
1

Supplemental Material

A. Fundamental vibration mode of the carbon nanotube

The motion of a suspended nanotube can be described by the Euler-Bernoulli theory [S1, S2]. The Euler-Bernoulli
equation for the static and dynamic displacement of a thin beam subjected to an external driving force reads

ρA
∂2

∂t2
φ(x, t) + EI ∂

4

∂x4
φ(x, t)− T ∂2

∂x2
φ(x, t) = Fext(x, t), (S1)

where φ(x, t) is the lateral displacement in the y direction, ρ the mass density, A the beam cross section, E the Young
modulus, I the moment of inertia, T the tension in the tube, and Fext(x, t) a unit length force that accounts for
the effect of the gate electrodes. The displacement amplitude increases remarkably when the tube is driven at an
eigenfrequency of the system. These eigenfrequencies correspond to the bending modes of the nanotube, which we
label by mode number n starting from zero for the fundamental mode. We here consider the eigenfrequencies of a
perfect clamping nanotube resonator, in which case the tension T goes to zero at zero gate voltage Fext(x, t) = 0
[S3, S4]. In this case the Euler-Bernoulli equation reads

ρA
∂2

∂t2
φ(x, t) + EI ∂

4

∂x4
φ(x, t) = 0. (S2)

The eigenmodes φn and eigenfrequencies ωn satisfy:

ω2
nρAφn = EI ∂

4

∂x4
φn (S3)

The solutions to this equation are

φn(x) = C1(cos knx− cosh knx) + C2(sin knx− sinh knx). (S4)

For a doubly clamped beam, the boundary conditions are φn(0) = φn(L) = 0, φ′n(0) = φ′n(L) = 0, and for a cantilever
the boundary conditions are φn(0) = φ′n(0) = 0, φ′′n(L) = φ′′′n (L) = 0. For the former case, the frequency equation is
given by

cos knL cosh knL = 1. (S5)

For the latter, the frequency equation is given by

cos knL cosh knL = −1. (S6)

The first five nontrivial consecutive roots of these equations are given below

Mode Cantilever Beam
n knL knL
0 1.875 4.730
1 4.694 7.853
2 7.855 10.996
3 10.996 14.137
4 14.137 17.279

The corresponding eigenfrequencies are

ωn = k2
n

√
EI
ρA

. (S7)

Therefore, the fundamental vibrational mode of a nanotube has the vibration frequency ωnt ∼ 1
L2

√
EI
ρA [S3, S4]. In

table I we present the relevant parameters for the carbon nanotube resonator without gate voltages.
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TABLE I. Parameters for the nanotube considered in this work.

Term Value Units
Length L 2 µm
Radius r 1.5 nm
Wall thickness t 0.335 nm
Mass density ρ 1350 kg/m3

Effective mass m 7 × 10−21 kg
Young modulus E 1 TPa
Fundamental frequency ω0 2π×2 MHz
Current carrying capacity C ≥ 10 µA/nm2

Current I 60 µA
Quality factor Q 105 /

B. Derivation of the spin-vibration interaction

The interaction of a single NV center located at ~r with the total magnetic field (external driving and from the
nanotube) is

ĤNV = ~DŜ2
z + µBgs BzŜz + µBgs( ~Bnt(~r) + ~Bdr) · ~̂S. (S8)

Expanding the magnetic field ~Bnt(~r) up to first order in ûy, we have

ĤNV = ~DŜ2
z + µBgs[ Bz +Bnt(d)]Ŝz + µBgs ~Bdr · ~̂S + µBgsŜz∂yBntûy. (S9)

In the basis defined by the eigenstates of Ŝz, i.e., {|ms〉,ms = 0,±1}, with Ŝz|ms〉 = ms|ms〉, we get

ĤNV =
∑
ms

{〈ms|[~DŜ2
z + µBgs[ Bz +Bnt(d)]Ŝz]|ms〉}|ms〉〈ms|

+
∑
ms,m′

s

{〈ms|µBgs ~Bdr · ~̂S|m′s〉}|ms〉〈m′s|+
∑
ms

{〈ms|µBgsŜz∂yBntûy|ms〉}|ms〉〈ms|. (S10)

Taking ~Bdr = B0 cosω0t~ex = B0/2(eiω0t + e−iω0t)~ex, we have

ĤNV =
∑
ms

{~Dm2
s + µBgs[Bz +Bnt(d)]ms}|ms〉〈ms|

+
∑
ms,m′

s

1

2
µBgsB0(eiω0t + e−iω0t)〈ms|Ŝx|m′s〉|ms〉〈m′s|

+
∑
ms

µBgs(~/2mωnt)
1/2∂yBntms|ms〉〈ms|(â† + â). (S11)

In the rotating-frame at the driving frequency ω0 and under the rotating-wave approximation, we can obtain

ĤNV = (~D + µBgsBz +Bnt − ~ω0)|+ 1〉〈+1|+ (~D − µBgsBz −Bnt − ~ω0)| − 1〉〈−1|

+

√
2

4
µBgsB0(|0〉〈+1|+ |+ 1〉〈0|) +

√
2

4
µBgsB0(|0〉〈−1|+ | − 1〉〈0|)

+µBgs(~/2mωnt)
1/2∂yBnt(|+ 1〉〈+1| − | − 1〉〈−1|)(â† + â). (S12)

Including the free Hamiltonian of the vibration mode, we have

ĤNV = ~ωntâ
†â+ ~∆+|+ 1〉〈+1|+ ~∆−| − 1〉〈−1|

+~Ω[| − 1〉〈0|+ |0〉〈−1|] + ~Ω[|+ 1〉〈0|+ |0〉〈+1|]
+~g(|+ 1〉〈+1| − | − 1〉〈−1|)(â† + â). (S13)

with ~∆± = ~D ± µBgs(Bz +Bnt)− ~ω0, ~Ω =
√

2
4 µBgsB0, and ~g = µBgs(~/2mωnt)

1/2∂yBnt.



3

In the following we assume symmetric detunings ∆+ = ∆− = ∆ for simplicity. We can define the bright and dark
states for the NV spin states

|B〉 =
1√
2

(|+ 1〉+ | − 1〉)

|D〉 =
1√
2

(|+ 1〉 − | − 1〉). (S14)

Then we find that the microwave field couples the state |0〉 to the bright state |B〉, while the dark state |D〉 remains

decoupled. In the dressed state basis {|G〉 = cos θ|0〉 − sin θ|B〉, |E〉 = cos θ|B〉 + sin θ|0〉},with tan 2θ = 2
√

2Ω/∆,
Hamiltonian (S13) can be rewritten as [S5]

ĤNV = ~ωntâ
†â+ ~ωeg|E〉〈E|+ ~ωdg|D〉〈D|

+~(g1|G〉〈D|+ g2|D〉〈E|+ H.c.)(â† + â), (S15)

where ωeg =
√

∆2 + 8Ω2, ωdg = ∆+
√

∆2+8Ω2

2 , g1 = −g sin θ, and g2 = g cos θ. Under the condition ∆ � Ω, one has

sin θ ' 0, cos θ ' 1, ωeg ' ∆ + 4Ω2

∆ , ωdg ' ∆ + 2Ω2

∆ , and |E〉 ' |B〉, which leads to

Ĥq = ~ωntâ
†â+

1

2
~Λσ̂z + ~g(σ̂+ + σ̂−)(â† + â). (S16)

C. The two-qubit operations

1. Strong spin-spin interactions mediated by phonons

We consider two NV centers, separated by a distance l ∼ 1µm, coupled to the same vibration mode of the nanotube,
with Hamiltonian

Ĥ2q = ~ωntâ
†â+

∑
i=1,2

1

2
~Λiσ̂

i
z +

∑
i=1,2

~gi(σ̂i+ + σ̂i−)(â† + â). (S17)

For simplicity, we assume Λ1 ' Λ2 = Λ and g1 ' g2 = g, and consider the dispersive regime |Λ− ωnt| � g, when two
NV centers are far detuned from the resonator but in resonance with each other. After the use of a Schrieffer-Wolff
transformation, this will lead to an effective nonlocal spin-spin interaction via the exchange of virtual phonons,

Ĥs-s = ~λeff(σ̂1
+σ̂

2
− + σ̂1

−σ̂
2
+), (S18)

with the coupling strength λeff = g2/|Λ − ωnt|. This interaction can extend over distances on the order of the
nanotube’s length, which allows us to coherently control the interactions between distant NV spins.

We now proceed to discuss the coherence length lc of the phonon mediated NV spin coupling, which is essential to
evaluate the application potential of this device. In particular, it is a very important issue when propagating phonons
are considered rather than the confined one used in this work. At ambient temperature, phonon scattering inside solid
state materials results in harmful decoherence processes. An important figure of merit that is used to quantitatively
characterize all the phonon dissipation mechanisms, including the decay of vibrations into the support as well as
intrinsic damping mechanism within the nanotube, e.g. due to scattering from surface defects, is the mechanical
quality factor Q, defined as the ratio of the resonant frequency over the linewidth. It is interesting to estimate a
sort of coherence length for the nanoresonator mode. To do so one can think of the fundamental bending mode as a
traveling wave, which is reflected at the ends of the nanotube. Thus, the coherence length can be estimated as the
effective mean phonon free path lc ' vτ [S6, S7], where v is the effective speed of sound, and τ is the relaxation time
(mechanical damping rate γm = τ−1). The effective speed of sound v can be found from the relation as ωnt = vk0

[S8, S9], while the relaxation time is related to the quality factor of the mechanical mode 1
τ = ωnt/Q. Thus, we can

estimate the coherence length of the phonon mediated NV spin coupling as lc ∼ Q/k0 ∼ QL. It can extend over
distances on the order of several centimeters, much larger than the distance between two NV spins. Therefore, for
a high-Q mechanical resonator, phonons can coherently propagate inside it back and forth for quite a long distance
before they finally dissipate. This phenomenon has a direct analogy to photons bound in a high-Q micro-cavity. Thus,
in this scheme, we can safely ignore the harmful effect of phonon scattering inside solid state materials, provided that
the mechanical resonator possesses a very high quality factor at low temperature. We need to emphasize that the
recent fabrication of carbon nanotube resonators can possess a quality factor exceeding 105 [S10], which ensures that
phonon losses do not severely limit our scheme. The minimum requirement of this work is that the length scale of the
phonon mediated NV spin coupling is on the order of the tube’s length, which would allow us to coherently control
the NV spin interactions, and facilitate potential applications of this hybrid device.
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2. Dynamics of the two coupled NV spins

To implement this protocol, we need a microwave to drive the transition between the qubit state |0〉j and the bright
state |B〉j in each qubit with Rabi frequency Ωj and frequency detuning δj . The dynamics of the entire system is
described by

Ĥ =
∑
j

~δj |B〉jj〈B|+
∑
j

[~Ωj |B〉jj〈0|+ H.c.] + Ĥs-s. (S19)

The spin-spin interaction can be diagonalized with the states |±〉q = 1/
√

2[|B〉1|D〉2 ± |D〉1|B〉2], leading to

Ĥs-s = ~λeff|+〉qq〈+| − ~λeff|−〉qq〈−|. (S20)

To implement a SWAP gate and quantum information transfer between two qubits, we encode quantum information
in the two spin states as |0〉q = |0〉 and |1〉q = |D〉. The entire system is described by

Ĥ =
∑
j

~δj |B〉jj〈B|+
∑
j

[~Ωj |B〉jj〈0|+ H.c.] + ~λeff|+〉qq〈+| − ~λeff|−〉qq〈−|. (S21)

To gain more insight into the dynamics of the coupled system, we write the Hamiltonian Eq. (S21) in the space S
spanned by the state vectors {|0, 1〉q, |+〉q, |−〉q, |1, 0〉q, |0, 0〉q, |1, 1〉q, |B,B〉q, |0,B〉q, |B, 0〉q},

Ĥ = ~



0 Ω̄1 Ω̄1 0 0 0 0 0 0
Ω̄1 δ+ 0 Ω̄2 0 0 0 0 0
Ω̄1 0 −δ− −Ω̄2 0 0 0 0 0
0 Ω̄2 −Ω̄2 0 0 0 0 0 0
0 0 0 0 0 0 0 Ω2 Ω1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 δ1 + δ2 Ω1 Ω2

0 0 0 0 Ω2 0 Ω1 δ2 0
0 0 0 0 Ω1 0 Ω2 0 δ1


(S22)

From the matrix form for the Hamiltonian Eq. (S21), we see that the space S can be decomposed into two independent
subspaces S1 = {|0, 1〉q, |+〉q, |−〉q, |1, 0〉q} and S2 = {|0, 0〉q, |1, 1〉q, |B,B〉q, |0,B〉q, |B, 0〉q}, i.e., S = S1⊕S2. Thus we
can find that if the two qubits are initially prepared in the state |0〉1q|1〉2q or |1〉1q|0〉2q, then the dynamics of the system
will be confined in the subspace S1 governed by the Hamiltonian

Ĥ = ~δ+|+〉qq〈+| − ~δ−|−〉qq〈−|+ ~Ω̄1|+〉qq〈0, 1|
+~Ω̄1|−〉qq〈0, 1|+ ~Ω̄2|+〉qq〈1, 0| − ~Ω̄2|−〉qq〈1, 0|+ H.c. (S23)
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