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In this Supplemental Material to the article on “Exponentially-Enhanced Light-Matter Interaction, Cooperativities,
and Steady-State Entanglement Using Parametric Amplification”, we first present more details of the elimination
of squeezing-induced noises to show an exponential enhancement of the light-matter interaction, as well as of the
cooperativity. Then, we derive an effective master equation including an effective Hamiltonian and effective Lindblad
operators, and also give a detailed description of our entanglement preparation method. Finally, we discuss, in detail,
the effects of counter-rotating terms and show how to remove them.

S1. Elimination of squeezing-induced fluctuation noise

To demonstrate more explicitly the elimination of the squeezing-induced noise, we now derive the Lindblad master
equation for our atom-cavity system. In addition to an exponential enhancement of the atom-cavity coupling, the
squeezing can introduce undesired noise, including thermal noise and two-photon correlations, into the cavity mode.
In order to avoid such noises, our approach employs an auxiliary, high-bandwidth squeezed-vacuum field, which can
be experimentally generated, e.g., via optical parametric amplification [S1, S2]. Owing to the bandwidth of the
squeezed-vacuum field of up to ∼ GHz, the auxiliary field can be thought of as a squeezed-vacuum reservoir for a
typical cavity mode with its bandwidth of order of MHz. When being coupled to the cavity mode, the auxiliary field
can suppress or even completely eliminate these undesired types of noise of the squeezed-cavity mode.

The Hamiltonian determining the unitary dynamics of our atom-cavity system, as shown in Fig. 1, is given by
Eq. (1) and, for convenience, is recalled here

H (t) =
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] +HAC +HNL

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) , (S1)

HNL = ∆ca
†a+

1

2
Ωp
[
exp (iθp) a

2 + H.c.
]
, (S2)

HAC = g
∑
k

(a|e〉k〈f |+ H.c.) , (S3)

V (t) =
1

2
Ω exp (iβt)

∑
k

[
(−1)

k−1 |g〉k〈e|+ H.c.
]
. (S4)

Here k = 1, 2 labels the atoms, g is the atom-cavity coupling, the annihilation operator a corresponds to the cavity
mode, Ω (ΩMW) is the Rabi frequency of the laser (microwave) drive applied to the atoms, and Ωp (θp) is the amplitude
(phase) of the strong pump applied to the nonlinear medium. We have defined the following detunings:

∆c = ωc − ωp/2, (S5)

∆e = ωe − ωg − ωMW − ωp/2, (S6)

∆f = ωf − ωg − ωMW, (S7)

β = ωL − ωMW − ωp/2, (S8)
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where ωc is the cavity frequency, ωL (ωMW) is the frequency of the laser (microwave) drive applied to the atoms, ωp
is the frequency of the strong pump applied to the nonlinear medium, and ωz is the frequency associated with level
|z〉 (z = g, f, e). When the cavity mode is coupled to the squeezed-vacuum reservoir with a squeezing parameter re
and a reference phase θe, the dynamics of the atom-cavity system is described by the following master equation [S3]:

ρ̇ (t) =i [ρ (t) , H (t)]− 1

2

{∑
x′

L (Lx′) ρ (t) + (N + 1)L (La) ρ (t)

+NL
(
L†a
)
ρ (t)−ML′ (La) ρ (t)−M∗L′

(
L†a
)
ρ (t)

}
, (S9)

where ρ (t) is the density operator of the system, a Lindblad operator La =
√
κa describes the cavity decay with a

rate κ, and

N = sinh2 (re) and M = cosh (re) sinh (re) e
−iθe (S10)

describe thermal noise and two-photon correlations caused by the squeezed-vacuum reservoir, respectively. Moreover,

L (o) ρ (t) = o†oρ (t)− 2oρ (t) o† + ρ (t) o†o, (S11)

L′ (o) ρ (t) = ooρ (t)− 2oρ (t) o+ ρ (t) oo (S12)

and the sum runs over all atomic spontaneous emissions, including the Lindblad operators

Lg1 =
√
γg|g〉1〈e|, Lf1 =

√
γf |f〉1〈e|, Lg2 =

√
γg|g〉2〈e|, Lf2 =

√
γf |f〉2〈e|. (S13)

Note that, here, we have assumed that the atoms are coupled to a thermal reservoir and that in each atom, |e〉 decays
to |g〉 and |f〉, respectively, with rates γg and γf .

When pumped, the nonlinear medium can squeeze the cavity mode along the axis rotated at an angle (π − θp) /2,
with a squeezing parameter rp = (1/4) ln [(1 + α) / (1− α)], where α = Ωp/∆c. This results in a squeezed-cavity
mode, as described by the Bogoliubov transformation as = cosh (rp) a+ exp (−iθp) sinh (rp) a

† [S3], such that

HNL = ωsa
†
sas, (S14)

where ωs = ∆c

√
1− α2 is the squeezed-cavity frequency. In terms of the mode as, the atom-cavity interaction

Hamiltonian HAC in Eq. (S3) is reexpressed as

HAC =
∑
k

[(
gsas − g′sa†s

)
|e〉k〈f |+ H.c.

]
, (S15)

where gs = g cosh (rp) and g′s = exp (−iθp) g sinh (rp). Under the assumption that |g′s|/ (ωs + ∆e −∆f ) � 1, we can
make the rotating-wave approximation to neglect the counter-rotating terms, which results in a standard Jaynes-
Cummings Hamiltonian

HASC = gs
∑
k

(as|e〉k〈f |+ H.c.) . (S16)

This Hamiltonian describes an interaction between the atoms and the squeezed-cavity mode, and demonstrate that
as long as rp ≥ 1, there is an exponential enhancement in the atom-cavity coupling,

gs
g
∼ 1

2
exp (rp) . (S17)

Furthermore, the master equation in Eq. (S9) can accordingly be reexpressed as

ρ̇ (t) = i [ρ (t) , Hs (t)]

− 1

2

{∑
x′

L (Lx′) ρ (t) + (Ns + 1)L (Las) ρ (t)

+NsL
(
L†as
)
ρ (t)−MsL′ (Las) ρ (t)−M∗sL′

(
L†as
)
ρ (t)

}
, (S18)

Hs (t) =
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] + ωsa
†
sas +HASC

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) , (S19)
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where Ns and Ms are given, respectively, by

Ns = cosh2 (rp) sinh2 (re) + sinh2 (rp) cosh2 (re)

+
1

2
sinh (2rp) sinh (2re) cos (θe + θp) , (S20)

Ms = exp (iθp) [sinh (rp) cosh (re) + exp [−i (θe + θp)] cosh (rp) sinh (re)]

× [cosh (rp) cosh (re) + exp [i (θp + θe)] sinh (re) sinh (rp)] , (S21)

corresponding to an effective thermal noise and two-photon correlations of the squeezed-cavity mode, and where
Las =

√
κas is a Lindblad operator corresponding to the decay of the squeezed-cavity mode, gs = g cosh (rp) is the

enhanced, controllable atom-cavity coupling. We have neglected the counter-rotating terms to obtain the Hamiltonian
Hs. From Eqs. (S20) and (S21), we can, as re = 0, observe the noise caused only by squeezing the cavity mode.
However, when choosing re = rp and θe + θp = ±nπ (n = 1, 3, 5, · · · ), we have

Ns = Ms = 0, (S22)

so that the master equation is simplified to a Lindblad form,

ρ̇ (t) = i [ρ (t) , Hs (t)]− 1

2

∑
x

L (Lx) ρ (t) . (S23)

Here, the sum runs over all dissipative processes, including atomic spontaneous emission and squeezed-cavity decay.
From Eq. (S23), we find that the squeezed-cavity mode is equivalently coupled to a thermal reservoir, and the
squeezing-induced noises are completely removed as desired. Therefore, we can define the effective cooperativity
Cs = g2

s/ (κγ), and obtain an exponential enhancement in the atom-cavity cooperativity C = g2/ (κγ), that is,

Cs
C

= cosh2 (rp) ∼
1

4
exp (2rp) . (S24)

This can be used to improve the quality of dissipative entanglement preparation. The resulting entanglement infidelity
is no longer lower-bounded by the cooperativity C of the atom-cavity system and could be, in principle, made very
close to zero.

Our method is to use a squeezed-vacuum field to suppress the noise of the squeezed-cavity mode, including thermal
noise and two-photon correlations. This makes the squeezed-cavity mode equivalently coupled to a thermal-vacuum
reservoir. Therefore, this method only changes the environment of the squeezed-cavity mode, and cannot cause the
cavity mode to violate the Heisenberg uncertainty principle. To elucidate more explicitly the physics underlying this
effect and to obtain an analytical understanding, we consider a simple case when the cavity mode is decoupled from
the atoms. In this case, the Hamiltonian only includes the nonlinear term given in Eq. (S2). The cavity mode is then
coupled to the squeezed-vacuum reservoir. Following the same method as before, we can find that the squeezed-cavity
mode is equivalently coupled to a thermal vacuum reservoir. The corresponding master equation is

ρ̇ (t) = i
[
ρ (t) , ωsa

†
sas
]
− κ

2

[
a†sasρ (t)− 2asρ (t) a†s + ρ (t) a†sas

]
. (S25)

We now calculate the Heisenberg uncertainty relation of the cavity mode a evolving according to the master equation
given in Eq. (S25). To start, we define two rotated quadratures at an angle (π − θp) /2,

X1 =
1

2

{
a exp [−i (π − θp) /2] + a† exp [i (π − θp) /2]

}
, (S26)

X2 =
1

2i

{
a exp [−i (π − θp) /2]− a† exp [i (π − θp) /2]

}
. (S27)

In terms of the as mode, X1 and X2 can be reexpressed as

X1 = x1as + x∗1a
†
s, (S28)

X2 = −i
(
x2as − x∗2a†s

)
. (S29)

Here,

x1 =
1

2
{exp [−i (π − θp) /2] cosh (rp)− exp [i (π + θp) /2] sinh (rp)} , (S30)

x2 =
1

2
{exp [−i (π − θp) /2] cosh (rp) + exp [i (π + θp) /2] sinh (rp)} . (S31)
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According to the master equation in Eq. (S25), a straightforward calculation gives

(∆X1)
2

= 〈X2
1 〉 − 〈X1〉2

=
{
y2

1 exp (−i2ωst)
[
〈asas〉(0)− 〈as〉2(0)

]
+ 2|y1|2

[
〈a†sas〉(0)− 〈a†s〉(0) 〈as〉(0)

]
+ y∗21 exp (i2ωst)

[
〈a†sa†s〉(0)− 〈a†s〉2(0)

] }
exp (−κt) +

1

4
exp (2rp) , (S32)

(∆X2)
2

= 〈X2
2 〉 − 〈X2〉2

=
{
y2

2 exp (−i2ωst)
[
〈as〉2(0)− 〈asas〉(0)

]
+ 2|y2|2

[
〈a†sas〉(0)− 〈a†s〉(0) 〈as〉(0)

]
+ y∗22 exp (i2ωst)

[
〈a†s〉2(0)

]
− 〈a†sa†s〉(0)

}
exp (−κt) +

1

4
exp (−2rp) , (S33)

where 〈O〉(t) represents the expectation value of the operator O at the evolution time t. For simplicity, and without
loss of generality, we assume that the squeezed-cavity mode is initially in a Fock state |ns〉, with ns being the
squeezed-cavity photon number. In this case, we have

(∆X1)
2

=
1

4
[2ns exp (−κt) + 1] exp (2rp) , (S34)

(∆X2)
2

=
1

4
[2ns exp (−κt) + 1] exp (−2rp) , (S35)

and then

(∆X1) (∆X2) =
1

4
[2ns exp (−κt) + 1] ≥ 1

4
. (S36)

It is found, from Eq. (S36), that the Heisenberg uncertainty relation holds, as expected.
We now turn to the discussion of the squeezed vacuum drive. The squeezing strength re and squeezing phase θe are

experimentally adjustable quantities. In optics, the squeezed vacuum can be produced by a pumped χ(2) nonlinear
medium (e.g., a periodically-poled KTiOPO4 (PPKTP) crystal) placed in an optical cavity [S1, S2, S4, S5]. This
method is similar to generating cavity-field squeezing of a atom-cavity system. The parameters re and θe can be
controlled by the amplitude and phase of the laser, which pumps the crystal. To confirm the values of the parameters,
one can further measure these by using balanced homodyne detection [S6]. The parameters rp and θp can be controlled
analogously in such a way to fulfill the conditions re = rp and θe + θp = ±nπ (n = 1, 3, 5, · · · ). We note that optical
squeezing has also been experimentally implemented utilizing a waveguide cavity [S7].

Superconducting quantum circuits, due to their tunable nonlinearity and low losses for microwave fields, are other
promising devices for producing squeezed states. The most popular method to generate microwave squeezing is to
use a Josephson parametric amplifier (JPA) [S8–S12]. The JPA is a superconducting LC resonator, which consists
of a superconducting quantum interference device (SQUID). This resonator can be pumped not only through the
resonator, but also by modulating the magnetic flux in the SQUID. In this case, the parameters re and θe can be
controlled by the amplitude and phase of a pump tone used to modulate the magnetic flux. Recent experiments have
shown that the squeezed vacuum, generated by a JPA, can be used to reduce the radiative decay of superconducting
qubits [S10] and to modify resonance fluorescence [S13]. The squeezing of quantum noise has also been demonstrated
with tunable Josephson metamaterials [S14].

S2. Perturbative treatment and maximizing steady-state entanglement

For the preparation of a steady entangled state, e.g., the singlet state |S〉 = (|gf〉 − |fg〉) /
√

2, the key element is
that the system dynamics cannot only drive the population into |ψ−〉, but also prevent the population from moving
out of |ψ−〉. In our approach, when we choose ∆e = β = ωs + ∆f , the coherent couplings mediated by the laser drive
and by the squeezed-cavity mode are resonant. In addition, the microwave field also resonantly drives the transition

|φ−〉 ↔ |φ+〉 ↔ |ψ+〉. (S37)

The proposed entanglement preparation can, therefore, be understood via a hopping-like model, as illustrated in
Fig. S1(a). Note that, here, ∆f is required to be nonzero, or |φ−〉 becomes a dark state of the microwave drive, whose
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population is trapped and cannot be transferred to |ψ+〉. In the preparation process, the populations initially in the
states |φ−〉, |φ+〉, and |ψ+〉 can be coherently driven to the dark state |D〉 through the microwave and laser drives
and, then, decay to the desired state |ψ−〉 through two atomic decays, respectively, with rates γg1 and γg2. Indeed,
such atomic decays originate, respectively, from the spontaneous emissions, |e〉 → |g〉, of the two atoms, so we have
γg1 = γg2 = γg/4. Furthermore, owing to the laser drive, the state |ψ−〉 is resonantly excited to |ϕe〉. This state is
then resonantly coupled to |ff〉|1〉s by the squeezed-cavity mode. The cavity loss causes the latter state to decay
to |ff〉|0〉s, thus giving rise to population leakage from |ψ−〉. However, because of the exponential enhancement in
the atom-cavity coupling [i.e., gs ∼ g exp (rp) /2 in Eq. (S17)], the state |ϕe〉 is split into a doublet of dressed states,

|e±〉 = (|ϕe〉 ± |ff〉|1〉s) /
√

2, exponentially separated by

2
√

2gs ∼
√

2g exp (rp) , (S38)

which is much larger than the couplings strength Ω± = Ω/
(
2
√

2
)
, as shown in Fig. S1(b). Hence, the population leak-

age from |ψ−〉 is exponentially suppressed, and we can make the effective decay rate, Γout, out of |ψ−〉, exponentially
smaller than the effective decay rate, Γin, into |ψ−〉. To discuss these decay rates more specifically, we need to give an
effective master equation of the system, when the laser drive Ω is assumed to be much smaller than the interactions
inside the excited-state subspace. In this case, the coupling between the ground- and excited-state subspaces is treated
as a perturbation, so that both cavity mode and excited states of the atoms can be adiabatically eliminated.

f
MW 1g
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2 2 sg


/ 2

e

e

2g 

(b)

(a)
f

MW 1g

    D  

/ 2

2g

/ 2 2 sg 

e 1ff

/ 2

/ 2

f
MW 1

eff

g

     
2

eff

g

(c) eff

FIG. S1. (Color online) (a) Hopping-like model for the proposed steady-state nearly-maximal entanglement preparation. (b)
Exponential suppression in the leakage of the population in |ψ−〉. (c) Effective dynamics after adiabatically eliminating the
states |D〉, |e+〉, and |e−〉.

Specifically, we follow the procedure in Ref. [S15], and begin by considering the Lindblad master equation in
Eq. (S23). For convenience, we rewrite the Hamiltonian Hs (t) as

Hs (t) = Hg +He + v(t) + v†(t) , (S39)
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with

Hg =
∑
k=1,2

[
∆f |f〉k〈f |+

ΩMW

2
(|f〉k〈g|+ H.c.)

]
, (S40)

He =
∑
k=1,2

|e〉k〈e|+ ωsa
†
sas +HASC, (S41)

representing the interactions, respectively, inside the ground- and excited-state subspaces, and

v(t) =
1

2
exp (iβt) Ω

∑
k=1,2

exp [i (k − 1)π] |g〉k〈e| (S42)

being the deexcitation from the excited-state subspace to the ground-states subspace. Under the assumption that the
laser drive Ω is sufficiently weak compared to the coupling gs, the effective Hamiltonian and Lindblad operators read:

Heff = − 1

2

[
v(t) (HNH − β)

−1
v†(t)

]
+Hg, (S43)

Lx,eff = Lx (HNH − β)
−1
v†(t) , (S44)

where

HNH = He −
i

2

∑
x

L†xLx (S45)

is the no-jump Hamiltonian. The system dynamics is, therefore, determined by an effective master equation

ρ̇g(t) = i [ρg(t) , Heff]− 1

2

∑
x

L (Lx,eff) ρg(t) , (S46)

where ρg(t) is the reduced density operator associated only with the ground states of the atoms. After a straightforward
calculation restricted in the Hilbert space having at most one excitation, we have:

Heff = ∆f (I/2− |φ+〉〈φ−|+ H.c.) + ΩMW (|ψ+〉〈φ+|+ H.c.) , (S47)

Lg1,eff = rg [(|ψ+〉+ |ψ−〉) (γeff,0〈ψ+|+ γeff,2〈ψ−|) + γeff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)] , (S48)

Lg2,eff = − rg [(|ψ+〉 − |ψ−〉) (γeff,0〈ψ+| − γeff,2〈ψ−|) + γeff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)] , (S49)

Lf1,eff = rf [(|φ+〉 − |φ−〉) (γeff,0〈ψ+|+ γeff,2〈ψ−|) + γeff,1 (|ψ+〉 − |ψ−〉) (〈φ+|+ 〈φ−|)] , (S50)

Lf2,eff = − rf [(|φ+〉 − |φ−〉) (γeff,0〈ψ+| − γeff,2〈ψ−|) + γeff,1 (|ψ+〉+ |ψ−〉) (〈φ+|+ 〈φ−|)] , (S51)

Las,eff = ras

[
κeff,1|ψ−〉 (〈φ+|+ 〈φ−|)−

1√
2
κeff,2 (|φ+〉 − |φ−〉) 〈ψ−|

]
. (S52)

Here,

I = |φ+〉〈φ+|+ |φ−〉〈φ−|+ |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|, (S53)

|φ±〉 =
1√
2

(|gg〉 ± |ff〉) , (S54)

|ψ±〉 =
1√
2

(|gf〉 ± |fg〉) , (S55)

and

rg(f) = exp (−iβt)
Ω
√
γg(f)

4γ
, (S56)

ras = exp (−iβt) Ω

2
√
γ
, (S57)

γeff,0 =
1

∆̃e,1

, (S58)

γeff,m =
ω̃s,m

ω̃s,m∆̃e,m−1 −mCs
, (S59)

κeff,m =

√
mCs

ω̃s,m∆̃e,m−1 −mCs
, (S60)
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where

ω̃s,m =
1

κ
(ωs +m∆f − β)− i

2
, (S61)

∆̃e,m−1 =
1

γ
[∆e + (m− 1) ∆f − β]− i

2
, (S62)

for m = 1, 2, and where γ = γg + γf is the total atomic decay rate.
Having obtained the effective master equation, let us now consider the decay rates Γin and Γout. According to the

effective Lindblad operators in Eqs. (S48)-(S52), the decay rates of moving into and out of the singlet state |ψ−〉 are
given, respectively, by

Γin =
Ω2

4γ2

(
γg|γeff,0|2 + 2γf |γeff,1|2 + 4γ|κeff,1|2

)
, (S63)

Γout =
Ω2

4γ2

(
γg|γeff,2|2 + 2γf |γeff,2|2 + 2γ|κeff,2|2

)
. (S64)

Let us define the entanglement fidelity as F = 〈ψ−|ρg (t) |ψ−〉 (that is, the probability of the atoms being in |ψ−〉)
and, then, the entanglement infidelity as δ = 1 − F . In the steady state (t → +∞), the entanglement infidelity is
found

δ ∼ 1

1 + Γin/ (3Γout)
. (S65)

Note that, here, we have assumed that |φ+〉, |φ−〉, and |ψ+〉 have the same population in a steady state. In order to
prepare nearly-maximal steady-state entanglement, we choose the detunings to be

∆e = β = ωs + ∆f , (S66)

such that ω̃s,m ∼ ∆̃e,m−1 ∼ −i/2, yielding

Γin

Γout
∼ 4γg

γ
Cs � 1, (S67)

for Cs � 1. As shown in Fig. S1(c), the underlying dynamics is as follows: after adiabatically eliminating the excited
states |D〉, |e+〉, and |e−〉, the states |ψ+〉 and |ψ−〉 are directly connected by two effective spontaneous emission

processes with rates γg1eff and γg2eff ,

γg1eff = γg2eff = |rgγeff,0|2 ∼
γg
4γ2

Ω2, (S68)

and at the same time, the desired state |ψ−〉 leaks the population through an effective cavity decay with a rate κeff,

κeff = |rasκeff,2|2/2 ∼
Ω2

16γCs
. (S69)

Therefore, together with the effective Hamiltonian Heff driving the populations from both |φ+〉 and |φ−〉 to |ψ+〉, the
initial populations in the ground-states subspace of the atoms can be transferred to |ψ−〉 and trapped in this state.
By substituting Eq. (S67) into Eq. (S65), we can straightforwardly have

δ ∼ 3γ

4γgCs
. (S70)

As long as rp ≥ 1, an exponential enhancement of the cooperativity, Cs/C ∼ exp (2rp) /4, is obtained, leading to

δ ∼ 3γ

γg exp (2rp)C
. (S71)

This equation shows that we can increase the squeezing parameter rp, so as to exponentially decrease the entanglement
infidelity, as seen in Fig. S2. Moreover, the result in this figure also reveals that, by decreasing Ω, one can suppress non-
adiabatic errors and, thus, can cause the steady-state infidelity to approach a theoretical value, as expected. Hence,
as opposed to prior entanglement preparation protocols, which relied on controlled unitary dynamics or engineered
dissipation, such an infidelity is no longer lower bounded by the cooperativity C and, in principle, can be made very
close to zero.



8

0 1 2 3 4 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

r
p

δ
 

 

Ω=0.5γ
Ω=1.0γ
Ω=1.5γ
Theory

FIG. S2. (Color online) Steady-state entanglement infidelity versus the squeezing parameter rp. We have plotted the numerical
infidelity for Ω = 0.5γ (dashed curve), Ω = 1.0γ (dashed-dotted curve), and Ω = 1.5γ (dotted curve) by calculating the effective
master equation, and also plotted the theoretical prediction (solid curve). Here, we have assumed that γg = γ/2, κ = 2γ/3,

C = 20, ∆f = Ω/27/4, ΩMW =
√

2∆f , and that with the vacuum cavity, the initial state of the atoms is (I − |ψ−〉〈ψ−|) /3.

S3. Effects of the counter-rotating terms

The counter-rotating terms of the form a†s
∑
k |e〉k〈f | and as

∑
k |f〉k〈e|, which result from optical parametric

amplification, do not conserve the excitation number, and can couple the ground- and double-excited states subspaces.
Thus, this would give rise to an additional leakage of the population in the desired state |ψ−〉, and decrease the
entanglement fidelity. For example, in the presence of the counter-rotating terms, the state |ψ−〉 can be excited

to a double-excitation state (|ge〉 − |eg〉) |1〉s/
√

2, which, then, de-excites to the ground state |gg〉|0〉 through cavity
decay and spontaneous emission. In general, we can decrease the ratio |g′s|/ (2∆e) to reduce errors induced by these
excitation-number-nonconserving processes. However, to reduce such errors more efficiently in the limit of |g′s|/ (2∆e),
we analyze effects of counter-rotating terms, in detail, in this section, and demonstrate that by modifying external
parameters, we can remove these terms and the full system can be mapped to a simplified system described above.

According to Eqs. (S14) and (S15), the full Hamiltonian of the system in the terms of the squeezed mode as is

H (t) =
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] + ωsa
†
sas

+
∑
k

[(
gsas − g′sa†s

)
|e〉k〈f |+ H.c.

]
,

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) , (S72)

V (t) =
1

2
Ω exp (iβt)

∑
k

[
(−1)

k−1 |g〉k〈e|+ H.c.
]
. (S73)

Indeed, the counter-rotating terms can be treated as the high-frequency components of the full Hamiltonian. In order
to explicitly show these high-frequency components, we can express H (t) into a rotating frame at

H0 = ∆e

∑
k

|e〉k〈e|+ (ωs + ∆f ) a†sas. (S74)
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Thus, H (t) is transformed to

H (t) = ∆f

(∑
k

|f〉k〈f | − a†sas

)
+
∑
k

(
gsas|e〉k〈f | − ei2∆etg′sa

†
s|e〉k〈f |+ H.c.

)
+

1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V, (S75)

V =
1

2
Ω
∑
k

[
(−1)

k−1 |g〉k〈e|+ H.c.
]
. (S76)

Here, we have chosen ∆e = β = ωs + ∆f . Because ∆f is required to be much smaller than ∆e, H (t) can be divided
into two parts, H (t) = Hlow +Hhigh, where

Hlow = ∆f

(∑
k

|f〉k〈f | − a†sas

)
+ gs

∑
k

(as|e〉k〈f |+ H.c.)

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V, (S77)

Hhigh =
∑
k

(
−ei2∆etg′sa

†
s|e〉k〈f |+ H.c.

)
, (S78)

represent the low- and high- frequency components, respectively. Here, we consider the limit |g′s|/∆e � 1. By using
a time-averaging treatment [S16], the behavior of Hhigh can be approximated by a time-averaged Hamiltonian,

HTA =
|g′s|2

2∆e

∑
k

a†sas (|e〉k〈e| − |f〉k〈f |)

− |g
′
s|2

2∆e

∑
k,k′

(|f〉k〈e|) (|e〉k′〈f |) . (S79)

The first term describes an energy shift depending on the photon number of the squeezed-cavity mode, and the second
term describes a direct coupling between the two atoms. Accordingly, H (t) becomes H (t) ' Hlow +HTA, and after
transforming back to the original frame, we obtain

H (t) '
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] + ωsa
†
sas

+ gs
∑
k

(as|e〉k〈f |+ H.c.) ,

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) +HTA. (S80)

We find, from Eq. (S79), that the counter-rotating terms are able to conserve the excitation number as long as
|g′s|/∆e � 1. Therefore, we can restrict our discussion in a subspace having at most one excitation, as discussed
above. In this subspace, HTA is expanded as

HTA =− |g
′
s|2

2∆e
(I/2 + |ϕe〉〈ϕe| − |φ+〉〈φ−|+ H.c.)

− |g
′
s|2

∆e

(
I(1)/2− |φ(1)

+ 〉〈φ
(1)
− |+ H.c.

)
, (S81)

where

I(1) = |φ(1)
+ 〉〈φ

(1)
+ |+ |φ

(1)
− 〉〈φ

(1)
− |+ |ψ

(1)
+ 〉〈ψ

(1)
+ |+ |ψ

(1)
− 〉〈ψ

(1)
− |,

|φ(1)
± 〉 = (|gg〉 ± |ff〉) |1〉s/

√
2,

|ψ(1)
± 〉 = (|gf〉 ± |fg〉) |1〉s/

√
2. (S82)
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Equation (S81) indicates that the counter-rotating terms introduce an energy shift of |g′s|2/ (2∆e) imposed upon the
ground states, and a coherent coupling, of strength |g′s|2/ (2∆e), between the states |φ+〉 and |φ−〉. From Fig. S1(a),
we find that in the regime, where Ω/|g′s| is comparable to |g′s|/∆e, such an energy shift can cause the |ψ+〉 → |D〉
transition to become far off-resonant and, thus, suppress the population into the desired state |ψ−〉. Meanwhile,
this introduced coupling may increase the entanglement error originating from the microwave dressing of the ground
states. For example, if ∆f = |g′s|2/ (2∆e), then the state |φ−〉 becomes a dark state of the microwave drive. In this
case, the population in |φ−〉 is trapped and cannot be transferred to |ψ−〉. To remove these detrimental effects, it
is essential to compensate this energy shift. According to the above analysis, the detunings in Eq. (S66) need to be
modified as

∆e = β − |g
′
s|2

2∆e
= ωs + ∆f −

|g′s|2

∆e
. (S83)

This modification simplifies the full dynamics to the same hopping-like model, as shown in Fig. S1(a) with ∆f →
∆′f = ∆f −|gs|2/ (2∆e). Therefore, we can map the full system to a simple system that excludes the counter-rotating
terms and has been discussed above.
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FIG. S3. (Color online) Entanglement infidelity δ as a function of time tγ for (a) Ω = 0.5γ, (b) Ω = 1.0γ, and (c) Ω = 1.5γ,
assuming a cooperativity of C = 20. Solid and dashed-dotted curves are obtained, respectively, from integrations of the effective
and full master equations, both with detunings ∆f = Ω/27/4 and ∆e = β = ωs+∆f . Dashed curves are also given by calculating

the full master equation but with modified detunings ∆f = Ω/27/4+|g′s|2/ (2∆e) and ∆e = β−|g′s|2/ (2∆e) = ωs+∆f−|g′s|2/∆e.
For both full cases, we have assumed ∆e = 200g′s. In all plots, we have assumed that γg = γ/2, κ = 2γ/3, ΩMW =

√
2∆f ,

rp = 3, and θp = π. Moreover, the initial state of the atoms is (I − |ψ−〉〈ψ−|) /3 and the cavity was initially in the vacuum.

To understand this process better, we can follow the same method as above, but now with the Hamiltonian in
Eq. (S80). Thus, we find the effective Hamiltonian and Lindblad operators as follows:

H ′eff = ∆′f (I/2− |φ+〉〈φ−|+ H.c.) + ΩMW (|ψ+〉〈φ+|+ H.c.) , (S84)

L′g1,eff = r′g
[
(|ψ+〉+ |ψ−〉)

(
γ′eff,0〈ψ+|+ γ′eff,2〈ψ−|

)
+ γ′eff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)

]
, (S85)

L′g2,eff = − r′g
[
(|ψ+〉 − |ψ−〉)

(
γ′eff,0〈ψ+| − γ′eff,2〈ψ−|

)
+ γ′eff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)

]
, (S86)

L′f1,eff = r′f
[
(|φ+〉 − |φ−〉)

(
γ′eff,0〈ψ+|+ γ′eff,2〈ψ−|

)
+ γ′eff,1 (|ψ+〉 − |ψ−〉) (〈φ+|+ 〈φ−|)

]
, (S87)

L′f2,eff = − r′f
[
(|φ+〉 − |φ−〉)

(
γ′eff,0〈ψ+| − γ′eff,2〈ψ−|

)
+ γ′eff,1 (|ψ+〉+ |ψ−〉) (〈φ+|+ 〈φ−|)

]
, (S88)

L′as,eff = r′as

[
κ′eff,1|ψ−〉 (〈φ+|+ 〈φ−|)−

1√
2
κ′eff,2 (|φ+〉 − |φ−〉) 〈ψ−|

]
. (S89)

Here,

∆′f = ∆f −
|gs|2

2∆e
, (S90)

r′g(f) = exp(−iβt)
Ω
√
γg(f)

4γ
, (S91)

r′as = exp(−iβt) Ω

2
√
γ
, (S92)
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and

γ′eff,0 =
1

∆̃′e
, (S93)

γ′eff,m =
ω̃′s,m

ω̃′s,m∆̃′e,m−1 −mCs
, (S94)

κ′eff,m =

√
mCs

ω̃′s,m∆̃′e,m−1 −mCs
(S95)

where

∆̃′e = (∆e + ∆f − β) /γ − i/2, (S96)

ω̃′s,m =

[
ωs +m

(
∆f −

|g′s|2

∆e

)
− β

]
/κ− i/2, (S97)

∆̃′e,m−1 =

[
∆e − β + (m− 1)

(
∆f −

|g′s|2

∆e

)]
/γ − i/2, (S98)

for m = 1, 2. Upon using the modified parameter, given in Eq. (S83), we obtain ∆̃′e ∼ ω̃′s,m ∼ ∆̃′e,m−1 ∼ −i/2.
This implies that the dynamics is the same as what we have already described for the simplified system without the
counter-rotating terms, thereby leading to the same entanglement infidelity. To confirm this, we perform numerical
calculations, as shown in Fig. S3. Specifically, we plot the entanglement infidelity as a function of rescaled time. Solid
curves indicate the results obtained by integrating the effective master equation, whereas dashed and dashed-dotted
curves reveal the predictions of the full master equation, respectively, with modified and unmodified detunings. These
results demonstrate that the detrimental effects of the counter-rotating terms can be strongly suppressed by modifying
external parameters, in particular, as what we have discussed above, for the case of weak Ω driving strengths, which
are necessary for the validity of the perturbative treatment used in our approach.
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