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We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical
fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the
Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We
show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the
medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital
angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the
Brillouin energy density, as well as multiple advantages as compared with previously considered
formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton
(SPP) waves at a metal-vacuum interface and show that SPPs carry a “supermomentum,” proportional to
the wave vector kp > ω=c, and a transverse spin, which can change its sign depending on the frequency ω.
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Introduction.—Energy, momentum, and angular momen-
tum (AM) are themain dynamical characteristics of particles
and fields, matter and light. These quantities are crucial for
understanding the physical properties of objects and pre-
dicting their behavior. Electromagnetic waves propagating
in optical media are mixed light-matter (photon-electron)
excitationswith nontrivial dispersion and dynamical proper-
ties. While optical energy density in dispersive isotropic
media is described by thewell-known Brillouin formula [1],
the characterization of the optical momentum and AM in
media is a challenging problem, with the long-standing
Abraham-Minkowski debate lying at its heart [2–6].
For pure free-space light, the Abraham and Minkowski

approaches coincide, resulting in the well-known Poynting
picture of the momentum and AM of light [1]. However,
even this established formalism produces fundamental
difficulties when applied to structured (inhomogeneous)
optical fields. First, the ratio of the Poynting momentum
density to the energy density of the field cannot exceed c−1

in magnitude, which corresponds to the momentum not
exceeding ℏω=c≡ ℏk0 per photon. However, in evanescent
fields or near optical vortices, the local wave vector (phase
gradient) and the corresponding momentum density can be
ℏkloc>ℏk0, and such “supermomentum” is observed exper-
imentally via light-matter interactions [7–10]. Second, the
Poynting formalism does not describe separately the spin
and orbital AM of light. At the same time, the spin and
orbital degrees of freedom are separately observable in
many experiments, and these play important roles in light-
matter interactions [11–19].
The above difficulties with the Poynting free-space

formalism can be resolved using the canonical approach

originating from relativistic field theory [20,21], which
explicitly describes the spin and orbital momentum
and AM densities for monochromatic free-space fields
[17,18,22–26]. This approach deals with the canonical
(orbital) momentum density corresponding to the actual
local wave vector of the field, ℏkloc, and the canonical
spin AM density characterizing rotations of the electric and
magnetic fields in 3D space. Most importantly, both of
these canonical quantities are directly observable in
local light-matter interactions via the optical scattering
force and torque on small dipole particles or atoms
[12,13,17,25,27–29].
Thus, for waves in optical media one can use either

the Abraham or Minkowski approaches combined with
either the kinetic (Poynting-like) or canonical (spin-orbital)
formalisms, i.e., four combinations in total. Here we argue
that two of these perfectly describe the kinematic and
dynamical properties of optical fields. First, the well-known
kinetic Abraham-Poynting momentum density describes
the energy flux and the group velocity of the wave in
the medium. Second, we introduce the novel canonical
Minkowski-type momentum, spin, and orbital AM den-
sities, valid for structured optical fields in dispersive
inhomogeneous media. [Note that, although the (dispersion-
modified) Minkowski momentum is often associated with
the canonical one [30–35], this is the case only for plane
waves, while for generic structured fields the Poynting
vector cannot describe the local wave-vector properties even
in free space].
The novel canonical momentum and spin densities

have very natural forms, analogous to the Brillouin
energy density and involving the corresponding quantum
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operators. For plane waves in transparent media, they
produce natural results associated with the wave vector
and polarization helicity. This is consistent with the
dispersion-modified Minkowski approach [30–37] and
the corresponding plane-wave momentum experiments
[38,39]. However, in contrast to previous formalisms, our
canonical densities efficiently describe the wave-vector and
field-rotation properties of arbitrary structured fields.
To illustrate this, we apply our general theory to surface

plasmon polaritons (SPPs) (structured fields) at a metal-
vacuum interface (an inhomogeneous dispersive medium)
[40]. This example has never been considered in the context
of the Abraham-Minkowski dilemma. While the kinetic-
Abraham-Poynting momentum describes the subluminal
group velocity of SPPs [41], vg < c, we show that the
canonical momentum yields a supermomentum ℏkp > ℏk0
per polariton, both locally and when integrated over the
localized field. Strikingly, none of the previous approaches
produces this natural result. Moreover, we calculate the
canonical transverse spin AM carried by the SPP. This
interesting quantity was introduced earlier using the
Abraham-type energy-flux approach [42], and currently
the transverse spin in structured fields is attracting consid-
erable attention [17–19,25], promising exciting applica-
tions in nanophotonics and quantum optics [43–48].
Remarkably, only now our canonical formalism enables
one to calculate the transverse spin of a SPP properly,
including the dispersion effects in the metal. We find that
the integral transverse spin can change its sign or vanish
depending on the SPP frequency, in contrast to previous
calculations.
General theory.—We consider monochromatic electro-

magnetic fields, with complex amplitudes EðrÞ and HðrÞ
and frequency ω, in an isotropic lossless dispersive (and, in
general, inhomogeneous) medium characterized by the
permittivity εðω; rÞ and permeability μðω; rÞ. The cycle-
averaged energy density of the field is given by the well-
known Brillouin formula [1]:

~W ¼ gω
2
ð~εjEj2 þ ~μjHj2Þ; ð1Þ

where we use Gaussian units with g¼ð8πωÞ−1, ~ε¼εþ
ωdε=dω, ~μ ¼ μþ ωdμ=dω, and we mark all dispersion-
modified quantities by a tilde. The kinetic Abraham
momentum density of the field is determined by the
Poynting vector:

PA ¼ gk0ReðE� ×HÞ: ð2Þ

This quantity describes the energy flux (rather than momen-
tum) density [20,30,35]. The ratio of the integral Abraham
momentum (2) to the integral energy (1) determines the
group velocity of a wave packet in the medium:

vg ¼
c2hPAi
h ~Wi ; ð3Þ

where h…i denotes the proper spatial integration of the
densities. As we show below, Eq. (3) agrees with the usual
∂ω=∂k definition even for inhomogeneous waves in inho-
mogeneous media [30,35,41].
We now put forward the canonical momentum density of

the field:

~P ¼ g
2
Im½~εE� · ð∇ÞEþ ~μH� · ð∇ÞH�; ð4Þ

and also the canonical spin and orbital AM densities:

~S ¼ g
2
Im½~εE� ×Eþ ~μH� ×H�; ~L ¼ r × ~P: ð5Þ

Equations (4) and (5) are the central expressions of this
work, which describe the actual momentum, spin, and
orbital AM densities carried by generic structured optical
fields in a dispersive inhomogeneous medium. Below, we
consider several remarkable properties and applications of
these quantities.
(i) In the vacuum, ~ε ¼ ~μ ¼ 1, and the densities (4) and

(5) coincide with the corresponding canonical densities for
free-space fields [17,18,22–27], which are consistent with
directly observable properties of structured optical fields
[7–10,12,13,28,29].
(ii) Equations (4) and (5) exhibit a pleasing similarity

with the Brillouin energy density (1). Together, these can be
written as a consistent set of dynamical quantities using the
corresponding quantum-mechanical operators:

~W ¼ ψ†ðωÞψ ; ~P¼Re½ψ†ðp̂Þψ �; ~S¼ ψ†ðŜÞψ : ð6Þ

Here p̂ ¼ −i∇ and Ŝ are the momentum and spin-1
operators, respectively [17,22,24,27], whereas the
6-component “wave function” is ψ¼ ffiffiffiffiffiffiffiffi

g=2
p ð ffiffiffi

~ε
p

E;
ffiffiffi
~μ

p
HÞT .

Notably, this quantumlike formalism exactly coincides
with the one recently introduced by Silveirinha for calcu-
lations of other electromagnetic bilinear forms in dispersive
media [49,50].
(iii) Consider the simplest case of an electromagnetic

plane wave in a homogeneous transparent medium. Using
the Maxwell equations, we readily obtain the ratios of the
densities (2), (4), and (5) to the energy density (1):

PA

~W
¼ 1

npng

k
ω
;

~P
~W
¼ k

ω
;

~S
~W
¼ σ

ω

k
k
; ð7Þ

where k is the wave vector in the medium, np ¼ ffiffiffiffiffi
εμ

p
and

ng ¼ np þ ωdnp=dω are the phase and group refractive
indices of the medium, and σ is the polarization helicity (the
third Stokes parameter). Using k ¼ npk0, we see that the
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first Eq. (7) provides the local counterpart of the group-
velocity Eq. (3), yielding vg ¼ c=ng < c. Assuming the
quantization of energy as ℏω per photon, the second Eq. (7)
yields the canonical momentum corresponding to ℏk per
photon. This natural result exactly coincides with that
obtained from the dispersion-modified Minkowski momen-
tum, sometimes using rather cumbersome expressions [31–
36]. Finally, the spin AM density in Eq. (7) also acquires
the very natural form ℏσk=k, exactly as one would expect
for a photon. To the best of our knowledge, this simple
result was previously derived for dispersive media only in
Ref. [37], using rather nontrivial calculations.
(iv) Previously, dispersion-modified Minkowski-type

momentum and AM densities, ~PM and ~JM, respectively,
were derived in the most general form, using a Lagrangian-
Noether formalism, by Philbin and Allanson [36,37].
Since these works used the symmetrization of the energy-
momentum tensor [20,24], they produced kinetic quantities,
yielding the Poynting momentum and total AM in free
space. The explicit lengthy expressions of Refs. [36,37] for
monochromatic fields can be written as

~PM ¼ εμPAþfdisp.g; ~JM ¼ r× ~PMþfdisp.g; ð8Þ

where fdisp.g indicates dispersion-related terms.
Remarkably, as we show elsewhere [51], the canonical
momentum density (4) differs from the kinetic one (8) by a
curl of a vector field S: ~P ¼ ~PM þ ∇ × S=2, which does not
contribute to integral momentum values and conservation
laws.Moreover, the total AM (8), integrated over thevolume
for a localized field, coincides with the sum of the integral
values of the canonical spin and orbital AM (5):

h ~PMi ¼ h ~Pi; h ~JMi ¼ h ~Si þ h ~Li: ð9Þ

Thus, our momentum, spin, and orbital AM densities are
canonical counterparts of the kinetic Minkowski-type
quantities of Philbin and Allanson [36,37]. The advantages
of our quantities are (a) a considerably simpler form,
(b) explicit spin-orbital separation, and (c) a description of
canonical properties (e.g., supermomentum) in free-space
and media.
(v) Being derived from Noether’s theorem [36,37], the

kinetic quantities (8) are conserved in media with the
corresponding translational or rotational symmetries.
Because of Eqs. (9), this is also true for our canonical
quantities (4) and (5). This can also be seen from the plane-
wave Eqs. (7), valid for paraxial optical beams. Indeed, the
momentum ℏk per photon and spin ℏσk=k underpin the
momentum and AM conservation laws for the optical beam
reflection or refraction at a planar interface between two
media [52–54] (the simplest example being Snell’s law [1]).
(vi) Most importantly, considering an example of surface

plasmon polaritons at a metal-vacuum interface, elsewhere
we show that both kinetic and canonical momentum and

AM densities (4), (5), and (8) can be derived microscopi-
cally [51]. This allows one to separate the microscopic
electromagnetic-field and electron-matter contributions. In
particular, it is the electron contributions that are respon-
sible for the dispersion-related terms.
(vii) Moreover, considering a nonmagnetic medium,

μ ¼ 1, the dispersion corrections in the spin AM density
(5) produces the magnetization in the medium due to the
inverse Faraday effect [1,55]: M ∝ ω dε=dω ImðE� ×EÞ.
In turn, this magnetization generates the direct magneti-
zation current jmagn ¼ c∇ ×M. Remarkably, the momen-
tum density carried by the electrons in this direct current
exactly corresponds to the difference between the kinetic
Abraham and Minkowski-type momenta [51]: Pmagn ¼
ðm=eÞjmagn ¼ PA − ~PM, where m and e < 0 are the
electron mass and charge, respectively.
(viii) Note that the canonical momentum and spin

densities (4) and (5) have the dual-symmetric form, keeping
the electric and magnetic contributions on an equal footing.
In free space, such a formalism was recently suggested and
extensively discussed in Refs. [17,18,22–27,56,57], mostly
from aesthetic reasons (“electric-magnetic democracy”
[22]) rather than real physical arguments. Alternatively, in
free space, one can use the electric-biased formalism,
originating from the dual-asymmetric form of the standard
electromagnetic field Lagrangian [20,21,24,26,28,29]. It
yields “double-electric”momentum and spin densities P0 ¼
g Im½E� · ð∇ÞE� and S0 ¼ g ImðE� ×EÞ. The choice of the
electric-biased quantities does not affect the integral
momentum and spin values for localized free-space fields
[23,24]. However, this is not the case for fields in dispersive
media. First, the integral electric andmagnetic contributions
to the momentum and spin AM are not equal to each other
anymore. Second, the dispersion-related terms in both
canonical and kinetic characteristics (4), (5), and (8) have
fixed dual-symmetric form, confirmed by both the macro-
scopic Noether-theorem derivation [36,37] and microscopic
calculations [51]. This allows one to discriminate between
the dual-symmetric and electric-biased approaches, in favor
of the dual-symmetric one.
Application to surface plasmon polaritons.—We now

apply our general theory to an example of a SPP (essen-
tially inhomogeneous field) at a metal-vacuum interface
(strongly inhomogeneous dispersive medium) [40]. The
geometry of the problem is shown in Fig. 1; the metal is
characterized by the permittivity εðωÞ ¼ 1 − ω2

p=ω2, with
ωp being the electron plasma frequency, whereas μ ¼ 1.
The SPP is a transverse-magnetic (TM) wave that exists
when ε < −1, propagates along the interface with the wave
vector kp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε=ð1þ εÞp
k0 > k0, and decays exponentially

away from the interface. From here, one can derive the SPP
dispersion relation ωðkpÞ, shown in Fig. 1.
Substituting the electric and magnetic fields E and H of

the SPP [40–42] in Eqs. (1)–(3), with h…i denoting the x
integration across the interface, we find that the group
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velocity of SPPs (3) exactly coincides with the standard
definition [41]:

vg ¼
ð−1 − εÞ3=2 ffiffiffiffiffiffi

−ε
p

1þ ε2
cz̄ ¼ ∂ω

∂kp z̄; ð10Þ

where x̄, ȳ, and z̄ are the unit vectors of the corresponding
coordinates. Naturally, this velocity is always subluminal:
vg < c [Fig. 2(a)]. This confirms the association of the
Abraham-Poynting momentum with the group velocity in
the general case of inhomogeneous fields and inhomo-
geneous dispersive media.
Next, we calculate the energy (1) and canonical momen-

tum (4) of the SPP field. Since all the field components
share the same exp ðikpzÞ phase factor, we immediately
find, for both the local and integral quantities,

~P
~W
¼ h ~Pi

h ~Wi ¼
kp
ω
z̄: ð11Þ

This equation is analogous to the plane-wave homo-
geneous-medium Eq. (7), but now it is valid for the strongly
inhomogeneous SPP case. This means that the SPP carries
supermomentum ℏkp > ℏk0 per polariton, both locally and
integrally [Fig. 2(a)]. Surprisingly, none of the previous
approaches can provide this seemingly simple result, which
is essentially the de Broglie relation. In particular, the
kinetic Minkowski-type momentum (8) agrees with it
integrally [Eq. (9)], but it cannot explain the local super-
momentum in the evanescent vacuum part of the SPP field,
which is observed experimentally [7–9]. Note also that the
canonical momentum (11) is always directed along the SPP
propagation, while the Poynting-Abraham momentum (2)
is directed backwards inside the metal [41].
We finally calculate the transverse spinAM of the SPP: a

quantity which has recently attracted considerable attention
[17–19,42,43,47,48] but has never been properly calculated

including the dispersion corrections in the metal.
Substituting the SPP fields into Eqs. (1) and (5), we obtain
for the integral spin value

h ~Si
h ~Wi ¼

ð−2 − εÞ ffiffiffiffiffiffi
−ε

p
1þ ε2

1

ω
ȳ: ð12Þ

This equation differs drastically from the plane-wave
Eqs. (7), showing that we deal with a structured-light
property, vanishing for a plane TM wave. Equation (12)
also differs considerably from the previous calculations of
the transverse spin, based on the spin-orbital decomposition
of the Abraham-Poynting energy flux [42] and neglecting
dispersion effects [47] [Fig. 2(b)]. In particular, the y
component of the spin (12) is positive for ω < ωp=

ffiffiffi
3

p

and negative for ωp=
ffiffiffi
3

p
< ω < ωp=

ffiffiffi
2

p
. The absolute

value of the transverse spin does not exceed ℏ=2 per
polariton, because it has only the electric-field contribution
but not the magnetic one.
Remarkably, the magnetization of the metal, mentioned

above, means that a SPP carries not only the spin AM but
also a transverse magnetic moment. Microscopic calcula-
tions, presented elsewhere [51], yield the magnetic moment
μ≡ ωhMi=h ~Wi ¼ ½2 ffiffiffiffiffiffi

−ε
p

=ð1þ ε2Þ�μBȳ per polariton,
where μB ¼ jejℏ=2mc is the Bohr magneton.
One can also calculate the orbital AM density for the SPP

using Eq. (5). However, this quantity is extrinsic, i.e.,
dependent on the choice of the coordinate origin. It makes
sense to calculate the intrinsic part of the integral orbital
AM determined with respect to the SPP center of energy
hxi: h ~Lint

y i ¼ R ðx − hxiÞ ~Pzdx ¼ 0 [Fig. 2(b)]. It vanishes
because of the proportionality (11) between the energy and
canonical-momentum densities. Note, however, that the
second Eq. (9) fails in the case of a single SPP wave, and
the transverse spin (12) cannot be found via the x integration
of the kinetic AM (8) taken with respect to hxi. This is

FIG. 1. Geometry and main properties of a SPP at a metal-
vacuum interface.

FIG. 2. (a) The subluminal group velocity (3), (10), and the
canonical supermomentum (11) of a SPP versus frequency.
(b) The canonical transverse spin of a SPP (12), the previously
calculated Abraham-type spin [42], and the vanishing intrinsic
orbital AM of a SPP versus frequency.
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because Eqs. (9) are valid, rigorously speaking, only for 3D-
localized solutions, while a single SPP wave is localized
only in one x dimension; considering a z-localized SPPwave
packet would fix this discrepancy. This provides one more
reason to use the canonical rather than the kinetic picture for
the spin and orbital AM calculations.
Conclusions.—We have provided the general theory of

the canonical momentum, spin, and orbital AM, which is
valid for inhomogeneous (but monochromatic) optical
fields in dispersive and inhomogeneous (but isotropic
and lossless) media. Our approach combines mathematical
simplicity with physical generality, and none of the
previously used definitions of the momentum and AM
densities is able to reproduce all the seemingly simple
results obtained in this work. The remarkable features and
advantages of the suggested formalism are explained in
points (i)–(viii) in the main text. We have considered
surface plasmon polaritons only as the simplest example
of the application of our theory, where other approaches
fail. Taking into account both material and structured-light
properties is crucial in a variety of nanooptical and photonic
systems, including photonic crystals, metamaterials, and
optomechanical systems. Our theory provides an efficient
toolbox for the description of dynamical properties of light
in such systems. We hope that this formalism will become
as useful as the Brillouin energy-density expression.

This work was supported by the RIKEN iTHES Project,
MURI Center for DynamicMagneto-Optics via the AFOSR
Grant No. FA9550-14-1-0040, the Japan Society for the
Promotion of Science (KAKENHI), the IMPACT program
of JST, CREST Grant No. JPMJCR1676, the John
Templeton Foundation, and the Australian Research
Council.

[1] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1999); L. D. Landau, E.M. Lifshitz, and L. P. Pitaevskii,
Electrodynamics ofContinuousMedia (Pergamon,NewYork,
1984).

[2] I. Brevik, Experiments in phenomenological electrodynam-
ics and the electromagnetic energy-momentum tensor, Phys.
Rep. 52, 133 (1979).

[3] R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, Momentum of an electromagnetic
wave in dielectric media, Rev. Mod. Phys. 79, 1197 (2007).

[4] S. M. Barnett and R. Loudon, The enigma of optical
momentum in a medium, Phil. Trans. R. Soc. A 368, 927
(2010).

[5] P. W. Milonni and R.W. Boyd, Momentum of light in a
dielectric medium, Adv. Opt. Photonics 2, 519 (2010).

[6] B. A. Kemp, Resolution of the Abraham-Minkowski debate:
Implications for the electromagnetic wave theory of light in
matter, J. Appl. Phys. 109, 111101 (2011).

[7] S. Huard and C. Imbert, Measurement of exchanged
momentum during interaction between surface-wave and
moving atom, Opt. Commun. 24, 185 (1978).

[8] T. Matsudo, Y. Takahara, H. Hori, and T. Sakurai, Pseudo-
momentum transfer from evanescent waves to atoms mea-
sured by saturated absorption spectroscopy, Opt. Commun.
145, 64 (1998).

[9] K. Y. Bliokh, A. Y. Bekshaev, A. G. Kofman, and F. Nori,
Photon trajectories, anomalous velocities, and weak mea-
surements: A classical interpretation, New J. Phys. 15,
073022 (2013).

[10] S. M. Barnett and M. V. Berry, Superweak momentum
transfer near optical vortices, J. Opt. 15, 125701
(2013).

[11] S. J. van Enk and G. Nienhuis, Commutation rules and
eigenvalues of spin and orbital angular momentum of
radiation fields, J. Mod. Opt. 41, 963 (1994).

[12] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett,
Intrinsic and Extrinsic Nature of the Orbital Angular
Momentum of a Light Beam, Phys. Rev. Lett. 88,
053601 (2002).

[13] V. Garcés-Chavéz, D. McGloin, M. J. Padgett, W. Dultz, H.
Schmitzer, and K. Dholakia, Observation of the Transfer of
the Local Angular Momentum Density of a Multiringed
Light Beam to an Optically Trapped Particle, Phys. Rev.
Lett. 91, 093602 (2003).

[14] K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A.
Aiello, Angular momenta and spin-orbit interaction of
nonparaxial light in free space, Phys. Rev. A 82, 063825
(2010).

[15] L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular
Momentum (Institute of Physics, Bristol, 2003).

[16] D. L. Andrews and M. Babiker, The Angular Momentum of
Light (Cambridge University Press, Cambridge, England,
2013).

[17] K. Y. Bliokh and F. Nori, Transverse and longitudinal
angular momenta of light, Phys. Rep. 592, 1 (2015).

[18] A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, From
transverse angular momentum to photonic wheels, Nat.
Photonics 9, 789 (2015).

[19] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A.
Zayats, Spin-orbit interactions of light, Nat. Photonics 9,
796 (2015).

[20] D. E. Soper, Classical Field Theory (Wiley, New York,
1976).

[21] E. Leader and C. Lorce, The angular momentum contro-
versy: What’s it all about and does it matter?, Phys. Rep.
541, 163 (2014).

[22] M. V. Berry, Optical currents, J. Opt. A 11, 094001
(2009).

[23] S. M. Barnett, Rotation of electromagnetic fields and the
nature of optical angular momentum, J. Mod. Opt. 57, 1339
(2010).

[24] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Dual electro-
magnetism: Helicity, spin, momentum, and angular mo-
mentum, New J. Phys. 15, 033026 (2013); Corrigendum,
New J. Phys. 18, 089503(C) (2016).

[25] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Extraordinary
momentum and spin in evanescent waves, Nat. Commun. 5,
3300 (2014).

[26] K. Y. Bliokh, J. Dressel, and F. Nori, Conservation of the
spin and orbital angular momenta in electromagnetism, New
J. Phys. 16, 093037 (2014).

PRL 119, 073901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

18 AUGUST 2017

073901-5

https://doi.org/10.1016/0370-1573(79)90074-7
https://doi.org/10.1016/0370-1573(79)90074-7
https://doi.org/10.1103/RevModPhys.79.1197
https://doi.org/10.1098/rsta.2009.0207
https://doi.org/10.1098/rsta.2009.0207
https://doi.org/10.1364/AOP.2.000519
https://doi.org/10.1063/1.3582151
https://doi.org/10.1016/0030-4018(78)90115-3
https://doi.org/10.1016/S0030-4018(97)00420-3
https://doi.org/10.1016/S0030-4018(97)00420-3
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1088/2040-8978/15/12/125701
https://doi.org/10.1088/2040-8978/15/12/125701
https://doi.org/10.1080/09500349414550911
https://doi.org/10.1103/PhysRevLett.88.053601
https://doi.org/10.1103/PhysRevLett.88.053601
https://doi.org/10.1103/PhysRevLett.91.093602
https://doi.org/10.1103/PhysRevLett.91.093602
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1080/09500341003654427
https://doi.org/10.1080/09500341003654427
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/18/8/089503
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1088/1367-2630/16/9/093037
https://doi.org/10.1088/1367-2630/16/9/093037


[27] K. Y. Bliokh, Y. S. Kivshar, and F. Nori, Magnetoelectric
Effects in Local Light-Matter Interactions, Phys. Rev. Lett.
113, 033601 (2014).

[28] M. Antognozzi et al., Direct measurements of the extraor-
dinary optical momentum and transverse spin-dependent
force using a nano-cantilever, Nat. Phys. 12, 731 (2016).

[29] E. Leader, The photon angular momentum controversy:
Resolution of a conflict between laser optics and particle
physics, Phys. Lett. B 756, 303 (2016).

[30] R. L. Dewar, Energy-momentum tensors for dispersive
electromagnetic waves, Aust. J. Phys. 30, 533 (1977).

[31] D. F. Nelson, Momentum, pseudomomentum, and wave
momentum: Toward resolving the Minkowski-Abraham
controversy, Phys. Rev. A 44, 3985 (1991).

[32] J. C. Garrison and R. Y. Chiao, Canonical and kinetic forms
of the electromagnetic momentum in an ad hoc quantization
scheme for a dispersive dielectric, Phys. Rev. A 70, 053826
(2004).

[33] S. Stallinga, Energy and momentum of light in dielectric
media, Phys. Rev. A 73, 026606 (2006).

[34] S. M. Barnett, Resolution of the Abraham-Minkowski
Dilemma, Phys. Rev. Lett. 104, 070401 (2010).

[35] I. Y. Dodin and N. J. Fisch, Axiomatic geometrical optics,
Abraham-Minkowski controversy, and photon properties
derived classically, Phys. Rev. A 86, 053834 (2012).

[36] T. G. Philbin, Electromagnetic energy-momentum in dis-
persive media, Phys. Rev. A 83, 013823 (2011); Erratum,
Phys. Rev. A 85, 059902 (2012).

[37] T. G. Philbin and O. Allanson, Optical angular momentum
in dispersive media, Phys. Rev. A 86, 055802 (2012).

[38] R. V. Jones and B. Leslie, The measurement of optical
radiation pressure in dispersive media, Proc. R. Soc. A 360,
347 (1978).

[39] G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W.
Streed, W. Ketterle, and D. E. Pritchard, Photon Recoil
Momentum in Dispersive Media, Phys. Rev. Lett. 94,
170403 (2005).

[40] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin,
Nano-optics of surface plasmon polaritons, Phys. Rep.
408, 131 (2005).

[41] J. Nkoma, R. Loudon, and D. R. Tilley, Elementary proper-
ties of surface polaritons, J. Phys. C 7, 3547 (1974).

[42] K. Y. Bliokh and F. Nori, Transverse spin of a surface
polariton, Phys. Rev. A 85, 061801(R) (2012).

[43] F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D.
O'Connor, A. Martinez, G. A. Wurtz, and A. V. Zayats,
Near-field interference for the unidirectional excitation of
electromagnetic guided modes, Science 340, 328 (2013).

[44] J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral nano-
photonic waveguide interface based on spin-orbit interac-
tion of light, Science 346, 67 (2014).

[45] M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer,
Measuring the Transverse Spin Density of Light, Phys.
Rev. Lett. 114, 063901 (2015).

[46] B. Le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic
control of circular dipole emission, Nat. Commun. 6, 6695
(2015).

[47] K. Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin Hall
effect of light, Science 348, 1448 (2015).

[48] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel,
P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral
quantum optics, Nature (London) 541, 473 (2017).

[49] M. G. Silveirinha, Chern invariants for continuous media,
Phys. Rev. B 92, 125153 (2015).

[50] S. A. H. Gangaraj, M. G. Silveirinha, and G.W. Hanson,
Berry phase, Berry connection, and Chern number for a
continuum bianisotropic material from a classical electro-
magnetics perspective, IEEE J. Multiscale Multiphys.
Comput. Techniques 2, 3 (2017).

[51] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Optical momen-
tum and angular momentum in dispersive media: From the
Abraham-Minkowski debate to unusual properties of sur-
face plasmon-polaritons arXiv:1706.05493.

[52] M. Onoda, S. Murakami, and N. Nagaosa, Hall Effect of
Light, Phys. Rev. Lett. 93, 083901 (2004).

[53] K. Y. Bliokh and Y. P. Bliokh, Polarization, transverse shifts,
and angular momentum conservation laws in partial reflec-
tion and refraction of an electromagnetic wave packet, Phys.
Rev. E 75, 066609 (2007).

[54] K. Y. Bliokh and A. Aiello, Goos-Hänchen and Imbert-
Fedorov beam shifts: An overview, J. Opt. 15, 014001 (2013).

[55] R. Hertel, Theory of the inverse Faraday effect in metals, J.
Magn. Magn. Mater. 303, L1 (2006).

[56] R. P. Cameron, S. M. Barnett, and A. M. Yao, Optical
helicity, optical spin and related quantities in electromag-
netic theory, New J. Phys. 14, 053050 (2012).

[57] R. P. Cameron and S.M.Barnett, Electric-magnetic symmetry
and Noether’s theorem, New J. Phys. 14, 123019 (2012).

PRL 119, 073901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

18 AUGUST 2017

073901-6

https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1038/nphys3732
https://doi.org/10.1016/j.physletb.2016.03.023
https://doi.org/10.1071/PH770533
https://doi.org/10.1103/PhysRevA.44.3985
https://doi.org/10.1103/PhysRevA.70.053826
https://doi.org/10.1103/PhysRevA.70.053826
https://doi.org/10.1103/PhysRevE.73.026606
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevA.86.053834
https://doi.org/10.1103/PhysRevA.83.013823
https://doi.org/10.1103/PhysRevA.85.059902
https://doi.org/10.1103/PhysRevA.86.055802
https://doi.org/10.1098/rspa.1978.0072
https://doi.org/10.1098/rspa.1978.0072
https://doi.org/10.1103/PhysRevLett.94.170403
https://doi.org/10.1103/PhysRevLett.94.170403
https://doi.org/10.1016/j.physrep.2004.11.001
https://doi.org/10.1016/j.physrep.2004.11.001
https://doi.org/10.1088/0022-3719/7/19/015
https://doi.org/10.1103/PhysRevA.85.061801
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1257671
https://doi.org/10.1103/PhysRevLett.114.063901
https://doi.org/10.1103/PhysRevLett.114.063901
https://doi.org/10.1038/ncomms7695
https://doi.org/10.1038/ncomms7695
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1038/nature21037
https://doi.org/10.1103/PhysRevB.92.125153
https://doi.org/10.1109/JMMCT.2017.2654962
https://doi.org/10.1109/JMMCT.2017.2654962
http://arXiv.org/abs/1706.05493
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevE.75.066609
https://doi.org/10.1103/PhysRevE.75.066609
https://doi.org/10.1088/2040-8978/15/1/014001
https://doi.org/10.1016/j.jmmm.2005.10.225
https://doi.org/10.1016/j.jmmm.2005.10.225
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1088/1367-2630/14/12/123019

