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We analyze the disorder-perturbed transport of quantum states in the absence of backscattering. This
comprises, for instance, the propagation of edge-mode wave packets in topological insulators, or the
propagation of photons in inhomogeneous media. We quantify the disorder-induced dephasing, which we
show to be bound. Moreover, we identify a gap condition to remain in the backscattering-free regime
despite disorder-induced momentum broadening. Our analysis comprises the full disorder-averaged
quantum state, on the level of both populations and coherences, appreciating states as potential carriers of
quantum information. The well-definedness of states is guaranteed by our treatment of the nonequilibrium
dynamics with Lindblad master equations.
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Introduction.—Among the most distinct characteristics
of topological insulators are the existence of chiral edge
modes and their robust transport behavior, reflected by the
absence of backscattering even in the presence of disorder.
Their remarkable features make them potential candidates
for technological innovations such as, for example, elec-
tronic devices with low power consumption, or, in combi-
nation with an inherent spin-current correlation, spintronics
devices (for reviews on topological insulators, see
Refs. [1,2] and references therein).
Their robust transport properties render topological

insulators also attractive for more advanced applications,
e.g., in quantum information processing. In analogy to
photonic systems, possible applications could, for instance,
encode quantum information in sequences of subsequently
propagating edge states. Such schemes have been success-
fully employed for quantum communication tasks [3,4],
and can allow for universal quantum computation with
basic linear optics elements [5].
While edge states are insensitive to disorder in their

transport properties, they are, however, not immune to
disorder effects when it comes to dephasing, reflected by a
disorder-induced deformation of states. This poses a
potential obstacle to their successful deployment as carriers
of quantum information, where processing units, such as
beam splitters, ideally require modes that perfectly coincide
when matched. The harnessing of topological insulators
(and alike systems) for such purposes thus requires a
careful analysis of disorder-induced dephasing and its
consequences. The same holds for photons, which fluctuate
when propagating in an inhomogeneous medium.
In this Letter, we conduct such analysis. To this end, we

solve the disorder-perturbed time evolution of backscatter-
ing-freely propagating quantum states. This is achieved by
employing the recently established treatment of disordered
quantum systems with Lindblad master equations [6–9]. It
covers the disorder impact on the level of both the

populations and coherences of the disorder-averaged state,
as required for a statistically robust dephasing analysis; at the
same time, it certifies that the quantum evolution is at all
times well defined and physical [10,11]. We quantify the
disorder-induced, spatiotemporal dephasing behavior, which

FIG. 1. Disorder-induced dephasing in backscattering-free
propagation. (a) Quasiclassical representation of skipping orbits
in a quantumHall sample in the presence of a strongmagnetic field.
Because of the directional Lorentz-force bending of the orbits,
obstacles or impurities cannot reverse the direction of motion.
(b) Generic band model of a topological insulator. Edge modes
exist in the bulk band gap of widthΔ. To propagate backscattering-
free, edge mode wave packets must remain confined in the gap
region. (c) and (d)Decoherence cone describing the spatiotemporal
dephasing behavior of the disorder-averaged quantum state
[cf. Eq. (3)]. Coherences within the cone remain unaffected,
outside they decay. Values in (c) increase from 0 (violet).
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results in a bounded decay of the purity of the ensemble-
averaged state, and in a finite broadening of its momentum
distribution.While the former is relevant to assess the impact
of disorder on processing units, such as, e.g., beam splitters,
the latter allows us to formulate a condition on the disorder
for edge states, on the basis that the latter should remain
confined in the backscattering-free bulk band gap.
Effective evolution.—We consider the backscattering-

free propagation of a single, spinless quantum particle in
one dimension. This describes, for example, the propaga-
tion of edge mode wave packets along the edge in a 2D
sample (Fig. 1). In order to keep our analysis generic, we do
not model internal or transversal degrees of freedom, or the
mechanism for the robustness. In the case of chiral edge
modes (which typically decay exponentially into the bulk),
the latter is of topological origin, resulting in the nonexist-
ence of counterpropagating modes [1,2]. The characteriz-
ing feature is a unidirectional drift, even in the presence of a
(weak) disorder potential. If the disorder strength exceeds a
tolerance threshold, however, backscattering sets in. In the
case of chiral edge modes, this would be if the state is
scattered into the bulk [Fig. 1(b)]; in the case of photons, it
occurs at the interface between two optically distinct media.
We assume that the drift velocity v is, to leading order,

constant. This is usually an excellent approximation, and in
some generic model systems even exact [1,2,12]. On the
level of the time evolution, such constant drift is captured
by translation operators, or, in terms of the Hamiltonian, by
their generators, (quasi-)momentum operators, giving rise
to the Hamiltonian Ĥε ¼ vp̂þ Vεðx̂Þ, with x the direction
along the edge and v > 0. The (multi-)index ε labels
different disorder realizations, occurring with probability
pε (for simplicity we write integrals throughout, e.g.,R
dεpε ¼ 1).
The disorder potential Vεðx̂Þ ¼

R
∞
−∞ dxVεðxÞjxihxj may

be homogeneous on average, displaying translation-
covariant two-point correlations,

R
dεpεVεðxÞVεðx0Þ≡

Cðx − x0Þ ¼ R∞
−∞ dqeði=ℏÞqðx−x0ÞGðqÞ, characterized by the

momentum transfer distributionGðqÞ (see also Refs. [6,8]).
For simplicity, the disorder potential may, in addition,
vanish on average,

R
dεpεVεðxÞ ¼ 0; i.e., the average

Hamiltonian is given by ˆ̄H ≡ R
dεpεĤε ¼ vp̂. We assume

that the disorder potential is weak, in the sense that, due to
the drift, positive and negative potential variations rapidly
compensate. This will become clear below.
The dynamics of the disorder-averaged state ρ̄ðtÞ ¼R
dεpεe−ði=ℏÞĤεtρ0eði=ℏÞĤεt is not characterized by a

Hamiltonian alone, but must, in general, be described by
a quantum master equation [6–8]. In Ref. [8], a Lindblad
master equation for general disorder configurations, which
is perturbative to second order in the disorder potential, is
derived and applied to the disorder-perturbed propagation
in parabolic bands. Here, we evaluate it for the back-
scattering-free propagation of chiral edge states, subject to
a weak, homogeneous disorder potential. We obtain

∂tρ̄ðtÞ ¼ −
i
ℏ
½ĤeffðtÞ; ρ̄ðtÞ�

þ
X

α∈f�1g

2α

ℏ2

Z
∞

−∞
dq GðqÞ

Z
t

0

dt0L(L̂ðαÞ
q;t0 ; ρ̄ðtÞ);

ð1aÞ

where LðL̂; ρÞ≡ L̂ρL̂† − 1
2
L̂†L̂ρ − 1

2
ρL̂†L̂. Note that we

have already absorbed the disorder integral in the corre-
lation function and exploited the translation invariance of
the latter, giving rise to a reformulation in terms of the
momentum transfer distributionGðqÞ (see also Refs. [6,8]).
The effective Hamiltonian HeffðtÞ ¼ H†

effðtÞ and Lindblad

operators L̂ðαÞ
q;t are given by

ĤeffðtÞ ¼ ˆ̄H −
i
2ℏ

Z
∞

−∞
dq GðqÞ

Z
t

0

dt0½V̂q; ~̂V−qðt0Þ�;

L̂ðαÞ
q;t ¼

1

2
½V̂q þ α ~̂VqðtÞ�; ð1bÞ

where V̂q ¼ eði=ℏÞqx̂ (describing momentum kicks) and
~̂VqðtÞ ¼ e−ði=ℏÞ

ˆ̄HtV̂qeði=ℏÞ
ˆ̄Ht. Note that the Lindblad oper-

ators L̂ðαÞ
q;t are not Hermitian, in contrast to the Lindblad

operators L̂ðαÞ
ε;t of the general master equation [8].

Since we have not yet specified ˆ̄H in Eq. (1), it still
describes propagation in homogeneous disorder for arbi-

trary kinetic terms. With ˆ̄H ¼ vp̂, one obtains ~̂VqðtÞ ¼
eði=ℏÞqx̂e−ði=ℏÞvqt; i.e., V̂q is merely modified by a time- and
momentum-dependent phase factor. In this case, Eq. (1) can
be significantly simplified, resulting in a manifestly trans-
lation-covariant master equation [13–16]:

∂tρ̄ðtÞ ¼ −
i
ℏ
½vp̂; ρ̄ðtÞ�

þ
Z

∞

−∞
dq

2tGðqÞ
ℏ2

sinc

�
qvt
ℏ

�
fei

ℏqx̂ρ̄ðtÞe− i
ℏqx̂ − ρ̄ðtÞg:

ð2Þ

A similar master equation is familiar from the context of
collisional decoherence, there, however, with time-constant
decoherence rates [17,18]. Here, we obtain temporally
oscillating rates, which, as we show next, give rise to a
substantially refined spatiotemporal, disorder-induced
dephasing behavior. In particular, and in contrast to the
short-time limit discussed in Ref. [6], the disorder-induced
dephasing remains bounded.
The master equation (2) can be solved exactly and the

solution reads, in the position representation [Gð−qÞ¼GðqÞ],

hxjρ̄ðtÞjx0i ¼ hx − vtjρ0jx0 − vti exp ½−F̄tðx − x0Þ�; ð3aÞ

with the disorder influence summarized by
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F̄tðxÞ ¼
t2

ℏ2

Z
dq GðqÞsinc2

�
qvt
2ℏ

��
1 − cos

�
qx
ℏ

��
: ð3bÞ

We emphasize that this solution holds for arbitrary initial states
ρ0 and arbitrary correlations CðxÞ. It describes the drift of the
initial state with velocity v, along with a spatiotemporally
resolved decay of the coherences, following the pattern of a
decoherence cone [Figs. 1(c) and 1(d)]. Colloquially speaking,
the coherence loss between two points scales with their spatial
separation Δx, terminating after vt > Δx. Concretely, for
Gaussian correlations,

CðxÞ ¼ C0 exp

�
−
�
x
l

�
2
�
; ð4Þ

where l denotes the correlation length, one obtains, with
GðqÞ≡ 1

2πℏ

R∞
−∞dxe−ði=ℏÞqxCðxÞ¼ C0l

2
ffiffi
π

p
ℏe

−1
4
ðql=ℏÞ2 , the disorder

influence F̄tðxÞ ¼ ðC0l2=ℏ2v2Þf2f̄ðvt=lÞ þ 2f̄ðx=lÞ−
f̄ð½x − vt�=lÞ − f̄ð½xþ vt�=lÞ − 2f̄ð0Þg, with f̄ðxÞ ¼
x erfðxÞ þ ðe−x2= ffiffiffi

π
p Þ.

We focus here on Gaussian correlations, since they may
be used generically to model many physical situations.
Other correlation behavior is also conceivable, for instance,
of the Ornstein-Uhlenbeck type. In the limit of vanishing
correlation length, as described by δ correlations, CðxÞ ¼
C0δðxÞ, with GðqÞ ¼ C0=2πℏ, one obtains F̄ðδÞ

t ðxÞ¼
ðC0=v2ℏ2Þ½jvtjΘðjxj−jvtjÞþjxjΘðjvtj−jxjÞ�, with ΘðxÞ
the unit-step function.
Often it is convenient to work in quantum phase space

[8,19]. In terms of the characteristic function χ̄tðs; qÞ ¼R
dxdp e−ði=ℏÞðqx−psÞW̄tðx; pÞ of the Wigner function

W̄tðx;pÞ¼ð1=2πℏÞR dx0eði=ℏÞpx0 hx−ðx0=2Þjρ̄ðtÞjxþðx0=2Þi,
the solution then reads χ̄tðs; qÞ ¼ χ0ðs; qÞe−ði=ℏÞqvte−F̄tðsÞ.
In the remainder, we often assume, to be generic,

Gaussian initial states: ψ0ðxÞ ¼ exp ½− 1
4
ðx=σÞ2þ

ði=ℏÞp0x�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

p
σ

p
, or, in phase space, χ0ðs; qÞ ¼

exp ½−ð1=8Þðs=σÞ2 − 1
2
ðqσ=ℏÞ2 þ ði=ℏÞp0s�. Note that,

here, p0 lacks its usual kinetic interpretation, as the spatial
displacement is completely determined by the drift velocity
v. Nevertheless, it determines the position of the wave
packet in the band [Fig. 1(b)].
Accordingly, the position expectation values, when

evaluated for Eq. (3), read hx̂iðtÞ ¼ vt, irrespective of
the presence of a disorder potential, and in contrast to
the propagation in a disordered parabolic dispersion band
[8]. Similarly, the position variance remains time invariant,
unaffected by both disorder and dispersion; in the case of
the above Gaussian initial state hðx̂ − hx̂iÞ2iðtÞ ¼ σ2.
However, as we will show below, a disorder-induced
broadening of the momentum distribution persists in
dispersion-free propagation.
Disorder-induced dephasing.—The same initial state

evolves differently in different disorder realizations, giving

rise to disorder-induced dephasing. The latter is reflected
by a loss of purity of the disorder-averaged state as
compared to the initial state. This purity can thus be
employed to assess the disorder-induced divergence among
states, or, for that matter, to assess the deviation of disorder-
perturbed states from the unperturbed evolution, this way
quantifying the disorder impact.
If we evaluate the purity rðtÞ≡ Tr½ρðtÞ2� for the solution

(3), a Gaussian initial state, and Gaussian correlations
(4), we obtain rðtÞ¼1−ð2l2C0=v2ℏ2Þf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðσ=lÞ2

p
×

½1−e−ðvtÞ2=ðl2þ4σ2Þ�− ½1−e−ðvt=lÞ2 �þ ffiffiffi
π

p ðvt=lÞðerf½vt=l�−
erf½vt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ4σ2

p
�Þg, where we assumed small purity

losses. In the limit vt ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4σ2

p
, this reduces to

rðt ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4σ2

p
=vÞ ¼ 1 −

2l2C0

v2ℏ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�
σ

l

�
2

s
− 1

�
;

ð5Þ

i.e., the purity assumes a plateau value which is determined
by both the characteristics of the disorder and the initial state.
If σ ≪ l or σ ≫ l, Eq. (5) further simplifies to rðtÞ¼
1−ð4σ2C0=v2ℏ2Þ or rðtÞ¼1−ð4σlC0=v2ℏ2Þ, respectively.
We find that, in contrast to the disorder-perturbed

propagation in a parabolic band, which suffers an ongoing
purity loss due to the dispersive spreading of the wave
packet [8], the purity plateau remains stable in the con-
sidered case of constant drift. In combination with the
absence of backscattering, this (controllable) boundedness
of the disorder-induced dephasing renders these systems
promising as carriers of quantum information.
Note that, in the case of individual disorder realizations,

the wave packet fluctuates as it propagates along the
disorder potential. Comparing the wave packet at separa-
tions larger than the correlation length l, i.e., after the
memory of the disorder potential is lost, is then equivalent
to an ensemble average over different disorder realizations.
In this sense, ensemble average and evolution in a single
realization are connected by ergodicity.
For example, we now determine the impact of disorder

on the functioning of beam splitters [Fig. 2(a)]. The latter
are among the indispensable processing units in linear
optics, quantum computation, quantum communication,
and quantum foundations [3,5,20–23]. Their optimal oper-
ation, based on constructive and destructive interference in
the output arms (denoted as �), respectively, assumes
identical input states, where a phase shift φ in one input arm
may determine the output probabilities, i.e., in the idealized
case, prob�ðφÞ ¼ 1

2
ð1� sinφÞ (we assume balanced beam

splitters). If, realistically, the input states jψi and jψ 0i
slightly differ, e.g., due to different disorder histories,
one obtains the more general relation prob�ðφÞ ¼
1
2
ð1� Im½hψ jψ 0ieiφ�Þ. A disorder average then yields
¯prob�ðφÞ ¼ 1

2
ð1� ½ðrþ 1Þ=2� sinφÞ. We thus find that
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the purity loss of the disorder-averaged state quantifies the
detrimental deviation of the beam splitter operation from
the ideal case.
Gap condition.—In the case of topological insulators, a

prerequisite for backscattering-free propagation is that the
wave packets remain, in momentum space, contained in the
gap region, which is limited to a finite range in momentum
space. An energy gap Δ between the two bulk bands then
translates into a tolerable momentum range Δ=v, which
must not be exceeded due to disorder effects [Fig. 1(b)].
To assess the disorder-induced momentum broadening,

we evaluate the momentum variance hðΔp̂Þ2i≡hðp̂−hp̂iÞ2i
for the solution (3), yielding

hðΔp̂Þ2iðtÞ ¼ hðΔp̂Þ2i0 þ
4

v2

Z
∞

−∞
dq GðqÞ sin

�
qvt
2ℏ

�
; ð6Þ

with hðΔp̂Þ2i0 the momentum variance of the initial state. In
the case of Gaussian correlations and a Gaussian initial
state, Eq. (6) becomes hðΔp̂Þ2iðtÞ¼ðℏ2=4σ2Þþð2C0=v2Þ×
ð1−e−ðvt=lÞ2Þ, which saturates after t ≫ l=v. To remain at
all times within the gap region, we thus impose the gap
condition ðℏ2=4σ2Þ þ ð2C0=v2Þ < ðΔ2=v2Þ (assuming that
thewave packet is centered around the gap center). Note that
the average momentum, which indicates the position of the
wave packet in the band, is unaffected by the disorder; in the
case of the above Gaussian state, hp̂iðtÞ ¼ p0.

Cyclic operation.—Edge modes usually propagate in a
ring topology, where wave packets periodically return to
their initial position and thus, on intermediate time scales,
repeatedly encounter the same disorder realization. We can
model this situation with a periodic correlation function,
Cðxþ LÞ ¼ CðxÞ, where L denotes the ring circumference
(l ≪ L). This then results in a discrete momentum transfer
distribution GðqÞ, such that, as expected, the purity and the
momentum variance (indeed, the full momentum distribu-
tion, i.e., all moments) return to their initial, undisturbed
values whenever vt ¼ nL, with n ∈ Z. This suggests to
process states in the vicinity of their injection point.
In Fig. 2(b), we display the purity evolution for the

case of locally Gaussian, periodic correlations, CðxÞ ¼
C0

P
n∈Ze

−ðxþnLÞ2=l2 , with C0 ¼ 7.5 × 10−3ðvℏ=lÞ2 and
L ¼ 17l. To this end, we propagate Gaussian initial states
with (i) σ ¼ l, (ii) σ ¼ 2l, and (iii) σ ¼ 10l=3.We compare
the numerically exact evolution, averaged over 500 disorder
realizations, the prediction of the solution (3), and the
approximation (5). We find that our theory accurately
predicts the evolution of the disorder-averaged state. In all
three cases the purity undergoes full revivals after the state
completes a full cycle. The intermediate purity loss, on the
other hand, scales with the extension σ of the wave packet. If
the circumferenceL becomes comparable to thewave packet
extension, the revival sets in before the purity loss saturates,
as shown in case (iii).
Validity discussion.—To discuss the validity of the per-

turbative master equation (2) and its solution (3), we exploit
that the unitary time evolution of single realizations can be
solved exactly in the considered scenario, ρεðx; x0; tÞ ¼
ρ0ðx − vt; x0 − vtÞe−ði=ℏÞ

R
t

0
dt0½Vεðx−vtÞ−Vεðx0−vtÞ�. The disor-

der-averaged state, ρ̄ðx; x0; tÞ ¼ R
dεpερεðx; x0; tÞ, can then

be written as

ρ̄ðx; x0; tÞ ¼ ρ0ðx − vt; x0 − vtÞ

×

�
1 − F̄tðx − x0Þ þ

X∞
n¼3

RðnÞ
t ðx; x0Þ

�
; ð7aÞ

with the disorder influence F̄tðxÞ as in Eq. (3b) and the
remainder terms

Rt
ðnÞðx; x0Þ

¼ ð−i=ℏÞn
n!vn

Z
dεpε

�Z
vt

0

d~x½Vεðx − ~xÞ − Vεðx0 − ~xÞ�
�
n
:

ð7bÞ

Note that neglecting the remainder terms corresponds to a
standardBorn approximation of the state. Doing so, however,
the solution would fail to be a manifestly well-defined
quantum state. Instead, the solution (3) replaces the sum
of remainder terms with

P∞
n¼2ð1=n!Þ½−F̄tðx − x0Þ�n. Indeed,

if the disorder potential is described by a multivariate

FIG. 2. (a) Impact of disorder on the functioning of a beam
splitter. Optimal operation, based on constructive and destructive
interference in the output ports, presupposes identical input states
jψi and jψ 0i. If, due to different disorder histories of the state
components, the wave packets differ, interference in the output
ports is corrupted, resulting in detrimental leakage between the
ports. (b) Purity evolution in a closed loop of circumference
L ¼ 17l. Shown is the time evolution of the purity rðtÞ for a
Gaussian wave packet with (i) σ ¼ l, (ii) σ ¼ 2l, and
(iii) σ ¼ 10l=3. We compare the numerically exact evolution
of the state, averaged over 500 disorder realizations (black dots),
the prediction of the solution (3) for periodic correlations (purple
dashed curves), and the approximation (5) (red dotted lines).
While in all cases the purity fully recovers when the state
completes a full cycle, the intermediate purity loss scales with
the wave packet extension. In case (iii), the purity decay is
reversed before it reaches its saturation as predicted by Eq. (5).
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normal distribution (with two-point correlations Gaussian or

not), one obtains Rð2nþ1Þ
t ðx; x0Þ ¼ 0 and Rð2nÞ

t ðx; x0Þ ¼
ð1=n!Þ½F̄tðx − x0Þ�n, n ∈ Nþ. We thus find that, in that case,
Eq. (3) is not only the exact solution of the perturbativemaster
equation (2), but, indeed, the exact solution of the disorder-
averaged dynamics. In this sense, for general disorder
distributions, Eqs. (2),(3) can be considered as approxima-
tions in the deviations fromamultivariate normal distribution.
The spatial integral in the remanent terms (7b) is, for

vt ≫ l, independent of the velocity v and, due to the self-
averaging of the disorder potential, takes (after disorder
average) a plateau value when jx − x0j ≫ l and vt ≫ l.
Therefore, we can consider Eq. (7a) an expansion in 1=v,
and the perturbative solution (3) becomes the more accurate
the larger v. Note that, in contrast to propagation in a
parabolic band, where the number of backscattering events
limits the temporal validity of the perturbative master
equation [8], in the present case there is no such limitation.
Conclusions.—We investigated the disorder effects on

1D systems which display backscattering-free, dispersion-
less propagation. This was achieved by establishing the
Lindblad master equation (2), which captures the time
evolution due to the drift and its effects on the populations
and the coherences of the disorder-averaged state, as
revealed by its exact solution (3). We found that the
disorder-induced dephasing saturates, quantified by the
purity evolution (5), which can be seen as a consequence of
the conelike spatiotemporal decoherence behavior of the
propagating wave packets. This bounded purity loss, which
renders these systems attractive as carriers of quantum
information, stands in stark contrast to the ongoing purity
decay of the dispersively spreading wave packets in para-
bolic bands [8]. Moreover, we showed that, in loop
configurations, the purity revives after full cycles.
The purity of the disorder-averaged state provides us

with a statistically robust assessment of disorder effects on
the functioning of devices. We exemplified this with our
evaluation of disorder effects on beam splitters, which are
among the essential processing units in the linear handling
of spatial modes. Generally, we expect that our approach is
useful in order to assess disorder effects on the functioning
of quantum technologies that are based on backscattering-
free, dispersionless propagation, including, e.g., photons
[5,20] and graphene [24–30]. This also encompasses cases
where the dispersion exhibits higher-power momentum
contributions, if the linear component remains dominant.
The disorder-induced dephasing is accompanied by a

broadening of the momentum distribution which, in the
case of topological insulators, must not exceed the limits
imposed by the bulk band gap on the backscattering-free
propagation of the edge modes. This lead us to formulating
a gap condition on the disorder-induced momentum broad-
ening. While our approach is perturbative in the disorder
potential, we showed that, in the case of Gaussian variates,
it reproduces the exact ensemble dynamics, for arbitrary

disorder strengths. Generally, its accuracy increases with
increasing drift velocity.
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