
Supplemental Material:

Electromagnetic Helicity in Complex Media

F. Alpeggiani,1 K. Y. Bliokh,2, 3 F. Nori,2, 4 and L. Kuipers1

1Department of Quantum Nanoscience, Kavli Institute of Nanoscience Delft,
Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
3Nonlinear Physics Centre, RSPE, The Australian National University, Canberra, Australia

4Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

BI-ORTHOGONAL ELECTROMAGNETISM

Here we derive the bi-orthogonal (non-Hermitian) Hamiltonian formalism for Maxwell equations, Eqs. (1)�(3) of
the main text. We use an approach similar to Refs. [1�4].
The starting point is to express the frequency-dependent permittivity matrix [Eq. (2) in the main text] in the

following expansion form [2]:

M(ω) =M∞ +
∑
α

Mα

ω − ωα
, (1)

where Mα is the matrix residual at the pole ω = ωα, and here we omit the hats over the matrices. Since we are
considering lossless media, the operator M(ω) is Hermitian and all the pole frequencies ωα are real [2]. The basic
idea is to reduce Maxwell equations [Eq. (1) in the main text] into a Schrödinger-like form by de�ning the set of
six-component supplemental �elds:

qα =
ωα

ω − ωα

(
E
H

)
≡ ωα
ω − ωα

f . (2)

Temporarily diverging from the notation used in the main text, we denote the electromagnetic bispinor (E,H)T by
the symbol f . Note that our de�nition of the supplemental �elds is di�erent from Ref. [2].
With the introduction of the supplemental �elds, Eq. (1) in the main text becomes:

H0 −M−1∞ M1 −M−1∞ M2 . . .
ω1 ω1 0 . . .
ω2 0 ω2 . . .
...

...
...

. . .




f
q1

q2

...

 = ω


f
q1

q2

...

 , (3)

where

H0 =M−1∞

(
0 i∇×

−i∇× 0

)
−
∑
α

M−1∞ Mα. (4)

Equation (3) represents a linear eigenvalue problem, with the frequency eigenvalue ω in the right-hand side.
The Hamiltonian in Eq. (3) is not Hermitian with respect to the standard inner product. According to the pre-

scriptions of biorthogonal quantum mechanics [5], each right eigenvector W = (f ,q1,q2, . . . )
T has the left eigenvector

partner W̃ = (f̃ , q̃1, q̃2, . . . )
T , which is the solution of the eigenvalue problem for the Hermitian-conjugate Hamilto-

nian: 
H†0 ω1 ω2 . . .

−M1M
−1
∞ ω1 0 . . .

−M2M
−1
∞ 0 ω2 . . .

...
...

...
. . .




f̃
q̃1

q̃2

...

 = ω


f̃
q̃1

q̃2

...

 . (5)

Here, we have used the assumption that M∞ and Mα are Hermitian matrices. This fact stems directly from the
restriction to lossless media and the corresponding conditions on the permittivity matrix M(ω).
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Expressing q̃α from the lower equations of the set (5), q̃α = −MαM
−1
∞ f̃/(ω−ωα), and substituting it into the �rst

Eq. (5), we obtain: (
0 i∇×

−i∇× 0

)
M−1∞ f̃ = ω

[
M∞ +

∑
α

Mα

ω − ωα

]
M−1∞ f̃ . (6)

Comparing this equation with the original Maxwell's equations, we immediately �nd:

f̃ =M∞f , q̃α = − Mα

ω − ωα
f . (7)

Next, for an operator Ô, it is natural to de�ne the local expectation value using the biorthogonal pair of the
�extended� eigenvectors W = (f ,q1,q2, . . . )

T and W̃ = (f̃ , q̃1, q̃2, . . . )
T :

O = gRe
(
W̃†ÔW

)
= gRe

(
f̃†Ôf +

∑
α

q̃†αÔqα

)
. (8)

Substituting here Eqs. (2) and (7), we derive Eq. (4) of the main text:

O = gRe

[
(M∞f)†Ôf −

∑
α

ωα
(ω − ωα)2

(Mαf)†Ôf

]
= gRe

(
ψ̃†Ôψ

)
, (9)

where the bispinor ψ = f = (E,H)T (recovering the notation of the main text), and the adjoint bispinor reads:

ψ̃ =

(
M∞ −

∑
α

ωα
(ω − ωα)2

Mα

)
f =

∂[ωM(ω)]

∂ω

(
E
H

)
. (10)

This result is exactly equivalent to Eq. (3) in the main text. Note that, in order to derive Eq. (9), it is essential to use
a biorthogonal basis where the medium parameters appear explicitly only in the adjoint eigenvector ψ̃, as opposed,
for instance, to a di�erent choice of the basis where the medium parameters are symmetrized between ψ and ψ̃. This
condition ensures that the medium parameters are not subject to the action of the operator Ô.

HELICITY DENSITY AND CONSERVATION IN THE TIME DOMAIN

The Hamiltonian formulation of electromagnetism that we have described in the previous section and extensively
used in the main text is naturally formulated in the frequency domain, as it is based on describing the �elds as frequency
eigenmodes of an e�ective Hamiltonian. Here we introduce a time-domain expression for the helicity density and its
conservation law (continuity equation), which reduces to the frequency-domain helicity density presented in the main
text in the case of monochromatic �elds. In this section, we mostly use the approach suggested by Philbin [6].
Following Ref. [6], we write the permittivity and the permeability as series expansions in the frequency variable,

and we convert them to time-dependent di�erential operators using the ω → i∂t replacement:

ε(r, ω) =
∑
n

ε2n(r)ω
2n −→ ε(r, i∂t) =

∑
n

ε2n(r) i
2n ∂

2n

∂t2n
,

µ(r, ω) =
∑
n

µ2n(r)ω
2n −→ µ(r, i∂t) =

∑
n

µ2n(r) i
2n ∂

2n

∂t2n
. (11)

We consider the time-dependent electric and magnetic �elds and displacements, E(r, t), H(r, t), D(r, t), and B(r, t),
satisfying Maxwell's equations in the time domain, as well as the vector-potentials A(r, t) and C(r, t), which are
related to the �elds as:

B = ∇×A, D = −∇× C, E = −∂tA, H = −∂tC. (12)

It is always possible to de�ne the potentials in this way in the absence of free charges because D and B are solenoidal
�elds.
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We also introduce the modi�ed potentials

A′(r, t) = ν(r, i∂t)Z
−1(r, i∂t)A(r, t), C′(r, t) = ν(r, i∂t)Z(r, i∂t)C(r, t), (13)

where Z(r, i∂t) and ν(r, i∂t) correspond to the optical impedance Z(r, ω) and the phase factor ν(r, ω) de�ned in
the main text. Note that the products ν(ω)Z(ω) and ν(ω)Z−1(ω) are always real, and these can be extended to
the negative-frequency axis to be an even function of ω. Therefore, these products can be formally treated as a
di�erential operator similar to ε(i∂t) or µ(i∂t), provided that these are su�ciently regular in the frequency range
under consideration.
We now introduce the following expression for the helicity density in the time domain:

S(r, t) =
1

8π

{
H(r, t) · µ(r, i∂t)A′(r, t)− E(r, t) · ε(r, i∂t)C′(r, t)

+
∑
n

2n∑
m=1

(−1)n+m
[
∂m−1t C′(r, t) · ε2n(r) ∂2n−m+1

t E(r, t)− ∂m−1t A′(r, t) · µ2n(r) ∂
2n−m+1
t H(r, t)

]}
. (14)

For monochromatic �elds, when E(r, t) = Re[E(r, ω)e−iωt], and similarly for H, A′, and C′, the time-averaged value
of the helicity density (14) yields:

S(r) =
1

16π
Re [µ̃(r, ω)H(r, ω)∗ ·A′(r, ω)− ε̃(r, ω)E(r, ω)∗ ·C′(r, ω)] . (15)

Furthermore, for monochromatic �elds we have E = iωA and H = iωC, and the helicity density becomes:

S = g Im
[
−ε̃νZ E∗ ·H + µ̃νZ−1H∗ ·E

]
, (16)

which is exactly equivalent to Eq. (10) in the main text.
We now go back to the time-domain Eq. (14). We consider a medium with the following additional conditions:

∇(νZ) = ∇(νZ−1) = 0. (17)

These correspond to a generalized homogeneity of the optical impedance (including the phase factor ν). Under
conditions (17), it is possible to show that the time-domain helicity density (14) satis�es the following continuity
equation (conservation law):

∂tS(r, t) +∇ ·Σ(r, t) = 0, (18)

with the helicity �ux

Σ(r, t) =
1

8π

[
E(r, t)×A′(r, t) +H(r, t)× C′(r, t)

]
. (19)

One can check the relation (18) using the identity

∂t

[∑
n

2n∑
m=1

(−1)n+m∂m−1t F · ε2n ∂2n−mt G

]
= [ε(i∂t)F] ·G− F · [ε(i∂t)G], (20)

which can be veri�ed by explicit (albeit lengthy) calculations.
For monochromatic �elds, the helicity �ux becomes:

Σ = g Im
(
νZ−1E∗×E + νZH∗×H

)
. (21)

Notably, although in free space the helicity �ux coincides with the spin angular momentum density S [7�9], this is
not the case in a medium, Σ 6= S, where the spin density is given in Eq. (5) of the main text [10, 11]. In the case of
nondispersive materials (i.e., µ̃ = µ and ε̃ = ε), the helicity �ux and the spin density are proportional to each other
with a factor equal to the local refractive index: Σ = S/n. In the dispersive case, however, the helicity �ux and the
spin density are not directly related, since they depend on di�erent medium parameters.
We also note that for nondispersive dielectric media, the helicity density (15), (16), and �ux (21) coincide with

the expression introduced by van Kruining and Götte [12]. Their treatment also allows extensions to some cases of
bi-anisotropic media.
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