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I. CALCULATION OF WINDING NUMBERS

We first illustrate the appearance of two winding num-
bers, Eqs. (8)–(11) in the main text, from the proper-
ties of the complex effective “magnetic field” B, Eq. (1).
This field lies in the (x, y)-plane, and can be charac-
terized by its magnitude and azimuthal direction angle:
B = B(cosφ, sinφ, 0).

First, the complex direction angle is given by

φ = arctan

(
By
Bx

)
= arctan

(
m

kx − isky

)
. (S1)

The distribution of its real part, Reφ(k), is shown in
Fig. S1(a). Integrating its kx-gradient along the coun-
tour shown in Fig. S1(a) yields the first winding number
w1(ky), Eqs. (8) and (9), shown in Fig. S1(c). Note that
only smooth gradients of Reφ(kx) contribute to the inte-
gral, but not π jumps. Furthermore, the imaginary part
of the angle φ does not contribute to the integrals (8) and
(9). Therefore, the winding number w1 is an extention of
the Hermitian winding number based on the Berry phase
and direction of the B-field [1, 2].

Second, the magnitude of the B-field is also complex
in the non-Hermitian case. It is equal to the eigenvalue
λ+:

B =
√
B2
x +B2

y =
√

(kx − isky)2 +m2 = λ+. (S2)

The complex character of this quantity is characterized
by its phase Arg λ+. The distribution Arg λ+(k) is de-
picted in Fig. S1(b). Integrating its kx-gradient along the
same contour yields the second winding number w2(ky),
Eqs. (10) and (11), shown in Fig. S1(d). Since the non-
trivial phase behavior of eigenvalues is a purely non-
Hermitian feature, the w2 number characterizes “non-
Hermitian” and “mixed” anomalous edge modes [3, 4].

Importatly, the above description of the winding num-
bers, based on the properties of the complex B-field, is
universal and can be applied to other non-Hermitian two-
level systems. Below we show this for two examples of
2D lattice systems.

II. TIGHT-BINDING MODELS

One important distinction between the continuum
model studied in the main text and lattice models is the
periodic boundary conditions imposed by the 2D Bril-
louin zone in the latter. To satisfy periodic boundary
conditions, any branch cut in the eigenvalues must termi-
nate at an inequivalent EP, such that

∑
q2 = 0. There-

fore, regularizing Eq. (1) of the main text to a lattice
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FIG. S1: Color-coded k-distributions of (a) the real part of
the azimuthal angle φ of the B-field and (b) the phase of the
complex field magnitude B = λ+. Black dots indicate the
EPs. Integration of the kx-gradients of these angles along the
ky-dependent cyan contour yields the two winding numbers
w1(ky) and w2(ky), Eqs. (8)–(11), shown in panels (c) and
(d).

will double the EP pairs, with the partners having oppo-
site charges. This is analogous to the doubling of Dirac
points in graphene-like systems implied by the Nielsen-
Ninomiya theorem. Nevertheless, for most orientations of
a lattice edge or domain wall, the doubled partners are
decoupled. Nonzero winding numbers and edge modes
will still occur within the finite range of momenta be-
tween the doubled partners [5].

Here we show how to achieve fractional winding num-
bers in ring resonator lattices. We consider anisotropic
honeycomb lattices with inter-resonator coupling medi-
ated by nonresonant link rings. In the Hermitian limit,
the honeycomb lattice hosts Dirac point degeneracies
characterized by integer winding numbers. Introducing
non-Hermitian couplings by inserting gain or loss into the
link rings splits the Dirac points into pairs of EPs, gener-
ating fractional winding numbers. We will consider two
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types of non-Hermitian couplings: balanced gain and loss
within each link ring, which is described by a real asym-
metric Hamiltonian [6], and link rings with pure gain or
loss, generating a complex symmetric Hamiltonian [7].
These two cases result in different trajectories of the EPs
in momentum space as a function of the non-Hermiticity
strength γ.

A. Model 1

We begin by considering a non-Hermitian coupling
generated by inserting balanced gain and loss into one of
the three link rings, shown in Fig. S2. For the clockwise-
circulating resonator modes, intracell hopping from the
“A” sublattice to the “B” sublattice occurs via the lossy
half of the link resonator. Conversely, hopping from “B”
to “A” occurs through the half of the link resonator with
gain. The corresponding Bloch Hamiltonian is asymmet-
ric [6],

Ĥ =

(
0 ce−γ + e−ik·a1 + e−ik·a2

ceγ + eik·a1 + eik·a2 0

)
,

(S3)
where c is the intracell coupling strength, γ is the
strength of the gain and loss, and the other two Hermitian
couplings have been normalized to 1. Here, k is the Bloch
wavevector and the lattice vectors are a1 = a

2 (1,
√

3),
a2 = a

2 (−1,
√

3), a3 = a(1, 0) = a1 − a2, where a is the
lattice period.

Note that the Hamiltonian (S3) has a chiral symme-
try: {Ĥ, σ̂z} = 0. For the bulk-edge correspondence to
hold in a lattice, parity-time (PT ) symmetry was also re-
quired in [4]. Here P = (y → −y)

⊗
σ̂x is the reflection

y → −y (which swaps the two sulattices), and T = σ̂yK,
where K is complex conjugation. The operator T takes
a nontrivial form because Eq. (S3) is written in the basis
of circulating modes, which is not T -symmetric [3].

Akin to Eq. (1), the Hamiltonian (S3) can be
parametrized as Ĥ = B · σ̂ (using non-permuted Pauli
matrices) with the two-component complex B-field:

Bx = c cosh γ + 2 cos

(
kxa

2

)
cos

(√
3kya

2

)
,

By = −ic sinh γ + 2 cos

(
kxa

2

)
sin

(√
3kya

2

)
. (S4)

Notably, if kx is taken as a fixed parameter, this model
becomes equivalent to the 1D model studied in Ref. [4].

In the Hermitian limit γ = 0, the isotropic (c = 1)
lattice hosts Dirac points (Hermitian degeneracies) at the
K points, K± = 2π

3a (±1,
√

3). Reciprocal lattice vectors
G1 = 2π

a (1, 1√
3
), G2 = 2π

a (−1, 1√
3
), G3 = 2π

a (1, 0) relate
equivalent K points. The anisotropy c 6= 1 shifts the
Dirac points along the kx axis (i.e. in the G3 direction)

a1a2

FIG. S2: Honeycomb lattice formed by ring resonators with
gain/loss (red/blue) in one of the three link rings.
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FIG. S3: Positions of exceptional points with charges (q1, q2)
as a function of the non-Hermitian parameter γ. Black points
indicate the Dirac points in the Hermitian limit γ = 0.

towards their partners. They merge and annihilate at
the critical points c = 0, 2. A nonzero γ splits each Dirac
point into a pair of EPs with charges (q1, q2) and kx-
positions (

+
1

2
,−1

2

)
, kx = −2 sec−1

(
2eγ

c

)
,(

−1

2
,+

1

2

)
, kx = 2 sec−1

(
2eγ

c

)
,(

+
1

2
,+

1

2

)
, kx = −2 cos−1

(
ceγ

2

)
,(

−1

2
,−1

2

)
, kx = 2 cos−1

(
ceγ

2

)
. (S5)

Figure S3 plots the EP positions as a function of γ (as-
suming c = 1). Note the vanishing total charge when EPs
coalesce and annihilate at γ = ± ln c

2 . On the other hand,
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FIG. S4: Honeycomb lattice with “bearded” edge.

when EPs coalesce to form Dirac points,
∑
q1 = ±1 and∑

q2 = 0. By tuning (c, γ) one can control the relative
positions and number of EPs in the bulk Hamiltonian.
Note that the m = 0 limit of our continuum Hamiltonian
(1) (coalescence of EPs with

∑
q2 6= 0) is not realized in

this model.
We now consider a lattice with “bearded” edges shown

in Fig. S4. This edge termination respects both the
chiral and PT symmetries. To determine the resulting
edge states, one must project k = k‖e‖ + k⊥e⊥ onto
components parallel and perpendicular to the bound-
ary, described by the reciprocal space basis vectors ej =
Γj/|Γj |, with Γ‖ = 2π

a (1, 0) and Γ⊥ = 4π
a
√

3
(0, 1) [5].

k‖ ∈ π
a [−1, 1] becomes a parameter and the winding num-

bers of each domain are calculated over the 1D Brillouin
zone defined by k⊥ ∈ 2π

a
√

3
(−1, 1) using Eqs. (8) and (10)

for the field (S4) (see also Section I above).
Figure S5 shows k-distributions of the direction angle

Reφ and the phase ArgB of the B-field (S4), as well as
the corresponding winding numbers w1(k‖) and w2(k‖)
for γ = 0.4. One can see that tuning k‖ through the EPs
changes the winding numbers by ± 1

2 . Furthermore, there
are k‖-intervals with w1 = 0, 1

2 , 1 and w2 = 0,− 1
2 sgn(γ).

Therefore “bearded” edges or domain walls between re-
gions with different γ1 6= γ2 can host the non-Hermitian
edge modes discussed in the main text.

To verify the existence of the predicted edge states,
we numerically diagonalized Ĥ on a semi-infinite strip
with bearded edges. For sufficiently small kx both edges
support localized modes and they have opposite chirali-
ties. Increasing kx, one of the edge states becomes more

strongly localized, while the other becomes more weakly
localized, disappearing when the EP is crossed and w1,2

become fractional. The sole remaining edge state is de-
fective, i.e. there are two zero energy eigenvalues sharing
the same eigenvector.

This model also provides a simple way to understand
the emergence of the anomalous edge states. For γ > 0,
hopping in the +y direction is accompanied by amplifi-
cation which will counteract the evanescent decay of a
state localized to the lower edge, which delocalizes when
the amplification rate exceeds the evanescent decay rate
and ceases to exist. In contrast, hopping in the −y direc-
tion is accompanied by attenuation, which enhances the
localization of the zero-energy states at the upper edge.
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FIG. S5: Color-coded k-distributions of (a) the direction Reφ
(b) the phase ArgB = Arg λ+ of the complex B-field (S4).
Black dots indicate the EPs. Integration of the k⊥-gradients
of these angles along the k‖-dependent cyan contour yields
the two winding numbers w1(ky) and w2(ky), Eqs. (8) and
(10), shown in panels (c) and (d). Here parameters are c = 1
and γ = 0.4.

B. Model 2

To realize a lattice counterpart of our continuum
Hamiltonian Eq. (1), we require a non-Hermitian term
that is asymmetric in k. This can be achieved if a pair
of links are given balanced gain and loss, as shown in
Fig. S6 and described by the Bloch Hamiltonian
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Ĥ =

(
0 c+ (1− iγ)e−ik·a1 + (1 + iγ)e−ik·a2

c+ (1− iγ)eik·a1 + (1 + iγ)eik·a2 0

)
. (S6)

Here, γ is the dissipative coupling strength describing the gain/attenuation imposed by passing through one of the
link resonators [7]. This model shares the same chiral and PT symmetries as Eq. (S3), but now the non-Hermitian
term (the imaginary part of the effective B-field) is asymmetric in kx:

Bx = c+ 2 cos

(
kxa

2

)
cos

(√
3kya

2

)
+ 2iγ sin

(
kxa

2

)
sin

(√
3kya

2

)
,

By = 2 cos

(
kxa

2

)
sin

(√
3kya

2

)
− 2iγ sin

(
kxa

2

)
cos

(√
3kya

2

)
. (S7)

a1a2

FIG. S6: Honeycomb lattice formed by ring resonators with
dissipative coupling (gain/loss in two of the three link rings).

Similarly to above, a small γ splits the Dirac points
confined to the line kya = 2π/

√
3 into a pair of EPs

with positions kx plotted in Fig. S7. However, increasing
γ now leads to the coalescence of an EP pair with the
same non-Hermitian charge q2 at the Brillouin zone edge
kxa = ±π. Since their total charge is nonzero they can-
not annihilate; instead they enter the second Brillouin
zone |kxa| > π, which is equivalent to the line ky = 0 in
the first Brillouin zone (dashed lines in Fig. S7). Mean-
while, the second pair of EPs which approaches kx = 0
reproduces the continuum Hamiltonian Eq. (1): Expand-
ing k = (0, 2π√

3a
) + p we obtain, to first order in the dis-

placement p, the effective B-field components Bx ' c−2
(a mass term) and By ' iγpxa +

√
3pya (an anisotropic

momentum term).
Similarly to the previous examples, in Fig. S8 we plot

the Reφ(k) and Arg λ+(k) distributions, together with
the corresponding winding numbers w1(k‖) and w2(k‖),
for the Hamiltonian (S6) and B-field (S7). The resulting
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FIG. S7: Positions of exceptional points with charges (q1, q2)
as a function of the non-Hermitian parameter γ. Solid lines
indicate the EPs at the Brillouin zone edge (ky = 2π/

√
3),

while dashed lines correspond to the zone centre ky = 0. Black
points indicate the Dirac points in the Hermitian limit γ = 0.

winding number for a bearded edge w1 (w2) is symmetric
(antisymmetric) in k‖, which provides a tight-binding-
model analogue of Eqs. (9) and (11) and Fig. (S1).

Finally, let us remark on the key difference between
the two lattice models considered here and previously-
studied models of honeycomb lattices with PT symme-
try based on a non-Hermitian sublattice potential Bz =
iγσ̂z 6= 0 [8]. In addition to reflection symmetry P, two-
dimensional lattices can have rotational symmetry R. In
this case (occurring in Ref. [8]), the Bloch Hamiltonian
Ĥ(k) has a PT symmetry at every wavevector k and the
energy eigenvalues are always purely real or imaginary.
This constraint prevents the appearance of isolated ex-
ceptional points, which require complex eigenvalues, and
instead results in the splitting of Hermitian Dirac points
into ring degeneracies, which are unstable under further
perturbations that break the PT symmetry. In contrast,
in our models Eq. (S3) and Eq. (S6) the PT symmetry
relates the Bloch Hamiltonians at inequivalent momenta
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FIG. S8: Same as in Fig. S5 but for the tight-binding model 2
with the Hamiltonian (S6) and B-field (S7). Parameters are
c = 1 and γ = 0.4.

Ĥ(kx, ky) and Ĥ(−kx, ky). Therefore the Bloch wave
spectrum is in general complex, allowing the appearance
of isolated non-Hermitian degeneracies (that are stable
against small perturbations) and nonzero winding num-
bers w2.

III. COUNTING ZERO MODES WITH THE
INDEX THEOREM

Given a non-Hermitian Hamiltonian Ĥ, we can define
the Hermitian Hamiltonian

Ĥ = Ĥ†Ĥ. (S8)

If Ĥ|ψ〉 = 0, then Ĥ|ψ〉 = 0. Conversely, if Ĥ|ψ〉 = 0,
then 〈ψ|Ĥ†Ĥ|ψ〉 = 0, which implies that Ĥ|ψ〉 = 0. Note
that this holds for any choice of inner product, and does
not rely on the eigenvectors of Ĥ being orthogonal (they
generally are not). Using the non-Hermitian Hamiltonian
Ĥ from Eq. (5), we obtain

Ĥ = (px − σ̂ysAx)2 + (spy − σ̂yAy)2 + σ̂yB(x, y) (S9)

where pi = −i∂i, A = (sIm(m),Re(m)), and B(x, y) =
∂xAy − ∂yAx.

Let us project to the eigenspace of σ̂y, thus replacing σ̂y
with σ = ±1. Now the zero modes of Ĥ can be counted
via a procedure originally introduced by Aharonov and
Casher [9]. Define the canonical momentum operators

πx = px − sσAx ; πy = spy − σAy, (S10)

which obey the commutation relations [πx, πy] = iσB.
The Hermitian Hamiltonian Ĥ can then be written as

Ĥ = (πx + iπy)(πx − iπy). (S11)

As we have argued above, a zero mode |ψ〉 must satisfy
(πx − iπy)|ψ〉 = 0. In terms of the wavefunction,

(−i∂x − s∂y − sσAx + iσAy)ψ(x, y) = 0. (S12)

Assuming ∇ ·A = 0, we can let

Ax = ∂yϕ , Ay = −∂xϕ. (S13)

With this gauge choice, the magnetic field is the source
of a potential ϕ:

∇2ϕ(x, y) = B(x, y). (S14)

We substitute this back into Eq. (S12), and make the
further gauge substitution

ψ(x, y) = exp[−σϕ(x, y)]f(x, y). (S15)

Then f(x, y) obeys

(∂x − is∂y)f(x, y) = 0. (S16)

In the first case of interest, s1 = s2 = 1, f(x, y) is
analytic in the complex plane, and hence cannot be nor-
malized. Thus, the normalization of ψ must arise from
the exponential factor in Eq. (S15). Using Eq. (S14), we
write

ϕ(r) =

∫
dr′G(r − r′)B(r′), (S17)

G(r − r′) =
1

2π
ln

(
|r − r′|
lB

)
. (S18)

Here, lB is the magnetic length that serves as the cut-off
of the theory. For r � r′,

ϕ(r)→ ln
(
r

lB

)Φ/2π

, (S19)

where

Φ =

∫∫
dx dy (∂xAy − ∂yAx) = 2π(N + ε). (S20)

Here, N is an integer and 0 < ε < 1. Substituting this
back into Eq. (S15), we arrive at

ψ(x, y) =

(
r

lB

)−σΦ/2π

f(x, y). (S21)

Next, we can expand the analytic function f(x, y) with

f(x, y) = f(z) = zj , (S22)
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where z = x+ iy. The resulting wave function is

ψj(z) =

(
|z|
lB

)−σΦ/2π

zj . (S23)

For σΦ > 0, we require j = 0, 1, 2, . . . , N − 1, so that
ψj(z) is normalizable. For σΦ < 0, however, there are
no normalizable zero modes. Thus, Ĥ has a total of N
zero modes. The zero modes are polarized either spin-up
(σ = +1) or spin-down (σ = −1), depending on the sign
of the total magnetic flux Φ. The flux Φ is determined
by the mass profile m(x, y) = m(z), which must be a
complex analytic function according to Eq. (S13).

In the second case, s1 = −s2 = s, f(x, y) = f(z) is a
piecewise-analytic function which can be decomposed in
medium 1 using the Cauchy integral formula as

f(z) =
1

2πi

∮
f(t)

t− z
dt, (S24)

where the integral is over the boundary between the two
media. The analytic function f∗(z) in medium 2 can be
obtained similarly by requiring the continuity of ψ at the
interface. Since f(z) is now normalizable, zero modes can
exist even when the flux Φ vanishes, in which case they
will be spin-degenerate. A nonzero flux Φ will generate
an imbalance between the number of spin-up and spin-
down modes.

Suppose now that m = m(x) forms a straight do-
main wall in the vicinity of x = 0 with mass parameters
m1,2 in the limit |x| → ∞. A straightforward calcula-
tion shows that ϕ(x) → −m1x, ϕ(x → ∞) = −m2x,

the magnetic flux per unit length is (m2 − m1), and
f(x, y) ∝ exp(−s1,2kx+ iky). The resulting wavefunc-
tion is

ψ(x, y) ∼ exp [iky − s1,2kx− σϕ(x)] , (S25)

reproducing the conditions for normalizable zero modes,
Eqs. (7), discussed in the main text.
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