
Supplement to “Metrology with PT -symmetric cavities:

Enhanced sensitivity near the PT -phase transition”

This supplement provides detailed derivations of some equations given in the main text of the paper on the following
topics: (I) Mechanism of amplification in PT -symmetric metrology systems; (II) Amplification in a system with
two coupled lossy cavities; (III) Amplification in a system with an active cavity; (IV) Phonon sidebands, and (V)
Displacement spectral densities in the active cavity, PT and EP optomechanical transducer.

I. MECHANISM OF AMPLIFICATION IN PT -SYMMETRIC METROLOGY SYSTEM

The non-Hermitian Hamiltonian of our PT -symmetric metrology system can be written as

H = (∆− iκ) a†a+ (∆ + iγ) c†c+ g1(a
†c+ c†a) + ga†az, (1)

where a and c are, respectively, the annihilation operators of the lossy cavity (passive cavity) and the gain cavity
(active cavity); κ and γ are the damping and gain rates of the two cavities. The coupling strength between the passive
and active cavities is denoted by g1, the coupling strength between the system and the passive cavity is given by g,
and the effective frequencies of the two cavities are assumed to be as ∆ (i.e., the solitary cavities are degenerate in
their resonance frequencies).
The Hamiltonian in Eq. (1) without the term ga†az (this term describes the interaction between the passive cavity

and the system to be measured) describes the optical modes of the cavities and their interaction:

H1 = (∆− iκ) a†a+ (∆+ iγ) c†c+ g1(a
†c+ c†a). (2)

We consider the case in which gain and loss are balanced, i.e., Γ = (κ + γ)/2 = κ. In this case, the Hamiltonian in
Eq. (2) can be rewritten in a matrix form as [1, 2]

H1 =

[

reiθ g1
g1 re−iθ

]

,

where r =
√
∆2 + κ2 and θ = arctan(κ/∆). The eigenvalues of H can be written as λ± = r cos θ ±

√

g21 − r2 sin2 θ ,

and the corresponding eigenvectors are

|E+〉 =
(

eiα/2

e−iα/2

)

, |E−〉 =
(

ie−iα/2

−ieiα/2

)

,

where sinα = (r sin θ)/g1.
The interaction Hamiltonian Hint = ga†az in Eq. (1) can be re-expressed in the supermode picture, under which

we can find that the effective coupling strength between the supermodes and the system to be measured can be
represented by

geff =
g
(

Γ +
√

Γ2 − g21

)

2
√

Γ2 − g21
. (3)

In the vicinity of the transition point, which takes place at g1 = Γ, we have geff → ∞; which implies that in such a
case we have an extremely strong effective coupling geff between the supermodes a± and the measured observable z.
This, in turn, leads to a sharp increase in the sensitivity of the measurement.
In order to clarify the underlying mechanism of the proposed PT -induced highly-sensitive measurements, below

we derive the expressions for the spectra of the output fields in both the PT symmetric regime and the broken-PT
regime. Here, we assume that the gain of the active cavity is induced by the coupling between the cavity mode and
an ensemble of atoms, thus the Hamiltonian of the total system can be written as

H = ∆a†a+∆c†c+
ωa

2
Jz + g1(a

†c+ c†a) + g2(J−c
† + J+c) + ga†az, (4)



2

where ωa is the effective frequency of the atomic ensemble, and g2 is the effective coupling strength between the cavity
mode and the atomic ensemble. By considering further the fluctuation terms which are induced by, e.g., the electrical
noises or vacuum fluctuations, the equations of motion for the total system can be expressed as

ȧ = −i∆a− igaz − ig1c− κa−
√
2κain, (5)

ċ = −i∆c− ig1a− κcc− ig2J− −
√
2κccin, (6)

J̇− = −iωaJ− − 2γ0J− + ig2Jzc−
√

2γ0Jzdin, (7)

J̇z = p− 2γ1Jz − i2g2J+c+ i2g2J−c
† − 2

√

2γ1J+din − 2
√

2γ1J−d
†
in, (8)

where J− and Jz are the collective ladder and z-axis Pauli operators of the atomic ensemble; κc is the decay rate of
the active cavity; p denotes the population inversion; and γ0 and γ1 are the effective dissipation and pure-dephasing
rates of the atomic ensemble. The input field ain fed into the passive cavity can be taken as a sum of a coherent input
field with complex amplitude α and a white noise term ξ(t), i.e., ain = α+ξ(t). In order to simplify our discussion, we
assume that the fields cin and din fed into the active cavity and the atomic ensemble are white noises. From Eq. (6)
and Eq. (7), we can obtain the following equation for the cavity mode by eliminating the degrees of freedom of J− by

setting J̇− = 0,

ċ = −i∆c− ig1a− κcc+
g22
γ0

Jzc−
√
2κccin + i

g22√
γ0

Jzdin. (9)

By adiabatically eliminating the degrees of freedom of the atomic ensemble, the dynamical equations of our PT -
symmetric metrology system can be expressed as

ȧ = −i∆a− igaz − ig1c− κa−
√
2κain,

ċ = −i∆c− ig1a+ γc−
√
2κccin + iDdin, (10)

where γ = g22p/(γ0γ1)− κc, and D = g22p/(
√
γ0γ1). Using Parseval’s theorem [3], we can write the power spectrum of

the cavity field as S̃(ω) = |Ã(ω)|2, where

Ã (ω) = −αF2(ω)− F1(ω)

∫ +∞

−∞

dω1Ã(ω1)Z (ω − ω1) (11)

is the Fourier transform of the intracavity field of the passive cavity. Here, F1 (ω) and F2 (ω) are defined as

F1 (ω) =
[−γ + i(∆− ω)] g

g21 + [−γ + i(∆− ω)] [κ+ i(∆− ω)]
, (12)

F2 (ω) =
[−γ + i(∆− ω)]

√
2κ− g1D + ig1

√
2κc

g21 + [−γ + i(∆− ω)] [κ+ i(∆− ω)]
, (13)

and Z(ω) is the Fourier transform of the measured observable z. If gain and loss are balanced, in the vicinity of the
transition point, we have

g1D

γ
√
2κ

=
p
√
2κγ0
γ1

. (14)

Considering the case in which p
√
2κγ0 ≪ γ1, we can neglect the term D in Eq. (13). Then, due to ∆

√
2κ ≫ g1

√
2κc,

F2 (ω) can be expressed as

F2 (ω) =
[−γ + i(∆− ω)]

√
2κ

g21 + [−γ + i(∆− ω)] [κ+ i(∆− ω)]
.

Iterating Eq. (11) by substituting the value of Ã(ω) at the frequency ω1 into the integral term in Eq. (11), we can
re-express Eq. (11) as

Ã (ω) = −αF2(ω) + αF1(ω)

∫ +∞

−∞

dω1F2(ω1)Z (ω − ω1)

+F1(ω)

∫ +∞

−∞

dω1

∫ +∞

−∞

dω2F1(ω1)Ã(ω2)Z (ω − ω1)Z (ω1 − ω2) . (15)
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Doing the same iteration further using the value of Ã(ω) at many other frequencies ω2, . . . , ωn, we can write Ã (ω) as
infinite series of the form

Ã (ω) = −αF2(ω) + αF1(ω)

∫ +∞

−∞

dω1F2(ω1)Z (ω − ω1)

−(−1)nαF1(ω)

∞
∑

n=2

∫ +∞

−∞

· · ·
∫ +∞

−∞

dω1 · · · dωnF1(ω1) · · ·F1(ωn−1)F2(ωn)Z (ω − ω1) · · ·Z (ωn−1 − ωn) .

In the regime of weak coupling between the cavity and the system to be measured, we can omit the backaction of
the cavity on the measured system. Then Z(ω) can be written as Z(ω) = X(ω)Zin(ω), where X(ω) is the response
function of the system, and Zin(ω) is the Fourier transform of the input field acting on the system. If we further
consider an input field Zin(ω) such that 〈Zin(ω)Z

∗
in(ω

′)〉 = δ(ω − ω′), where 〈·〉 denotes the ensemble average, the
cavity spectrum can then be expressed as

S̃(ω) = |α|2S(ω). (16)

The normalized cavity spectrum S(ω) is given by

S(ω) = G(ω)Sa(ω) +G1(ω)

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1)

+G1(ω)
n
∑

i=2

∫ +∞

−∞

· · ·
∫ +∞

−∞

dω1 · · ·dωiG2(ωi)G1(ω1) · · ·G1(ωi−1)Szo(ω − ω1) · · ·Szo(ωi−1 − ωi), (17)

where G (ω), G1 (ω), and G2(ω) are

G(ω) =
(γ2 + (ω −∆)2)(κ2 + (ω −∆)2)

(ω −∆)4 + (ω −∆)2(κ2 + γ2 − 2g21) + (g21 − γκ)2
, (18)

G1(ω) = G(ω)
g2

κ2 + (ω −∆)2
, (19)

G2(ω) = G(ω)
2κ

κ2 + (ω −∆)2
. (20)

Sa(ω) is the background Lorentz spectrum calculated from Eq. (1) by setting the coupling strength g1 = 0 and
Szo(ω) = |X(ω)|2. Recall that the input of the measured system Zin (ω) is a white noise input, thus Szo (ω) can be
seen as the spectrum of the measured system. Moreover, since G1(ω) ∝ g2, we can ignore the higher-order terms of
G1 (ω) in Eq. (17) in the weak-coupling limit. Then, the normalized cavity spectrum becomes

S(ω) ≈ G(ω)Sa(ω) +G1(ω)

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1). (21)

If we further assume that the characteristic frequency of the system being measured, denoted by ωz, is smaller than,
or close to, the damping rate κ of the cavity coupled to it, then G1(ω) can be approximated in the frequency range
from ω = ∆− ωz to ω = ∆+ ωz as

G1(ω) ≈ G(ω)
g2

κ2
. (22)

Substituting this in Eq. (21), we can represent the normalized cavity spectrum as

S(ω) ≈ G(ω)

[

Sa(ω) +
g2

κ2

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1)

]

. (23)

A. Background spectrum in the broken-PT and PT -symmetric regimes

As discussed above, the background spectrum is given by G(ω)Sa(ω). We will now study how this background
spectrum behaves in the broken- and unbroken- PT -symmetric regimes.
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1. Broken-PT regime

The phase transition takes place at g1 = Γ, where Γ = (κ + γ)/2. In the regime g1 < Γ (before the phase
transition), we have two optical supermodes with the same frequency ω = ∆ but different damping rates Γ±. Thus,
the background spectrum can be decomposed into two parts

G(ω)Sa(ω) =
p′

(ω −∆)2 + Γ2
−

+
p′′

(ω −∆)2 + Γ2
+

, (24)

where p′ =
[

(Γ2
− − γ2)κ

]

/
[

(κ− γ)
√

Γ2 − g21

]

, p′′ =
[

(γ2 − Γ2
+)κ

]

/
[

(κ− γ)
√

Γ2 − g21

]

, Γ± = χ∓ β′, χ = (κ − γ)/2,

β =
√

g21 − Γ2 = i
√

Γ2 − g21 = iβ′, with β′ =
√

Γ2 − g21 . Note that this decomposition is valid regardless of whether
the gain of the active resonator exactly balances or not the loss of the passive resonator.
In the vicinity of the transition point, we have

lim
g1→Γ

G(ω)Sa(ω) =
2κ[(ω −∆)2 + γ2]

[(ω −∆)2 + χ2]2
. (25)

We also find that G(ω) of Eq. (18) becomes

lim
g1→Γ

G(ω) =
[γ2 + (ω −∆)2][κ2 + (ω −∆)2]

[(ω −∆)2 + χ2]
2

=
κ2 + (ω −∆)2

2κ
lim
g1→Γ

G(ω)Sa(ω). (26)

Since limg1→Γ G(ω)Sa(ω) = [limg1→Γ G(ω)] [limg1→Γ Sa(ω)], we arrive at

lim
g1→Γ

Sa(ω) =
2κ

κ2 + (ω −∆)2
. (27)

Moreover, if the gain and loss are exactly balanced (i.e., κ = γ), we have χ = 0 and Γ = κ = γ, which leads to

lim
κ→γ

lim
g1→Γ

G(ω)Sa(ω) =
2γ[(ω −∆)2 + γ2]

(ω −∆)4
=

2κ[(ω −∆)2 + κ2]

(ω −∆)4
. (28)

Finally, in the limit with very weak coupling such that g1 → 0, we find that G(ω) in Eq. (18) goes to one, that is
limg1→0 G(ω) = 1. Moreover, the background spectrum given in Eq. (24) becomes

lim
g1→0

G(ω)Sa(ω) = lim
g1→0

Sa(ω) = lim
g1→0

G2(ω) =
2κ

(ω −∆)2 + κ2
, (29)

and we find

lim
g1→0

Sa(ω) =
2κ

(ω −∆)2 + κ2
. (30)

2. PT -symmetric regime

This regime is identified with g1 > Γ, where there are two resonant peaks with different frequencies, namely at
ω = Ω− and ω = Ω+, but the same damping rates Γ± = χ [see Fig 1(b)]. The background spectrum can be
decomposed into three parts:

G(ω)Sa(ω) =
2κ

(ω − Ω−)2 + Γ2
±

+
κ

(ω − Ω+)2 + Γ2
±

+
2κ(κγ + γ2 − g21)

[(ω − Ω+)2 + Γ2
±][(ω − Ω−)2 + Γ2

±]
, (31)

where Ω± = ∆± β and β is a real number. Note that G(ω)Sa(ω) can also be re-written as

G(ω)Sa(ω) =
2[(ω −∆)2 + γ2]

[(ω −∆)2 − β2]
2
+ 2χ2 [(ω −∆)2 + β2] + χ4

(32)

=
2[(ω −∆)2 + γ2]

[(ω −∆)2 − g21 + Γ2]
2
+ 2χ2 [(ω −∆)2 + g21 − Γ2] + χ4

(33)
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In the vicinity of the transition point, we find from Eq. (33) that

lim
g1→Γ

G(ω)Sa(ω) =
2κ[(ω −∆)2 + γ2]

[(ω −∆)2 + χ2]2
. (34)

Note that the limg1→Γ G(ω) given in Eq. (26) is the same for both the PT -symmetric regime and the broken-PT
regime. Substituting Eq. (26) in Eq. (34), we find

lim
g1→Γ

Sa(ω) =
2κ

κ2 + (ω −∆)2
, (35)

which is the same as the case for the broken-PT case.
Moreover, if the gain and loss are exactly balanced (i.e., κ = γ), we have Γ = κ = γ and χ = 0 (i.e., implying

supermodes with zero linewidth). Then we obtain

lim
κ→γ

lim
g1→Γ

G(ω)Sa(ω) =
2κ[(ω −∆)2 + κ2]

(ω −∆)4
=

2γ[(ω −∆)2 + γ2]

(ω −∆)4
, (36)

which is exactly the same as Eq. (29), implying that the background spectrum converges to the same spectrum in the
vicinity of the PT -phase transition point.
Finally, in the very-strong-coupling limit, that is in the limit when g1 → ∞, we find that the G(ω) in Eq. (18) goes

to zero, that is limg1→∞ G(ω) = 0, and hence the background spectrum given in Eq. (31) satifies:

lim
g1→∞

G(ω)Sa(ω) = lim
g1→∞

G1(ω) = lim
g1→∞

G2(ω) = 0. (37)

B. Sideband spectrum in the broken-PT and PT -symmetric regimes

The sideband spectrum corresponds to the second term (g2/κ2)G(ω)
∫ +∞

−∞
G2(ω1)Szo(ω − ω1)dω1 in Eq. (23). The

integral term in Eq. (23) is a convolution in the frequency domain, and can be reexpressed in the time domain by
introducing the Fourier transform F as a product of G2 (t) and Szo (t)

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) = F [G2(t)Szo(t)], (38)

where G2(t) and Szo (t) are the inverse Fourier transforms of G2(ω) and Szo (ω).

1. Broken-PT regime

In the regime defined by g1 < Γ, G2(ω) can be decomposed into two parts as

G2(ω) = p−
Γ2
−

(ω −∆)2 + Γ2
−

+ p+
Γ2
+

(ω −∆)2 + Γ2
+

, (39)

where p− =
[

(Γ2
− − γ2)κ

]

/
[

(κ− γ)Γ2
−

√

Γ2 − g21

]

, p+ =
[

(γ2 − Γ2
+)κ

]

/
[

(κ− γ)Γ2
+

√

Γ2 − g21

]

, Γ = (κ+ γ)/2, Γ± =

χ∓
√

Γ2 − g21 , and χ = (κ− γ)/2. The inverse Fourier transform of G2(ω) can be expressed as

G2(t) = c1 exp(−Γ−|t|+ i∆t) + d1 exp(−Γ+|t|+ i∆t), (40)

where

c1 =
Γ2
− − γ2

2(κ− γ)
√

Γ2 − g21

κ

Γ−

, (41)

d1 =
γ2 − Γ2

+

2(κ− γ)
√

Γ2 − g21

κ

Γ+

. (42)
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Substituting these equations in Eq. (38), we find

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) = c1Sz1(ω) + d1Sz2(ω), (43)

where Sz1(ω) = F
[

f1(t)F−1[Szo(ω)]
]

, Sz2(ω) = F
[

f2(t)F−1[Szo(ω)]
]

, and F−1 is the inverse Fourier trans-
form. Here, f1(t) and f2(t) are form factors, which can be represented by f1(t) = exp(−Γ−|t|+ i∆t) and
f2(t) = exp(−Γ+|t|+ i∆t).
In the vicinity of the phase-transition point (g1 → Γ), we have

lim
g1→Γ

(c1Sz1(ω) + d1Sz2(ω)) = lim
g1→Γ

(c1 + d1)F
[

f(t)F−1[Szo(ω)]
]

,

where f(t) = exp {−[(κ− γ)/2]|t|+ i∆t} is obtained as limg1→Γ f1(t) = limg1→Γ f2(t) = f(t). Then, explicitly writing
the expressions Γ− and Γ+ in c1 [Eq. (41)] and d1 [Eq. (42)], we can find that

lim
g1→Γ

(c1 + d1) =
κ

κ− γ

χ2 + γ2

χ2
=

κ

κ− γ

(

1 + (γ/χ)2
)

=
κ

κ− γ

[

1 +
4γ2

(κ− γ)2

]

. (44)

Subsequently, we have

lim
g1→Γ

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) =
κ

κ− γ

[

1 +
4γ2

(κ− γ)2

]

F
[

f(t)F−1[Szo(ω)]
]

. (45)

Away from the phase-transition point, Γ− is much larger than Γ+, which means that d1 is much larger than c1.
If we now assume that Szo(ω) has a Lorentzian form, we find that Sz2(ω) is much narrower than Sz1 (ω), implying
that the sideband d1Sz2 (ω) in S (ω) induced by the back-action spectrum Szo (ω) is higher and narrower than the
other sideband c1Sz1 (ω) in S (ω) also induced by the back-action spectrum Szo (ω). Thus, c1Sz1 (ω) can be ignored.
Consequently, we can re-write Eq. (43) as

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) = d1Sz2(ω) =
κ

(κ− γ)

γ2 − Γ2
+

√

Γ2 − g21Γ+

Sz2(ω). (46)

In the very weak coupling limit, that is in the limit when g1 → 0, we find that c1 of Eq. (41) goes to 1 whereas d1
of Eq. (42) goes to zero. The form factor f1(t) then becomes f(t) = limg1→0 f1(t) = exp (−κ|t|+ i∆t). Subsequently,
we can rewrite Eq. (43) as

lim
g1→0

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) = Sz3(ω), (47)

where Sz3(ω) = F
[

f(t)F−1[Szo(ω)]
]

.

2. PT -symmetric regime

In this regime, where we have g1 > Γ, G2(ω) can be decomposed into three parts as

G2(ω) = p1
Γ2
±

(ω − Ω−)2 + Γ2
±

+ p2
Γ2
±

(ω − Ω+)2 + Γ2
±

+ p3
Γ4
±

[

(ω − Ω+)2 + Γ2
±

] [

(ω − Ω−)2 + Γ2
±

] , (48)

where p1 = 2κ/Γ2
±, p2 = 2κ/Γ2

±, p3 = 2κ(κγ + γ2 − g21)/Γ
4
±, Ω± = ∆ ±

√

g21 − Γ2, and Γ± = χ. The first two terms
on the right side of Eq. (48) can be easily transformed into the time domain by inverse Fourier transforms yielding:

F−1

[

p1
Γ2
±

(ω − Ω−)2 + Γ2
±

]

=
κ

Γ±

exp(−Γ±|t|+ iΩ−t), (49)

and

F−1

[

p2
Γ2
±

(ω − Ω+)2 + Γ2
±

]

=
κ

Γ±

exp(−Γ±|t|+ iΩ+t). (50)
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The third term is a convolution term in time domain which can be represented by

F−1

[

p3
Γ4
±

[

(ω − Ω+)2 + Γ2
±

] [

(ω − Ω−)2 + Γ2
±

]

]

=
κ(κγ + γ2 − g21)

Γ2
±

∫ +∞

−∞

dτf3(τ)f4(t− τ), (51)

where f3(t) = exp(−Γ±|t| − iΩ+t) and f4(t) = exp(−Γ±|t| − iΩ−t). The integral term in Eq. (51) equals to

∫ +∞

−∞

f3(τ)f4(t− τ)dτ =
Γ±

(g21 − κγ)
[exp (−Γ±|t|+ iΩ+t) + exp (−Γ±|t|+ iΩ−t)]

+
1

√

g21 − Γ2

Γ2
±

g21 − κγ
[isgn(t) exp(−Γ±|t|+ iΩ+t) + isgn(t) exp(−Γ±|t|+ iΩ−t)] , (52)

where sgn(t) is the sign function defined by

sgn(t) =











1, t > 0

0, t = 0.

−1, t < 0

(53)

Using Eqs. (49)-(52), we can write the time domain expression G2(t) for G2(ω) as

G2(t) = F−1[G2(ω)] =

[

κ

Γ±

+
κ(κγ + γ2 − g21)

Γ±(g21 − κγ)

]

[exp (−Γ±|t|+ iΩ+t) + exp (−Γ±|t|+ iΩ−t)]

+
1

√

g21 − Γ2

κ(κγ + γ2 − g21)

g21 − κγ
[isgn(t) exp(−Γ±|t|+ iΩ+t) + isgn(t) exp(−Γ±|t|+ iΩ−t)] .(54)

Substituting Eq. (54) into Eq. (38), we find

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) =
κγ2

Γ±(g21 − κγ)
Sz4(ω) +

1
√

g21 − Γ2

κ(κγ + γ2 − g21)

g21 − κγ
Sz5(ω), (55)

where Sz4(ω) = F
[

f5(t)F−1[Szo(ω)]
]

, with f5(t) = exp(−Γ±|t|+ iΩ+t) + exp(−Γ±|t|+ iΩ−t), and Sz5(ω) =

F
[

f6(t)F−1[Szo(ω)]
]

, with f6(t) = isgn(t) exp(−Γ±|t|+ iΩ+t) + isgn(t) exp(−Γ±|t|+ iΩ−t).

In the vicinity of the phase-transition point (g1 → Γ), we can omit the high-order terms of (g21−Γ2) in Sz5(ω). Also
note that in the PT -symmetric regime, we have Γ± = χ = (κ − γ)/2. Substituting these expressions into Eq. (55),
we have

lim
g1→Γ

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) =
κγ2

χ(Γ2 − κγ)
Sz6(ω) =

2

κ− γ

κγ2

Γ2 − κγ
Sz6(ω) =

8κγ2

(κ− γ)3
Sz6(ω) (56)

where we have used Γ = (κ+ γ)/2, and Sz6(ω) = F
[

f(t)F−1[Szo(ω)]
]

, with f(t) = exp(−Γ±|t| − iΩt).
In the PT -symmetric regime, but far away from the phase-transition point, we can assume that Szo is in the

Lorentzian form rz/[(ω−ωz)
2+ r2z ], where rz and ωz are, respectively, the decay rate and the frequency of the system

being measured. Then Sz4(ω) and Sz5(ω) can be expressed as

Sz4(ω) =
rz + Γ±

(ω − ωz − Ω+)2 + (rz + Γ±)2
+

rz + Γ±

(ω − ωz − Ω−)2 + (rz + Γ±)2
, (57)

Sz5(ω) =
ω − ωz − Ω+

(ω − ωz − Ω+)2 + (rz + Γ±)2
+

ω − ωz − Ω−

(ω − ωz − Ω−)2 + (rz + Γ±)2
. (58)

Note that Sz4(ω) has two peaks centered at the frequencies (Ω+ +ωz) and (Ω− +ωz). Similarly, Sz5(ω), too, has two
peaks with central frequencies at Ω++ωz+ rz +Γ± and Ω−+ωz + rz +Γ±. If rz ≪ ωz and Γ± = χ = (κ−γ)/2 ≈ rz ,
the four peaks in S (ω) induced by Sz4 (ω) and Sz5 (ω) are merged into two peaks at the frequencies (Ω+ + ωz) and
(Ω− + ωz). Since in the PT -symmetric regime, the background spectrum also has two peaks at the frequencies Ω+

and Ω−, we can focus on the frequency domain ranging from Ω+ to Ω+ + ωz. Under this condition, Sz5(ω) can be
ignored, and Eq. (55) can be written as

∫ +∞

−∞

dω1G2(ω1)Szo(ω − ω1) =
κγ2

Γ±(g21 − κγ)
Sz4(ω) =

κγ2

χ(Γ2 − κγ)
Sz4(ω) =

2

κ− γ

κγ2

g21 − κγ
Sz4(ω). (59)
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In the very strong coupling limit, that is in the limit when g1 → ∞, we find that G(ω) in Eq. (18) goes to zero,
that is limg1→∞ G(ω) = 0 and hence the background spectrum given in Eq. (31), too:

lim
g1→∞

G(ω)Sa(ω) = lim
g1→∞

G1(ω) = lim
g1→∞

G2(ω) = 0. (60)

C. Normalized cavity spectrum in the broken-PT and PT -symmetric regimes

In the previous subsections, we have derived the background and sideband spectra and presented the expressions
for the regimes before and after the phase transition point. Here, we combine those expressions to present the results
for the overall spectrum given in Eq. (23):

S(ω) ≈ G(ω)

[

Sa(ω) +
g2

κ2

∫ +∞

−∞

G2(ω1)Szo(ω − ω1)dω1

]

. (61)

Here, we will focus on the spectra in the vicinity of the transition point.

1. Broken-PT regime

Substituting into Eq. (61) the expressions for the background spectrum given in Eq. (24) and the sideband spectrum
given into Eq. (43), we find the S(ω) as

S(ω) = G(ω)

[

Sa(ω) +
g2

κ2
c1Sz1(ω) +

g2

κ2
d1Sz2(ω)

]

. (62)

In the vicinity of the transition point (g1 → Γ), using the expressions in Eqs. (25) and (45), we can express the
normalized cavity spectrum as

lim
g1→Γ

S(ω) = G(ω) [Sa(ω) +ASz(ω)] , (63)

where we have defined

A =
g2

κ2

κ

κ− γ

[

1 +
4γ2

(κ− γ)2

]

(64)

as the amplification factor, and Sz(ω) = F
[

f(t)F−1[Szo(ω)]
]

with f(t) = exp {−[(κ− γ)/2]|t|+ i∆t} =
exp(−χ|t|+ i∆t), as defined previously. If κ → γ (i.e., exact balance between gain and loss), the amplification
factor A → ∞, implying that in the vicinity of the transition point with well-balanced loss and gain, the amplification
factor can be very high.
In this regime, but away from the phase-transition point, we have

S(ω) = G(ω) [Sa(ω) +A(g, g1)Sz4(ω)] . (65)

Using Eq. (64) in Eq. (46), we find that the amplification factor A(g, g1) can be written as

A(g, g1) =
g2(γ2 − Γ2

+)

2κ(κ− γ)
√

Γ2 − g21Γ+

. (66)

Finally, in the very weak coupling limit g1 → 0, using Eqs. (29) and (47), we find the normalized spectrum as

S(ω) ≈ Sa(ω) +
g2

κ2
Sz3(ω), (67)

where Sz3(ω) = F
[

f(t)F−1[Szo(ω)]
]

, f(t) = exp (−κ|t|+ i∆t), and the amplification factor is given by A = g2/κ2.
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2. PT -symmetric regime

Substituting Eq. (31) and Eq. (55) into Eq. (61), we can express the normalized cavity spectrum as

S(ω) = G(ω)

[

Sa(ω) +
g2

κ2

κγ2

Γ±(g21 − κγ)
Sz4(ω) +

g2

κ2

1
√

g21 − Γ2

κ(κγ + γ2 − g21)

g21 − κγ
Sz5(ω)

]

, (68)

where Sz4(ω) = F
[

f5(t)F−1[Szo(ω)]
]

, with f5(t) = exp(−Γ±|t|+ iΩ+t) + exp(−Γ±|t|+ iΩ−t), and Sz5(ω) =

F
[

f6(t)F−1[Szo(ω)]
]

, with f6(t) = isgn(t) exp(−Γ±|t| − iΩ+t) + isgn(t) exp(−Γ±|t| − iΩ−t).
In the vicinity of the phase-transition point g1 → Γ, we use Eqs. (34) and (56) to arrive at

lim
g1→Γ

S(ω) = G(ω)

[

Sa(ω) +
g2

κ2

8κ3

(κ− γ)3
Sz6(ω)

]

= G(ω)

[

Sa(ω) +
8g2κ

(κ− γ)3
Sz6(ω)

]

. (69)

Then the amplification factor is given by

A(g) =
8g2κ

(κ− γ)3
, (70)

which approaches infinity as κ approaches γ, implying that the closer the gain to the loss, the higher the amplification.
In the PT -symmetric regime, but far away from the phase-transition point, the normalized cavity spectrum can be

recasted as

S(ω) = G(ω)

[

Sa(ω) +
g2

κ2

2

κ− γ

κγ2

g21 − κγ
Sz4(ω)

]

. (71)

Then the amplification factor is given by

A(g, g1) =
g2

κ2

2

κ− γ

κγ2

g21 − κγ
=

2g2γ2

κ(κ− γ)

1

g21 − κγ
. (72)

Clearly, A(g, g1) can be made very high by having κγ closer to g1, or by increasing the coupling strength g of the
optical modes.
Finally, in the very strong coupling limit g1 → ∞, we find, using Eqs. (37) and (60), that

S(ω) = 0. (73)

and thus there is no amplification.
In Figs. 1a and 1b, we present the amplification factor A(g1, g) as a function of the normalized coupling strength

g1/Γ for two different gain-to-loss ratios γ/κ. It is clearly seen that in the vicinity of the phase transition point,
A(g1, g) takes its maximum value, and it reaches higher values as γ/κ approaches one. An increase from γ/κ = 0.8 to
γ/κ = 0.999 leads to a remarkable 100-fold increase: from A(g1, g) = 10 to A(g1, g) = 1000. Moreover, as we approach
to (or move away from) the transition point, the change in A(g1, g) is sharper in the broken-PT regime than in the
PT -symmetric regime. Therefore, in the regions away from the phase transition point, A(g1, g) has higher values in
the PT -symmetric regime than in the broken-PT regime.
Figures 1c and 1d depict the normalized background spectra Sa(ω) of the two-cavity system (i.e., one cavity with

gain and the other with loss) in the broken- and unbroken-PT -symmetric regimes, in comparison with the spectra of
a single-cavity system for two different gain-to-loss ratios γ/κ. As expected in the PT -symmetric regime, the spectra
show mode splitting which is characterized by the presence of the two resonant dips. In the broken-PT -symmetric
regime, the modes coalesce and there is only one resonant dip. Compared to the single-cavity system composed of
only one passive (with loss) resonator, the resonant dips for the two-cavity system are narrower due to the presence
of the gain. As the gain-to-loss ratio increases, the spectra become much narrower.

II. AMPLIFICATION IN A SYSTEM WITH TWO COUPLED LOSSY CAVITIES

A. Zero-frequency detuning

In order to understand the effect of gain in our PT -symmetric system, we consider here a coupled-cavity system
composed of two lossy cavities (i.e., we replace the active cavity with a passive lossy cavity). The non-Hermitian
Hamiltonian of this system is described as

H = (∆− iκ)a†a+ (∆− iκ1) c
†c+ g1(a

†c+ c†a) + ga†az, (74)
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FIG. 1: (Color online) (a,b) Amplification factor A(g1, g) of the backaction spectrum versus the normalized coupling strength
g1/Γ between the cavity and the system being measured with ωz = 3MHz and κ = 10MHz, when (a) γ = 8MHz (i.e., gain-
to-loss ratio γ/κ = 0.8) and (b) γ = 9.99MHz (i.e., gain-to-loss ratio γ/κ = 0.999). Note that there is a remarkable 100-fold
increase in the maximum value of A(g1, g) when γ/κ is increased from its value of 0.8 in (a) to 0.999 in (b). (c,d) Normalized
background spectrum Sa(ω) of a single-cavity system (red dashed curve), and of the two-cavity system (one with loss and the
other with gain) in the broken-PT regime (blue curve) and in the PT -symmetric regime (green curve with circular marks)
at ωz = 3MHz and κ = 10MHz when (c) γ = 8MHz (i.e., γ/κ = 0.8) and (d) γ = 9.99MHz (i.e., γ/κ = 0.999). In the
PT -symmetric regime, the spectrum shows splitting (two resonant dips) whereas in the broken-PT regime there is no mode
splitting (single resonant dip). Note that due to the presence of the gain in the two-cavity system, the spectra (resonant dips)
in the broken- and unbroken-PT -symmetric regime are much narrower than those for the single-cavity case.

which differs from the Hamiltonian of the passive-active cavity system given in Eq. (1) in the second term which is
now (∆− iκ1) c

†c instead of (∆ + iγ) c†c in Eq. (1). In other words, we replace γ with −κ1 to accommodate the
passive lossy resonator, and κ1 now denotes the damping rate of the cavity with the optical mode c. The rest of
the parameters are defined in the same way as before. To make a distinction with the active-passive system, in the
following discussion we will denote the variables and functions for the passive-passive system with a “tilde” over them,
e.g., f̃ .

By replacing γ with −κ1, we find that χ̃ = (κ + κ1)/2, Γ̃ = (κ − κ1)/2, and β̃ =
√

g21 − Γ̃2. Consequently, using

Eq. (3) we find that the effective coupling strength g̃eff for the passive-passive system can be written as

g̃eff =

g

(

Γ̃ +
√

Γ̃2 − g21

)

2
√

Γ̃2 − g21

. (75)

One can easily show that g̃eff cannot be larger than geff .

From the expression β̃ =
√

g21 − Γ̃2, it is clear that there is a phase transition at the point g1 = Γ̃. This point is

called an exceptional point (EP). Similar to the case of active-passive resonators, the coupled passive-passive system

has two optical supermodes with complex frequencies ω̃±, whose real and imaginary parts are given as Ω̃± and Γ̃±,

respectively. When Γ̃ = (κ− κ1)/2 < g1, the two supermodes are nondegenerate with different real parts (resonance

frequencies) Ω̃± = ∆ ±
√

g21 − Γ̃2 and the same imaginary parts (damping rates) Γ̃± = (κ + κ1)/2. On the other

hand, when Γ̃ = (κ − κ1)/2 > g1, the two supermodes are degenerate with the same resonant frequencies Ω̃± = ∆,
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but different damping rates Γ̃± = (κ+ κ1)/2∓
√

Γ̃2 − g21 . We will refer to the regime for Γ̃ = (κ− κ1)/2 < g1 as the

regime after the EP, and the regime for Γ̃ = (κ− κ1)/2 > g1 as the regime before the EP.
Following the same line of reasoning as the PT -case (active-passive system), we can write the normalized spectrum

of the cavity as

S̃(ω) = G̃(ω)Sa(ω) + G̃1(ω)

∫ +∞

−∞

dω1G̃2(ω1)Szo(ω − ω1)

+G̃1(ω)
n
∑

i=2

∫ +∞

−∞

· · ·
∫ +∞

−∞

dω1 · · · dωiG̃2(ωi)G̃1(ω1) · · · G̃1(ωi−1)Szo(ω − ω1) · · ·Szo(ωi−1 − ωi), (76)

where

G̃(ω) =
(κ2

1 + (ω −∆)2)(κ2 + (ω −∆)2)

(ω −∆)4 + (ω −∆)2(κ2 + κ2
1 − 2g21) + (g21 + κ1κ)2

,

G̃1(ω) = G̃(ω)
g2

κ2 + (ω −∆)2
,

G̃2(ω) = G̃(ω)
κ

κ2 + (ω −∆)2
.

Sa(ω) and Szo(ω) are defined with the same meanings of those in our PT -symmetric metrology system. The spectrum
of the cavity in this case can be re-expressed as

S̃(ω) ≈ G̃(ω)Sa(ω) + G̃1(ω)

∫ +∞

−∞

dω1G̃2(ω1)Szo(ω − ω1). (77)

All the other expressions derived for the background spectrum (see Sec. I A), sideband spectrum (see Sec. I B)
and normalized cavity spectra (see Sec. I C) for the PT -system (active-passive resonators) can be extended to the

EP-system (passive-passive resonators) using the following transformations γ → κ1, χ → χ̃, Γ → Γ̃ and β → β̃. In
the following, we will give the results for the normalized cavity spectrum and the amplification factor only. The rest
of the expressions can be obtained from Sec. I B-Sec. I C by making the above substitutions.

1. Regime before the EP

This regime is defined by Γ̃ = (κ − κ1)/2 > g1 and characterized by degenerate resonant frequencies Ω̃± = ∆ and

different damping rates Γ̃± = (κ + κ1)/2 ∓
√

Γ̃2 − g21 . Substituting γ → −κ1 into Eq. (62), we find the normalized

cavity spectrum as

S̃(ω) = G̃(ω)

[

Sa(ω) +
g2

κ2
c̃1S̃z1(ω) +

g2

κ2
d̃1S̃z2(ω)

]

, (78)

where S̃z1(ω) = F
[

f̃1(t)F−1[Szo(ω)]
]

, and S̃z2(ω) = F
[

f̃2(t)F−1[Szo(ω)]
]

. Here, f̃1(t) and f̃2(t) are form factors,

which can be represented by f̃1(t) = exp(−Γ̃−|t|+ i∆t) and f̃2(t) = exp(−Γ̃+|t|+ i∆t). Also, c̃1 and d̃1 can be
obtained from Eqs. (41) and (42) using γ → −κ1.

In the vicinity of the phase-transition point such that g1 → Γ̃, the normalized cavity spectrum can be re-expressed
as

S̃(ω) ≈ G̃(ω)[Sa(ω) + ÃS̃z(ω)], (79)

where S̃z(ω) = F
[

f̃(t)F−1[Szo(ω)]
]

and f̃(t) = exp {−[(κ+ κ1)/2]|t| − i∆t}. Then the amplification factor becomes

Ã =
g2

κ2

κ

κ+ κ1

[

1 +
4κ1

(κ+ κ1)2

]

. (80)

Away from the exceptional point, Eq. (77) can be described as

S̃(ω) ≈ G̃(ω)[Sa(ω) +
g2(κ2

1 − Γ̃2
+)

2κ(κ+ κ1)
√

Γ̃2 − g21Γ̃+

S̃z2(ω)], (81)
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from which we find the amplification factor as [i.e., also from Eq. (66)]

Ã(g, g1) =
g2(κ2

1 − Γ̃2
+)

2κ(κ+ κ1)
√

Γ̃2 − g21Γ̃+

. (82)

In the weak-coupling limit g1 → 0, the normalized cavity spectrum can be re-expressed as

S̃(ω) ≈ Sa(ω) +
g2

κ2
S̃z3(ω), (83)

where S̃z3(ω) = F
[

f̃(t)F−1[Szo(ω)]
]

and f̃(t) = exp (−κ|t|+ i∆t).

2. Regime after the EP

This regime is defined by Γ̃ = (κ − κ1)/2 < g1, and characterized by nondegenerate resonant frequencies Ω̃± =

∆ ±
√

g21 − Γ̃2, and the same damping rates Γ̃± = (κ + κ1)/2. Substituting γ → −κ1 in Eq. (68), we find that the

normalized cavity spectrum as

S̃(ω) = G̃(ω)



Sa(ω) +
g2

κ2

κκ2
1

Γ̃±(g21 + κκ1)
S̃z4(ω) +

g2

κ2

1
√

g21 − Γ̃2

κ(−κκ1 + κ2
1 − g21)

g21 + κκ1

S̃z5(ω)



 , (84)

where S̃z4(ω) = F
[

f̃5(t)F−1[Szo(ω)]
]

, with f̃5(t) = exp(−Γ̃+|t|+ iΩ̃+t) + exp(−Γ̃−|t|+ iΩ̃−t), and S̃z5(ω) =

F
[

f̃6(t)F−1[Szo(ω)]
]

, with f̃6(t) = isgn(t) exp(−Γ̃±|t| − iΩ̃+t) + isgn(t) exp(−Γ̃±|t| − iΩ̃−t).

In the vicinity of the phase-transition point g1 → Γ̃, we find

lim
g1→Γ̃

S̃(ω) = G̃(ω)

[

S̃a(ω) +
g2

κ2

8κ2

(κ+ κ1)3
S̃z6(ω)

]

= G̃(ω)

[

S̃a(ω) +
8g2

(κ+ κ1)3
S̃z6(ω)

]

. (85)

where S̃z6(ω) = F
[

f̃(t)F−1[Szo(ω)]
]

and f̃(t) = exp(−Γ̃±|t| − i∆t). Then, the amplification factor is given by

Ã(g) =
8g2

(κ+ κ1)3
(86)

which decreases as the total loss of the system (κ+ κ1) increases, implying that the smaller the total loss, the higher
the amplification.
In this regime, but far away from the exceptional point, the normalized cavity spectrum can be written as

S̃(ω) = G̃(ω)

[

S̃a(ω) +
g2

κ2

2

κ+ κ1

κκ2
1

g21 + κκ1

S̃z4(ω)

]

. (87)

Then the amplification factor is given by

Ã(g, g1) =
g2

κ2

2

κ+ κ1

κκ2
1

g21 + κκ1

=
2g2κ2

1

κ(κ+ κ1)

1

g21 + κκ1

. (88)

Note that Ã(g, g1) can be made very high by decreasing κ or by increasing the coupling strength g of the optical
modes.
Finally, in the very strong coupling limit g1 → ∞, we find, using Eqs. (37) and (60) that

S̃(ω) = 0, (89)

and obviously there is no amplification.
In Figs. 2a and 2b, we present the amplification factor Ã(g1, g) as a function of the normalized coupling strength

g1/Γ̃ for the two-lossy cavities system at two different loss ratios κ1/κ. It is clearly seen that in the vicinity of the EP,
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FIG. 2: (Color online) (a,b) Amplification factor Ã(g1, g) of the backaction spectrum versus the normalized coupling strength

g1/Γ̃ between the cavity and the system being measured with κ = 20MHz and ωz = 6MHz when (a) κ1 = 16MHz (i.e., loss
ratio κ1/κ = 0.8) and (b) κ1 = 0.2MHz (i.e., loss ratio κ1/κ = 0.01). There is a 2-fold increase in the maximum value of

Ã(g1, g) when κ1/κ is decreased from its value of 0.8 in (a) to 0.01 in (b). (c,d) Normalized background spectrum Sa(ω) of a
single-cavity system (red dashed curve), and of the two-lossy-cavity system in the regime after the EP (green curve) and in the
regime before the EP(blue curve with stars) at ωz = 6MHz and κ = 20MHz when (c) κ1 = 16MHz (i.e., κ1/κ = 0.8), and (d)
κ1 = 0.2MHz (i.e., κ1/κ = 0.01). Before the EP, the background spectrum shows splitting, and the split modes become more
apparent as the κ1/κ decreases. When the loss ratio κ1/κ is large the spectrum of the two-lossy-cavity system is nearly the
same as the spectrum of the single-cavity system (c). When κ1/κ is very small, the spectrum after the EP is narrower (d).

Ã(g1, g) takes its maximum value, and it reaches higher values as κ1/κ approaches to zero (i.e., when the difference
in the losses of the cavities is very large). A decrease from κ1/κ = 0.8 to κ1/κ = 0.01 leads to a 2-fold increase from

Ã(g1, g) = 1 to Ã(g1, g) = 2. Moreover, as we approach to (move away from) the EP, the change in Ã(g1, g) is sharper

in the regime before the EP than in the regime after the EP. Therefore, in the regions away from the EP, Ã(g1, g) has
higher values in the regime after the EP than in the regime before the EP.
Figures 2c and 2d depict the normalized background spectra Sa(ω) of the two-lossy-cavity system in the regime

before and after the EP in comparison with the spectra of a single-cavity system for two different loss ratios κ1/κ.
As expected in the regime before the EP, the spectra show mode splitting. In the regime after the EP, the modes
coalesce and there is only one resonant dip. Compared to the single-cavity system composed of only one passive (with
loss) resonator, the two-cavity system in the regime after the EP has a narrower spectrum if the loss ratio κ1/κ of
the cavities is very small (i.e., the cavities have a significant difference in the amount of losses they have).

B. Non-zero frequency detuning

Here we consider the case of coupled modes with non-zero frequency detuning. Comparing with Eq. (74), the
non-Hermitian Hamiltonian of this system is described by

H = (∆1 − iκ)a†a+ (∆2 − iκ1) c
†c+ g1(a

†c+ c†a) + ga†az, (90)

where ∆1 −∆2 = ∆c. Without the interaction term ga†az, Eq. (90) accounts for the coupling between the optical
modes of the microcavities and leads to two supermodes a± that are described with the complex frequencies

ω± =
∆1 +∆2

2
− i

κ+ κ1

2
∓ ˜̃β, (91)
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FIG. 3: (Color online)(a) Amplification factor Ã(g, g1) versus coupling strength with ∆c = 0 MHz (blue curve), ∆c = 0.01
MHz (green dashed curve). (b) Normalized background spectra of the two coupled lossy cavities versus detuning with ∆c = 0
MHz (blue curve) and ∆c = 5 MHz (red dashed curve) under the coupling strength g1 = 5 MHz. The values of the parameters
used in the simulations are: κ = 10 MHz and κ1 = 0.01 MHz (i.e., κ1/κ = 0.001)

where ˜̃β =
√

g21 +∆2
c/4− i∆c(κ− κ1)− (κ− κ1)2/4. In an EP system (lossy coupled modes) where there is zero-

detuning between the modes, we have β̃ =
√

g21 − (κ− κ1)2/4, which becomes zero exactly at the EP. Clearly,
˜̃
β,

obtained for non-zero detuning between the modes, cannot be made zero. Thus, the amplification seen at the EP
point cannot be attained for the non-zero detuning case (Fig 2a,b).

Assuming very small detuning ∆c, the normalized cavity spectrum can be re-expressed as

S̃(ω) ≈ G̃(ω)[Sa(ω) + Ã(g, g1)S̃z(ω)], (92)

where Sa(ω) is the background spectrum; and Ã(g, g1) is the amplification factor. Figure 3a depicts the amplification

factor as a function of g1/Γ̃, where Γ̃ = (κ−κ1)/2, for various values of ∆c. It is clearly seen that as the detuning ∆c

increases, the amplification factor decreases. As shown in Fig 3b, when the resonant modes of the microresonators
have non-zero frequency-detuning with κ1/κ = 0.001, the spectrum exhibits asymmetric Fano resonances due to the
coupling between the high- and low-Q modes. At zero detuning, as shown in Fig 3b, there is a transparency window
originated from Fano interferences [4]. As ∆c increases, the asymmetry in the spectrum becomes much clearer (red
dashed curve in Fig 3b), and the difference of the linewidths of the modes becomes clearer. The mode with narrower
linewidth will be beneficial to metrology and sensing.

The square-root topology EP (and PT -symmetric) systems affect their scattering matrices in such a way that the
coalescence of two resonance modes (each described by a single pole of the scattering matrix of the system) at an EP
(or a PT -transition point) a pole of second order emerges besides the usual first order pole. The interference of these
poles leads to asymmetric lineshape profiles that have been shown to be described as genuine Fano resonances [5–7],
which have been observed in many physical systems (due to the coupling of a low- and a high-Q mode) and used for
high-performance sensing enabled by their sharp spectral response and high field enhancement [8, 9]. This suggests a
similarity of the underlying physics of sensitivity enhancement between Fano systems and EP systems in the vicinity
of an EP (or PT -transition); however, it is still unclear whether all resonances that can be fit by the Fano formula
have their origin in an EP.
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FIG. 4: (Color online)(a) Amplification factor A(g, δνl) versus linewidth of the laser coupled to the mechanical mode. (b)
Normalized background spectra versus detuning for the active-cavity transducer (blue curve) and single lossy-cavity transducer
(red dashed curve), with the values of the parameters used in the simulations: δνl = 20 KHz and κ = 10 MHz.

III. AMPLIFICATION IN A SYSTEM WITH AN ACTIVE CAVITY

The fundamental linewidth δνl of a laser is given by the Schawlow-Townes limit [10] as

δνl =
πhν(δν)2

Pout

, (93)

where hν is the photon energy with h representing the Plank’s constant and ν denoting the cavity resonant frequency;
δν is the cold cavity (i.e., when gain medium is not excited) resonant linewidth that is related to the cold cavity Q
through δν = ν/Q; Pout is the laser output power. The spectrum of the laser is Lorentzian, and thus can be expressed
as

S(ω) =
2δνl

δν2l + (ω −∆)2
, (94)

where ∆ is the detuning frequency of the laser cavity. If the laser cavity couples to a mechanical system, the normalizd
spectrum can be written as

S(ω) ≈ G(ω)[Sa(ω) +A(g, δνl)Sb(ω)], (95)

where G(ω) ≡ 1 in the single-cavity system; Sa(ω) is the spectrum of the laser cavity; Sb(ω) is the spectrum of the
mechanical mode with Sb(ω) = (δνl + γm)/((ω −∆− ωm)2 + (γm + δνl)

2); A(g, δνl) is an amplification factor given
by A(g, δνl) = g2/((ωm −∆)2 + δν2l ); g is the coupling strength between the optical mode and the mechanical mode;
ωm is the frequency of the mechanical mode; and γm is the decay rate of the mechanical mode. As the linewidth
increases, the amplification factor A(g, δνl) decreases slightly, as seen in Fig 4a. Moreover, we can find due to the
presence of the gain, the linewidth of the background spectrum for the active-cavity transducer is narrower than that
for the passive-cavity optomechanical transducer, as shown in Fig 4b.
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FIG. 5: (Color online) (a,b) Output spectra of the optomechanical transducers versus normalized frequency ω/ωm. (c,d)
Normalized susceptibility coefficient G(ω) versus normalized frequency ω/ωm. The values of the parameters used in the
simulations are: ∆ = 0 MHz, ωm = 6 MHz, κ = 20 MHz, γm = 0.2 MHz and g = 5 MHz, with γ taking the values of γ = 16
MHz (i.e., γ/κ = 0.8) in (a,c), and γ = 19.98 MHz (i.e., γ/κ = 0.999) in (b,d).

IV. CALCULATIONS OF THE PHONON SIDEBANDS

In our PT metrology system, the effective decay rate is greatly decreased by the presence of the gain. Here we
will calculate the phonon sidebands [13–16] taking the gain into account. As an example, we calculate the spectrum
up to the second-order term in Eq. (17). In the optomechanical system we consider here, the general measurement
backaction spectrum Sz(ω) is taken as the spectrum Sb(ω) of the mechanical mode. In the broken-PT regime, we
have

∫ +∞

−∞

∫ +∞

−∞

dω1dω2G1(ω1)G2(ω2)Sb(ω2 − ω1)Sb(ω − ω1)

≈ c2
Γa2

(ω −∆− 2ωm)2 + Γ2
a2

+ d2
Γb2

(ω −∆− 2ωm)2 + Γ2
b2

, (96)
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FIG. 6: (Color online) (a,b) Output spectra of the optomechanical transducers with two lossy cavities versus normalized

frequency ω/ωm. (c,d) Normalized susceptibility coefficient G̃(ω) versus normalized frequency ω/ωm. The values of the
parameters used in the simulations are: ∆ = 0 MHz, ωm = 30 MHz, κ = 10 MHz, γm = 1 MHz and g = 6 MHz, with κ1 taking
the values of κ1 = 8 MHz (i.e., κ1/κ = 0.8) in (a,c), and κ1 = 0.1 MHz (i.e., κ1/κ = 0.01) in (b,d).

where

Sb =
γm

(ω − ωm)2 + γ2
m

,

c2 = c1
g2(Γ2

− − γ2)

(κ− γ)Γ−

√

Γ2 − g21(Γ− + Γ+ + γm)
,

d2 = d1
g2(γ2 − Γ2

+)

(κ− γ)Γ+

√

Γ2 − g21(Γ− + Γ+ + γm)
,

and γa2 = 2γm + Γ+, γb2 = 2γm + Γ−. Including the high-order terms, the spectrum S (ω) can be expressed as

S(ω) ≈
∞
∑

n=1

cn
Γan

(ω −∆− nωm)2 + Γ2
an

+

∞
∑

n=1

dn
Γbn

(ω −∆− nωm)2 + Γ2
bn

. (97)

Figure 5 shows the results of the numerical simulations of the spectrum S (ω) for the PT optomechanical systems.
Phonon sidebands up to the second order term is clearly seen. The first sideband is located at the mechanical frequency
ωm and the second sideband is at 2ωm. The spectrum is dependent on the susceptibility coefficient G(ω). When the
system is more balanced (i.e., gain-to-loss ratio is close to one), the second sideband becomes much clearer because
G(ω) becomes narrower and is shifted above the zero level.

In Figure 6, we show the results of the numerical simulations of the spectrum S̃ (ω) when the transducer is built
from two lossy cavities (i.e., passive cavity; no active cavity). The phonon sidebands are unresolved in the bad-cavity
regime, i.e. ωm < κ, which is irrelevant to the optomechanical coupling strength [13–16]. In the resolved sideband
regime ωm ≫ κ, we can observe phonon sidebands up to second order. The first sideband is located at the mechanical
frequency ωm and the second sideband is at 2ωm. The spectrum can be affected by the susceptibility coefficient G̃(ω).
When the two damping rates κ and κ1 are very different, i.e. κ ≫ κ1, the sidebands become much clearer because
G̃(ω) becomes narrower.
In Figure 7, we show the results of the numerical simulation of the spectrum Sg (ω) when the transducer is built

from an active cavity. The phonon sidebands are unresolved in the bad-cavity regime, i.e. ωm < δνl. In the regime
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FIG. 7: (Color online) Normalized output spectra of the active-cavity optomechanical-transducer versus normalized frequency
ω/ωm. The values of the parameters used in the simulations are: ∆ = 0 MHz, ωm = 30 MHz, γm = 1 MHz and g = 6 MHz,
and active cavity linewidth δνl = 20 kHz.

ωm ≫ δνl, we observe phonon sidebands up to the second order. The first sideband is located at the mechanical
frequency ωm and the second sideband is at 2ωm. Since the coupling strength between the optical mode and the
mechanical mode cannot be significantly enhanced just by the presence of gain (i.e., active cavity), the observation of
the sidebands relies on whether the cavity mode has sufficiently narrower linewidth or not.

V. DISPLACEMENT SPECTRAL DENSITIES IN THE ACTIVE CAVITY, PT AND EP

OPTOMECHANICAL TRANSDUCER

The standard quantum limit of the optomechanical transducer can be characterized by the displacement spectral
density and the quantum backaction force spectral density. The displacement spectral density Sxx,single(ω) and the
quantum backaction force spectral density SFF,single(ω) for a single cavity transducer are given by [11]:

Sxx,single(ω) =
κ2

~ωc

64g2Pin

(

1 +
4ω

κ2

)

, (98)

SFF,single(ω) =
16~g2Pin

κ2ωc

(

1 +
4ω

κ2

)−1

, (99)

where Pin is the input power; κ is the decay rate of the optical cavity; and ωc is the frequency of the optical cavity.
Then, for an active-cavity optomechanical transducer, the displacement spectral density Sxx,gain(ω) and the quantum
backaction force spectral density SFF,gain(ω) are expressed as

Sxx,gain(ω) =
δν2l ~ωc

64g2Pin

(

1 +
4ω

δν2l

)

, (100)

SFF,gain(ω) =
16~g2Pin

δν2l ωc

(

1 +
4ω

δν2l

)−1

, (101)
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FIG. 8: (Color online) The normalized displacement spectral densities Sxx,single(ωm), Sxx,gain(ωm) Sxx,PT(ωm) and Sxx,EP(ωm)
of the single cavity-optomechanical transducer (red curve) , the single active cavity transducer (pink dotted curve), the PT -
optomechanical transducer (blue curve) and the two-lossy-cavity transducer (green curve with star marks) when ωm/κ = 0.3.
The measurement sensitivity of single active-cavity transducer is larger than the one of single passive-cavity transducer due to
the narrower linewidth. Here we set the active cavity linewidth as 20 KHz. While the coupling strength of the optical mode
and the mechanical mode cannot be enhanced by a single-cavity with gain, the measurement sensitivity of single cavity with
gain transducer is less than the EP transducer or PT transducer. The measurement sensitivity is enhanced by at least two

orders of magnitude by the PT optomechanical transducer near the transition point, i.e., Sxx,PT(ωm)/Sxx,single(ωm) < 10−2,
and the PT -system performs much better than the EP-system due to the gain-loss balance of the PT structure.

where δνl is the linewidth of the active cavity. For the PT optomechanical transducer, we tune the frequency of the
driving field such that the supermode a− couples to the mechanical mode. Thus, the displacement spectral density
Sxx,PT(ω) and the quantum backaction force spectral density SFF,PT(ω) of the PT optomechanical transducer can be
represented by

Sxx,PT(ω) =
Γ2
−~Ω−

64g2effPin

(

1 +
4ω

Γ2
−

)

, (102)

SFF,PT(ω) =
16~g2effPin

Γ2
−Ω−

(

1 +
4ω

Γ2
−

)−1

. (103)

From Eqs. (102) and (103), we can check that Sxx,PT(ω) and SFF,PT(ω) satisfy the Heisenberg inequality [12], i.e.,
√

Sxx,PT(ω)SFF,PT(ω) ≥ ~/2.
We show our simulation results about the displacement spectral density in Fig. 8. As shown in Fig. 8, the displace-

ment spectral density of the PT -symmetric optomechanical transducer (blue curve) is minimized at the transition
point. To explain this, we can see from Eq. (102) that the displacement spectral density Sxx,PT(ωm) increases
monotonously increasing decay rate Γ− and frequency Ω−, while it is inversely proportional to the square of the
effective cavity optomechanics (COM) coupling strength geff . Recall that, in the PT -breaking regime, we have

Γ− = χ +
√

Γ2 − g21 and Ω− = ∆. Thus, when we increase the inter-cavity coupling strength g1, the decay rate
Γ− will decrease and the COM coupling strength geff will increase, which leads to the decrease of Sxx,PT(ω). In the

PT -symmetric regime, we have Γ− = χ and Ω− = ∆−
√

g21 − Γ2. Thus, when we increase g1, the frequency Ω− and
the COM coupling strength geff will decrease, which leads to the increase of Sxx,PT(ω).
Similarly, we can calculate the displacement spectral density Sxx,EP(ω) and the quantum backaction force spectral

density SFF,EP(ω) of the two-lossy-cavity transducer

Sxx,EP(ω) =
Γ̃2
−~Ω̃−

64g̃2effPin

(

1 +
4ω

Γ̃2
−

)

, (104)
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SFF,EP(ω) =
16~g̃2effPin

Γ̃2
−Ω̃−

(

1 +
4ω

Γ̃2
−

)−1

. (105)

As shown in Fig. 8, we can observe a similar decrease of the displacement spectral density for PT and EP systems near
the transition point, but the PT -system performs much better because the effective damping rate of the PT -system
is much smaller due to the gain-loss balance of the PT -symmetric structure.
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