

pμw ≈ v�Fðμq�F � jpjÞ, where
v�F ¼ v�FðθÞ is the renormalized Fermi velocity of the
TBLG, and q�F ∝ Vb=v�F is the Fermi momentum. Both
v�F and q�F are calculated numerically at half filling.
Therefore, if êwkμσ (ĥwkμσ) denotes an operator destroying
an electron with momentum k and spin projection σ in the
band ewμ (hwμ ), the low-energy Hamiltonian becomes

Ĥeff
0 ¼ v�F

X
pμwσ

½ðjpjþμq�FÞêw†pμσ êwpμσ − ðjpj−μq�FÞĥw†pμσĥwpμσ�:

ð4Þ

FIG. 1. (Left) Band structure calculated for a sample with
m0 ¼ 5, r ¼ 1 (θ ≅ 6.01°); Vb ¼ 0.15t=e. The bands eμ and hμ
are shown by bold curves. Vertical dashed lines correspond to the
Dirac pointsK1;2. Each vertical double arrow connects two bands
forming the anomalous matrix elements ηp�1σ . (Right) The Fermi
surface (solid red curves), corresponding to the band structure
plotted on the left. A slight trigonal warping of the Fermi lines
is seen.
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Consequently, two bands, ew−1 and hwþ1, pass through the
Fermi energy (see Fig. 1) and form the Fermi surface
(Fermi lines). The Fermi lines may be approximated by two
circles jpj ¼ q�F around both Dirac points [30]. The lines
are identical for ew−1 and h

w
þ1. In the presence of interaction,

a nested Fermi surface is unstable with respect to the
formation of excitonic order.
To discuss such excitonic order, we need to specify the

interaction Ĥint,

Ĥint ¼
1

2

X
injm
ss0σσ0

d̂†nisσd̂nisσUijðrisn − rjs
0

m Þd̂†mjs0σ0 d̂mjs0σ0 : ð5Þ

The choice of interaction potential UijðrÞ significantly
affects the ordered-phase properties. Since the field-
induced holes and electrons inhabit different layers, they
interact most effectively via the screened Coulomb
potential [31,32]. The commonly used Hubbard interaction
[20–22,25,33] is quite ineffective in our setting, and we
numerically verified [34] that the corresponding corrections
are weak. For quasiparticles in the same layer, the Fourier
transform of the screened Coulomb potential UiiðrÞ is
UiiðkÞ ¼ vkV−1

c =ð1þ ΠkvkÞ. Here, Vc ¼
ffiffiffi
3

p
a2=2 is the

graphene unit cell area, the bare Coulomb potential is
vk ¼ 2πe2=ϵjkj, the permittivity of the substrate is ϵ,
and −Πk is the static polarization operator of electrons
in the bilayer. When the interacting electrons are in
different layers, the corresponding matrix element becomes
U12ðkÞ ¼ vkV−1

c expð−jkjdÞ=ð1þ ΠkvkÞ.
Once the interaction is specified, the low-energy

projection of Ĥint becomes

Ĥeff
int ¼

1

2N

X
pq

X
μw

X
σσ0

ðAw
pqĥ

w†
pμσĥ

w
qμσ ê

w†
qμ̄σ0 ê

w
pμ̄σ0

þ Bw
pqĥ

w†
pμσ êwqμσĥ

w†
qμ̄σ0 ê

w
pμ̄σ0 þ H:c:Þ; ð6Þ

where μ̄ ¼ −μ, and Aw
pq, Bw

pq are effective coupling con-
stants, obtained by projecting Ĥint in Eq. (5) on the low-
energy bands. The procedure is standard, but tedious, and
requires both analytical and numerical steps [34]. In (6), we
take into account only electron-hole interactions, because
these are directly responsible for the gap. Our numerical
results demonstrate that, if the momenta p and q lay in
the w valley (that is, both p and q are near the Dirac
point Kw), then Aw

pq ≈ cos2½ðφp − φqÞ=2�U12ðp − qÞ
and Bw

pq ≈ sin2½ðφp − φqÞ=2�U12ðp − qÞ, where φp ¼
arctanðpy=pxÞ is the polar angle corresponding to p. The
deviation from these equalities is larger for smaller θ.
Numerical evidence further indicates that the coupling of
electron states with different valley indices is negligible.
This allows us to keep only the intravalley interaction terms
in Eq. (6).

Exciton order parameter.—The interaction (6) binds
electrons e and holes h into excitons. To describe the
exciton condensate we must choose a suitable order
parameter. The well-studied AB bilayer, with its variety
of orders [15,35–37] offers little guidance here: the AB
bilayer has no Fermi surface, and its Hamiltonian possesses
a unique chiral structure. Likewise, the knowledge [25]
about TBLG ordered phases at low θ is inapplicable: for
θ < θc, the single-electron bands are very flat [1,3,11,38]
and require a different approach. Of more relevance are the
studies of the AA bilayer [20–23,33,39], which has an
almost circular nested Fermi surface. With this in mind, we
define the following symmetry-breaking expectation values
ηwpμσ ¼ hĥw†pμσ êwpμ̄ σ̄i, where σ̄ means “not σ”. An order

parameter hĥw†pμσ êw0
pμ̄ σ̄i, coupling valleys w and w0, is not

supported by our interaction if w ≠ w0. Thus, the valley
index may be suppressed. This ordered phase is the planar
SDW. Its magnetic moments are localized on the links
connecting atoms in different layers. Since the nesting
vector is zero, the SDW period coincides with the super-
structure periodicity. Observable magnetic moments dis-
tribution depends on the interference of the order
parameters in different valleys, which presented formalism
cannot capture. Finally, the charge-density-wave orderP

σhĥw†pμσ êwpμ̄σi is energetically unfavorable in comparison
to the SDW one, as it can be seen from Hamiltonian (6).
Using the η’s, we can decouple Heff

int . The resultant mean-
field Hamiltonian becomes quadratic in ê and ĥ. It can
be expressed as ĤMF ¼ P

pμΨ̂
†
pμHpμΨ̂pμ, where Ψ̂pμ ¼

ðĥpμ↑; êpμ̄↑; ĥpμ↓; êpμ̄↓ÞT , and

Hpμ ¼

0
BBBBB@

Eh
pμ 0 0 −Δ�

pμ↑

0 Ee
pμ̄ −Δpμ↓ 0

0 −Δ�
pμ↓ Eh

pμ 0

−Δpμ↑ 0 0 Ee
pμ̄

1
CCCCCA
: ð7Þ

Here the order parameter is defined as Δpμσ ¼
N −1P

q½Apqηqμσ þ Bpqη
�
qμ̄ σ̄�. Minimizing the total energy

at zero temperature and at half filling, we obtain the system
of equations for the order parameters

Δpμ ¼
Vc

2

Z
d2q
ð2πÞ2

0
B@ ApqΔqμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
qμ þ E2

qμ

q þ BpqΔqμ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

qμ̄ þ E2
qμ̄

q
1
CA; ð8Þ

where we assume that Δpμ↑ ¼ Δpμ↓ ≡ Δpμ ¼ Δ�
pμ, the

integration is performed over the Brillouin zone of
the superlattice, and Eqμ ¼ ½Ee

qμ̄ − Eh
qμ�=2. If Δpþ1 → 0,

the right-hand side of Eq. (8) acquires a logarithmic
singularity, implying that the studied instability is driven
by Δpþ1. Its value at the Fermi surface gives us the energy
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gap. As for Δp−1, its role is to renormalize the strength of
the symmetry breaking and it cannot be neglected in the
numerical calculations.
Solving (8), several simplifications are made. First,

we approximate the Fermi surface by a circle of radius
q�F. The functions Apq and Bpq are replaced by constants Ā
and B̄, obtained by averaging Apq and Bpq over the
Fermi surface. The p dependence of Δpμ is simplified:
Δpμ ¼ ΔμΘðqΛ − jp − q�FjÞ, where qΛ > 0 is the cutoff
momentum of the interaction and ΘðqÞ is the step function.
The cutoff value can be found [31,32] by the requirement
U12ðqΛÞ ¼ U12ð0Þ=2. Assuming that qΛd ≪ 1 (which is
valid for Vb≲t0 and e2=ϵvF≲1), we derive qΛ ≈ 2παvFΠ0,
where α ¼ e2=ϵvF is the graphene fine structure constant
and vF ¼ at

ffiffiffi
3

p
=2 is the Fermi velocity of single-layer

graphene. Finally, since in the long-wavelength limit
(jkj ≪ jb1;2j), the function Πk is equal to the density of
states (DOS) at the Fermi level: Πk ≈ Π0 ≈ 4q�F=ðπv�FÞ,
and qΛ ¼ 8αðvF=v�FÞq�F.
Approximate solution, weak-interaction limit.—In the

weak-interaction limit, α → 0, only the states with small
momenta q ¼ jqj ≪ jG1;2j are important. For these

Eqμ ≈ v�Fðjqj − μq�FÞ: ð9Þ

In this regime, the region of integration in Eq. (8)
becomes a ring or a circle centered at the Dirac point,
defined by q1 < jqj < q2, where q1 ¼ max½0; q�F − qΛ� and
q2 ¼ q�F þ qΛ. Therefore, the system (8) becomes

Δμ ¼
1

2

Z
q2

q1

dq

2
64 qλAΔμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
μ þ v�2F ðq − μq�FÞ2

q

þ qλBΔμ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

μ̄ þ v�2F ðqþ μq�FÞ2
q

3
75; μ ¼ �1; ð10Þ

where λA ¼ VcĀ=ð2πÞ, λB ¼ VcB̄=ð2πÞ. Assuming that
qλ ≪ q�F and Δμ ≪ Vb, we solve system (10) analytically,

Δþ ≈ 2vFq�Fαexpf−1=Λþ 4α�g; Δ− ¼ B̄
Ā
Δþ; ð11Þ

where α� ¼ e2=ðϵv�FÞ is the “renormalized α” and
Λ ≈ λAq�F=v

�
F. The solution (11) for Δþ has a BCS-like

structure, which dictates a high sensitivity of the gap Δþ to
the effective interaction strength Ā.
Approximate solution, strong-interaction limit.—The

solution (11) is valid when α ≪ 1. Estimates show, how-
ever, that for a suspended bilayer α ≈ 2.6. When α
increases, the cutoff qΛ can exceed the size of the super-
lattice Brillouin zone. In this case, we should take into
account more bands in the Hamiltonians (4) and (6) and,

consequently, introduce additional order parameters Δpμ.
This makes the formalism quite involved. A simpler
approach is to neglect the fine structure of the high-energy
(jqj > jG1;2j) single-electron states and treat them as if
there is no hopping between the layers. Such a layer
decoupling is justified [40] if θ > θc. For example,
the high-energy DOS of TBLG is well approximated by
the single-layer DOS (see Fig. 7 of Ref. [41]). This
simplification allow us to extend the upper integration
limit q2 in (10) to ∼qΛ < jb1;2j. Note that, in the interval
jG1j=ð2

ffiffiffi
3

p Þ < q < qΛ, because of the decoupling, the
velocity v�F in (10) must be replaced by vF. Finally, even
at large qΛ, we may study each valleyK1;2 separately [34].
This is a consequence of the decoupling of the layers.
Results and Discussion.—We numerically solved the

system (10), valid in the weak-interaction limit. We also
solved its modified version suitable for the strong-
interaction regime. The computations were performed for
several superstructures with r ¼ 1 in a wide range of values
for Vb and α. Major results of our study are presented in
Fig. 2, where Δþ is plotted for different model parameters.
(We focus on Δþ, since it provides the electron energy gap,
a quantity of crucial importance for the system properties.)
The gap strongly (exponentially) depends on the interaction

(a)

(b)

FIG. 2. (a) Solid curves show the gap Δþ versus α for
superstructures with r ¼ 1 and m0 ¼ 2, 4, 6, 8, 10 (twist angles
θ ≅ 17.7; 7.3; 5.1; 3.9; 3.2 deg) for Vb=t ¼ 0.1. The dashed
curve corresponds to the decoupled (t0 ¼ 0) graphene layers.
In this case, the function ΔþðαÞ is almost independent of θ.
(b) Δþ versus θ calculated for Vb=t ¼ 0.037 and α ¼ 1.044. The
inset shows Δþ versus Vb for α ¼ 0.306 (solid curve) and for
α ¼ 0.719 (dashed curve) calculated for the superstructure
m0 ¼ 5, r ¼ 1.
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strength for all superstructures; see Fig. 2(a). The gap is
appreciable when α ≳ 1 ⇔ ϵ≲ 2.5 (note that the ratio
Δþ=t ∼ 10−2 corresponds to Δþ ∼ 300 K). Thus, to
observe the gap at room temperatures [42], the permittivity
of the substrate should not be large. The data in Fig. 2(a)
imply that for any α, the gap is larger for smaller twist
angles. This point is illustrated in Fig. 2(b), where Δþ is
plotted versus θ for fixed α and Vb. We note that the band
gap increases by about 4 orders of magnitude, when the
twist angle changes from θ ≅ 17.7° to θ ≅ 3.2°. Such
a strong enhancement can be explained by the reduction
of the Fermi velocity due to the interlayer hybridization.
Thegraph in the inset shows thegap versus the bias voltage

for weak and moderate α. This dependence is linear at small
Vb, in agreement with (11). Indeed, because of screening, the
interaction parameter Ā is proportional to 1=q�F at weak bias;
therefore, thedimensionless parameterΛ∼ Āq�F is insensitive
to Vb and only the preexponential factor in (11) linearly
depends on Vb. At strong interaction, the function ΔþðVbÞ
can be nonmonotonic for large bias voltages. Thus, our
findings demonstrate that the TBLG may serve as a system
with a tunable insulating gap. Recently, experimental evi-
dence in favor of such a gap was reported [13].
In conclusion, we demonstrated that biased TBLG can

become a magnetic semiconductor with tunable gap, whose
value, depending on parameters, can be as large as several
hundreds Kelvin. The gapful state is an exciton insulator,
accompaniedbySDWorder. The insulator is stabilized due to
perfect nesting of the field-generated Fermi surface. These
results have both fundamental and applied significance.
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