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I. TIME-INDEPENDENT HAMILTONIAN
ENSEMBLE

In the following, we elaborate in detail the proof
that classical bipartite correlations allow for a time-
independent Hamiltonian ensemble decomposition of the
reduced system dynamics. In this proof, we do not as-

sume a specific form of the total Hamiltonian ĤT. To
be precise, we now show that, if the total Hamiltonian

ĤT is time-independent, and if, for every initial state
of the form ρT,0 = ρS,0 ⊗

∑
j pj |j〉〈j| (with {pj} be-

ing any time-independent probability distribution), the

time-evolved total state ρT(t) = Û(t)ρT,0Û
†(t) is always

classically correlated between system and environment,
displaying neither quantum discord nor entanglement at
any time, then the reduced system dynamics admits a
time-independent Hamiltonian ensemble decomposition.

Proof. Due to the zero-discord assumption, there exists
an environmental basis {|k〉} (in general time-dependent
and different from {|j〉}), such that

ρT(t) =
∑
k,j

pjÊk,jρS,0Ê
†
k,j ⊗ |k〉〈k|, (1)

where Êk,j = 〈k|Û(t)|j〉 are operators acting on the sys-

tem Hilbert space satisfying
∑
k Ê
†
k,jÊk,j = Î for each

j. At this point, we are not yet clear about the time-

dependence of Êk,j and |k〉 nor the unitarity of Êk,j .
Crucially, the condition∑

j

pjÊk,jρS,0Ê
†
k′,j = 0 (2)

should hold for any k 6= k′, due to the zero-discord

assumption. Therefore each term Êk,jρS,0Ê
†
k′,j in the

above equation vanishes individually. The only possi-
bility to reconcile Eqs. (1) and (2) is the existence of
a specific bijection between {|j〉} and {|k〉}, such that

Êk,j = Êkj′ ,jδj,j′ for each j, i.e., Êk,j is non-zero only
when its two indices match the bijection. Then the uni-

tarity of Êkj ,j can then be confirmed according to∑
k

Ê†k,jÊk,j = Ê†kj ,jÊkj ,j = Î , ∀ j. (3)

The bijection between {|j〉} and {|k〉} can be ex-

pressed in terms of a unitary operator Û(t), such that

〈kj′ |Û(t)|j〉 = δj,j′ . The unitary evolution operator can
then be recast in a separable form,

Û(t) =
∑
j

Êj(t)⊗ Û(t)|j〉〈j|. (4)

In the following discussion, we can, in order to keep the
notation simple, safely neglect the index k.

Since {Û(t) = exp[−iĤTt/~]|t ∈ R} forms a group iso-
morphism on R, we have the one-parameter group prop-
erty

Û(t+ δt) = Û(t)Û(δt) (5)

for t ∈ R and infinitesimal δt. Due to the unitarity of

Û(t), it can be expressed in terms of an Hermitian gen-

erator L̂(t) in the u(dimHE) Lie algebra on the environ-

mental Hilbert spaceHE such that Û(t) = exp[−iL̂(t)/~].
Together with Eq. (4), the left hand side of Eq. (5) can
be written as

Û(t+ δt) =
∑
j

Êj(t+ δt) (6)

⊗

[
Û(t) +

∂Û(t)

∂t
δt+O(δt2)

]
|j〉〈j|.

On the right hand side of Eq. (6), we expand Û(t + δt)
around t to first order in δt. Notably, since we do not

know the time-dependence and commutativity of L̂(t) at
this point, we can only achieve a formal expansion in
Eq. (6).

Meanwhile, the right hand side of Eq. (5) reads

Û(t)Û(δt) =
∑
j′,j

Êj′(t)Êj(δt)⊗ Û(t)

[
|j′〉〈j|δj′,j (7)

− i
~
|j′〉〈j′|∂L̂(0)

∂t
|j〉〈j|δt+O(δt2)

]
.

We again expand Û(δt) around t = 0. However, unlike
the formal expansion in Eq. (6), we now obtain an explicit

expansion in Eq. (7), since Û(0) = Î commutes with any
operator.

Comparing Eqs. (6) and (7), we conclude from their

first terms that the group property Êj(t + δt) =



2

Êj(t)Êj(δt) holds and, combined with the unitarity in-
ferred in Eq. (3), that time-independent Hermitian oper-

ators Ĥj exist, such that Êj(t) = exp[−iĤjt/~], as well.
To reconcile the second terms of Eqs. (6) and (7),

∂L̂(0)/∂t should be diagonalized in the basis {|j〉}, such

that ∂L̂(0)/∂t =
∑
j(∂θj(0)/∂t)|j〉〈j|, with real parame-

ters θj(t). Moreover, Û(t) should satisfy

∂Û(t)

∂t
= Û(t)

[
− i
~
∂L̂(0)

∂t

]
. (8)

To guarantee its validity, ∂L̂(0)/∂t should commute with

L̂(t), since the latter is the generator of Û(t). Conse-
quently, the time-dependence of each θj(t) can be of first

order, such that Û(t) =
∑
j exp[−i(θjt/~)]|j〉〈j|, with

real constants θj . �

Consequently, the total state in Eq. (1) can be rewrit-
ten as

ρT(t) =
∑
j

pjÛjρS,0Û
†
j ⊗ |j〉〈j|, (9)

with Ûj = exp[−iĤjt/~], which corresponds to a time-

independent Hamiltonian ensemble {(pj , Ĥj)} when trac-
ing over the environment.

Finally, let us remark that, while we restrict our-
selves to a time-independent total Hamiltonian, some of
our conclusions can be easily generalized to the time-
dependent case. This is because Eqs. (1-4) are conse-
quences of the zero-discord assumption alone, regardless
of the time-dependence of the total Hamiltonian. There-
fore, we can also achieve the ensemble form with time-
varying member Hamiltonians for a time-dependent total
Hamiltonian. However, as discussed in the main article,
in the case of autonomous system-environment arrange-
ments, i.e., in the absence of external control, such gen-
eralization appears unjustified.

Additionally, we note that, for the case of time-
independent total Hamiltonians, the separable form (4)
not only guarantees a persistently classically correlated
total state, but also keeps the environmental basis intact
without rotation, up to a phase angle θjt.

II. POSITIVE DEFINITENESS

Here, we present the proof of the positive definiteness
of the dephasing factor φ(t) = exp [iω0t− Φ(t)]. For
completeness, we recall the definition of positive definite-
ness.

Positive definiteness: A function f defined on R is
called positive definite if it satisfies∑

j,k

f(tj − tk)zjz
∗
k ≥ 0 (10)

for any finite number of pairs {(tj , zj)|tj ∈ R, zj ∈ C}.

We now show that, if φ(t) = exp [iω0t− Φ(t)] defines a
CPTP pure dephasing dynamics, and if Φ(t) is even and
φ(−t) = φ(t)∗, then φ(t) defined on R is positive definite.

Note that φ(t) describing a CPTP pure dephasing dy-
namics implies that φ(0) = 1, Φ(0) = 0, and |φ(t)| ≤ φ(0)
for any t > 0. This means that the coherence of the sys-
tem can never exceed its initial value. These properties
will be frequently used in the following proof.

Proof. To simplify the problem, we first observe that
the positive definiteness of φ(t) is equivalent to that of
exp [−Φ(t)], since∑

j,k

φ(tj − tk)zjz
∗
k =

∑
j,k

exp [−Φ(tj − tk)]
(
eiω0tjzj

) (
eiω0tkzk

)∗
. (11)

Correspondingly, we can assume that ω0 = 0 without loss
of generality.

Since Eq. (10) must be valid for any number of pairs,
we give the proof in an inductive manner.

In the case of only one pair (t1, z1), Eq. (10) is trivially
satisfied. We therefore start with the case of two pairs.
As stated in the main article, Eq. (10) is equivalent to
the positive semidefiniteness of the Hermitian matrix:

M(2) =

[
1 exp [−Φ(t2 − t1)]

exp [−Φ(t1 − t2)] 1

]
. (12)

It is automatically satisfied according to the CPTP dy-
namics defined by φ(t).
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FIG. 1. A geometric visualization of Eq. (14). a and b can be
considered as two sides of a triangle with angle θ and circum-
circle (dashed circle) of diameter 2r less than 1. They are all
enclosed in the circle (solid circle) of diameter 1.

We proceed to show the positive semidefiniteness of
the Hermitian matrix

M(3) =

 1 e−Φ2,1 e−Φ3,1

e−Φ1,2 1 e−Φ3,2

e−Φ1,3 e−Φ2,3 1

 , (13)

for the case of three pairs. In the above matrix, and
hereafter, the abbreviation Φj,k = Φ(tj − tk) has been
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FIG. 2. (a) If the angles between any two zj is less than π/2, the summation of all off-diagonal elements in array (15) is
positive. (b) To maximize the negative contributions of off-diagonal elements, we must choose appropriate zj , such that all the
relative arguments strictly exceed π/2. (c) In the case of four pairs, it is impossible to insert the fourth z4 such that all relative
arguments are strictly larger than π/2.

adopted. Since M(3) is three-dimensional, it is generi-
cally hard to write down an analytic expression for its
three eigenvalues λµ. Nevertheless, analyzing its charac-
teristic polynomial gives us substantial knowledge on the
eigenvalues:

(i) λ1 + λ2 + λ3 = 3 ≥ 0 follows from the invariance of
the trace.

(ii) λ1λ2 +λ2λ3 +λ3λ1 equals to the sum of all principal
minors of M(3) of order 2 and is consequently non-
negative, since each principal minor is non-negative,
following the positive semidefiniteness of M(2).

(iii) λ1λ2λ3 = det
(
M(3)

)
. The positivity of the product

of eigenvalues is verified with the help of a simple
geometric visualization shown in Fig. 1. Explicitly
expanding the determinant leads to

det
(
M(3)

)
=
(
1− cos2 θ

)
−
(
a2 + b2 − 2ab cos θ

)
= sin2 θ − c2, (14)

with the notation cos θ = exp [−Φ3,2], a =
exp [−Φ2,1], and b = exp [−Φ3,1]. This can be in-
terpreted in terms of a triangle with circumcircle
(dashed circle) of diameter 2r less than 1. With the
help of c/ sin θ = 2r, the positivity of Eq. (14) and,
consequently, of the product of eigenvalues is then
inferred.

Combining (i)-(iii), we can conclude that the three
eigenvalues are non-negative each and, therefore, that
M(3) is positive semidefinite.

Before proceeding to the case of four pairs, it is worth-
while to discuss how the minimum of Eq. (10) is achieved.
For the case of three pairs, the LHS of Eq. (10) is equiva-
lent to the summation over entries in the following array:

|z1|2 e−Φ2,1z2z
∗
1 e−Φ3,1z3z

∗
1

e−Φ1,2z1z
∗
2 |z2|2 e−Φ3,2z3z

∗
2

e−Φ1,3z1z
∗
3 e−Φ2,3z2z

∗
3 |z3|2

. (15)

If we first determine the amplitudes |zj | and adjust their
arguments and tj , it is clear that the diagonal elements in
the array (15) are all positive and, to reduce the resulting
summation, the possible negative contributions are given
by the off-diagonal elements. If we choose three pairs
such that the angles between any two zj within them
is less than π/2, as show in Fig. 2(a), the summation
of all off-diagonal elements is positive. Therefore, we
must choose appropriate pairs such that all their relative
arguments strictly exceed π/2, as show in Fig. 2(b). To
maximize the negative contributions, we assume t1 =
t2 = t3 and exp [−Φj,k] = 1. We therefore draw the
conclusion that

∑
j,k f(tj − tk)zjz

∗
k ≥ |z1 + z2 + z3|2 for

the case of maximized relative arguments between three
zj .

However, in the case of four pairs, it is impossible to
insert the fourth z4 such that all relative arguments are
strictly larger than π/2, as shown in Fig. 2(c). According
to the above discussion, to deal with the array of four
pairs,

|z1|2 e−Φ2,1z2z
∗
1 e−Φ3,1z3z

∗
1 e−Φ4,1z4z

∗
1

e−Φ1,2z1z
∗
2 |z2|2 e−Φ3,2z3z

∗
2 e−Φ4,2z4z

∗
2

e−Φ1,3z1z
∗
3 e−Φ2,3z2z

∗
3 |z3|2 e−Φ4,3z4z

∗
3

e−Φ1,4z1z
∗
4 e−Φ2,4z2z

∗
4 e−Φ3,4z3z

∗
4 |z4|2

, (16)

we can at most group three zj with all three relative
arguments strictly larger than π/2 by setting their cor-
responding tj equal. Then the array (16) reduces to a
simpler one:

|z1 + z2 + z3|2 e−Φ4,1z4(z1 + z2 + z3)∗

e−Φ1,4(z1 + z2 + z3)z∗4 |z4|2
. (17)

Again, in accordance with the positive semidefiniteness
ofM(2), we can guarantee the validity of Eq. (10) for the
case of four pairs.

For the case of five or more pairs, a similar procedure
can be applied to continuously reduce the problem to an
equivalent M(2) or M(3) case. This implies the validity
of Eq. (10) for the general case. �
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Let us remark that the above proof already indicates
the general impossibility of a Hamiltonian ensemble de-
scription for arbitrary pure dephasing dynamics. Many
conclusions in the above proof hold since the phase angle
of φ(t) is directly proportional to time t. This is particu-
larly manifest in Eq. (11). However, this is in general not
the case, e.g., in the extended spin-boson model below.
We consequently may obtain invalid (or quasi-) distribu-
tions in the extended spin-boson model.

III. EXTENDED SPIN-BOSON MODEL

We proceed with the details of the extended spin-boson
model, which consists of two qubits coupled to a com-
mon boson environment. The system and the interac-
tion Hamiltonian of the conventional spin-boson model
are thus replaced by

ĤS =
∑
j=1,2

~ωj
2
σ̂z,j ,

ĤI =
∑
j,~k

σ̂z,j ⊗ ~(gj,~k b̂
†
~k

+ g∗
j,~k
b̂~k). (18)

Note that the two qubits do not interact with each other
directly. Let us remark that, while we consider two qubits
here, our treatment can straightforwardly be generalized
to more than two qubits.

Transforming to the interaction picture with respect

to ĤS + ĤE, the total system evolves according to the
unitary evolution operator

Û I(t) = T

exp

−i∫ t

0

∑
~k

Ẑ~k b̂
†
~k
(τ) + Ẑ†~k

b̂~k(τ)dτ

 ,

(19)

where T is the time-ordering operator, Ẑ~k =∑
j=1,2 gj,~kσ̂z,j , and b̂~k(t) = e−iω~ktb̂~k, respectively. In

the conventional spin-boson model with a single qubit,
time-ordering T plays no significant role, since it merely
introduces a global phase to the unitary evolution oper-
ator. However, this is not the case for extended models
with more than one qubit, where one must carefully deal
with the effect of time-ordering T . We therefore have

Û I(t) = exp

−i ∫ t

0

∑
~k

Ẑ~ke
iω~kτ b̂†~k

dτ

× Â(t), (20)

with

Â(t) = T
{

exp

[
−i
∫ t

0

dτ
(
ei

∫ τ
0

∑
~k
Ẑ~k b̂

†
~k

(s)ds
)

(21)

×
∑
~k

Ẑ†~k
e−iω~kτ b̂~k

(
e−i

∫ τ
0

∑
~k
Ẑ~k b̂

†
~k

(s)ds
) .

By using the prescription eβb̂
†
b̂e−βb̂

†
= b̂−β, the operator

Â(t) can be recast into

Â(t) = exp

−i ∫ t

0

dτ
∑
~k

Ẑ†~k
e−iω~kτ

×
(
b̂~k − i

∫ τ

0

Ẑ~ke
iω~ksds

)]

= exp

−i ∫ t

0

∑
~k

Ẑ†~k
e−iω~kτ b̂~kdτ

× B̂(t). (22)

with

B̂(t) = exp

−∫ t

0

∫ τ

0

∑
~k

Ẑ~kẐ
†
~k
e−iω~k(τ−s)dsdτ

 . (23)

Given that both Â and B̂ commute with
[
Â, B̂

]
, they

satisfy eÂeB̂ = e[Â,B̂]/2eÂ+B̂ . Then Û I(t) can easily be
calculated:

Û I(t) = exp

1

2

∫ t

0

∫ t

0

∑
~k

Ẑ~kẐ
†
~k
eiω~k(τ−s)dsdτ


× exp

−i ∫ t

0

∑
~k

Ẑ~k b̂
†
~k
(τ) + Ẑ†~k

b̂~k(τ)dτ

× B̂(t)

= exp

i∑
~k

Ẑ~kẐ
†
~k

(
ω~kt− sinω~kt

ω2
~k

)
× exp

∑
~k

Ẑ~kα~k(t)b̂†~k
− Ẑ†~kα

∗
~k
(t)b̂~k

 , (24)

where α~k(t) = −i
∫ t

0
eiω~kτdτ =

(
1− eiω~kt

)
/ω~k.

Assuming the direct-product initial state

ρT(0) = ρ1(0)⊗ ρ2(0)⊗ ρE(0), (25)

the reduced dynamics of qubit-1, which we now consider
to be our system, can be obtained by

ρI
1(t) = Tr2,E

[
Û I(t)ρT(0)Û I†(t)

]
. (26)

The superscript I reminds that the dynamics is formu-
lated in the interaction picture. One can easily show
that the reduced dynamics of each qubit describes pure
dephasing. We can thus apply the same method for con-
structing a Hamiltonian ensemble as for the conventional
spin-boson model. We therefore focus on the time evo-
lution of the off-diagonal element of qubit-1, which is
written as

ρI
1,↓↑(t) = ρ1,↓↑(0)

(
ρ2,↑↑(0)φ(X)(t) + ρ2,↓↓(0)φ(X)∗(t)

)
,

(27)
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where ρ1,↓↑(0), ρ2,↑↑(0), and ρ2,↓↓(0) are the initial condi-

tions for the two qubits and the dephasing factor φ(X)(t)
is written as

φ(X)(t) = e−i2(θ1,2(t)+θ2,1(t))〈
∏
~k

D̂†~k,+
(t)D̂†~k,−

(t)〉, (28)

where

θj,j′(t) =
∑
~k

gj,~kg
∗
j′,~k

(
ω~kt− sinω~kt

ω2
~k

)

=

∫ ∞
0

Jj,j′(ω)

ω2
(ωt− sinωt) dω, (29)

Jj,j′(ω) =
∑
~k gj,~kg

∗
j′,~k

δ(ω − ω~k) are the spectral density

functions, and

D̂~k,+(t) = exp
[(
g1,~k + g2,~k

)
α~k(t)b̂†~k

−
(
g1,~k + g2,~k

)∗
α∗~k(t)b̂~k

]
D̂~k,−(t) = exp

[(
−g1,~k + g2,~k

)
α~k(t)b̂†~k

−
(
−g1,~k + g2,~k

)∗
α∗~k(t)b̂~k

]
(30)

represent the displacement operators, respectively.
The coupling constants gj,~k of the two qubits to the

boson environment are in general complex numbers. In
order to reveal the nonclassical effects caused by their
relative phase, we assume, for simplicity, that they have
the same amplitude, but with a phase difference:

g2,~k = g1,~k exp[iϕ]. (31)

For a thermalized environment at temperature T , the

two prescriptions exp
(
αb̂† − α∗b̂

)
exp

(
βb̂† − β∗b̂

)
=

exp [(αβ∗ − α∗β) /2] exp
[
(α+ β)b̂† − (α+ β)∗b̂

]
and

〈exp
(
αb̂† − α∗b̂

)
〉 = exp

[
− coth(~ω/2kBT )|α|2/2

]
, are

helpful for calculating the desired result

φ(X)(t) = exp [−iϑϕ(t)− Φ(t)] , (32)

where

ϑϕ(t) = cosϕ

∫ ∞
0

4J (ω)

ω2
(ωt− sinωt)dω (33)

+sign(t) sinϕ

∫ ∞
0

4J (ω)

ω2
(1− cosωt)dω,

J (ω) =
∑
~k |gj,~k|

2δ(ω − ω~k) is the spectral density func-

tion, and

Φ(t) =

∫ ∞
0

4J (ω)

ω2
coth

(
~ω

2kBT

)
(1− cosωt)dω (34)

is the same as the one in the conventional spin-boson
model. In the second line of Eq. (33), we have manually
inserted sign(t). While this does not affect the pure de-
phasing dynamics for t ≥ 0, it ensures that the condition
φ(X)(−t) = φ(X)∗(t) is satisfied and one always obtains a
real distribution ℘(X)(ω).

The presence of ϑϕ(t) in Eq. (32) will in general re-
sult in the violation of positivity. Note that, similar to
the conventional spin-boson model, individual member
Hamiltonians in the Hamiltonian ensemble must be of
the form ωσ̂z/2, which allows us to follow the same line
of argument.

IV. OHMIC SPECTRAL DENSITY

To demonstrate the violation of positivity explicitly,
we consider the Ohmic spectral density function

Jo1(ω) = ω exp(−ω/ωc), (35)

and the zero temperature limit where T → 0. For sim-
plicity, we also assume a degenerate system Hamiltonian.

In the case of conventional spin-boson model, the de-
phasing factor is

φo1(t) =
1

(1 + ω2
c t

2)
2 , (36)

and the corresponding distribution is

℘o1(ω) =
1

4ω2
c

(ωc + |ω|) exp[−|ω|
ωc

]. (37)

This is obviously a legitimate probability distribution
without negative values. The results are shown in
Fig. 2(a) of the main article. Consequently, the Hamil-
tonian ensemble {(ωσ̂z/2, ℘o1(ω))} resembles the same
pure dephasing dynamics of the conventional spin-boson
model characterized by φo1(t). As expected, ℘o1(ω) is,
due to the degeneracy of the system Hamiltonian, cen-
tered at ω = 0, and broadens with increasing ωc.

Whereas, for the extended model, the dephasing factor
reads

φ
(X)
o1 (t) =

exp [−i4 cosϕ (ωct− arctan(ωct))]

(1 + ω2
c t

2)
2(1+isign(t) sinϕ)

. (38)

Since the condition φ
(X)
o1 (−t) = φ

(X)∗
o1 (t) is fulfilled, the

corresponding distribution ℘
(X)
o1 (t) is real. However, the

positivity of ℘
(X)
o1 (t) is in general lost due to the presence

of the nontrivial phase angle ϑϕ(t). The results are show
in Fig. 2(b) and (c) of the main article.
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