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In this supplemental material we first describe in detail our model of the weak system-environment
interaction described by transition rates between system eigenstates. We then show how to derive
analytical expressions for these transition rates perturbative in the normalized light-matter coupling.
We use these system transition rates to derive analytical formula for the photonic emission rates for
both ground state electroluminescence and standard electroluminescence processes. We conclude by
studying the dependency of the photonic emission on the chemical potential.

System-environment interaction

The quantum system analysed in this work is intrinsically open: electrons are allowed to enter and leave via
couplings with two external reservoirs, and photons can escape the cavity through the finite mirror reflectivity. In
order to model the coupling of the system with its environment, we introduce Hamiltonians that describe the coupling
with the source (in) and drain (out) electronic reservoirs and with the continuum of extra-cavity electromagnetic
modes

Hin =
∑

k,j=e,g

λkinc
in
k |j〉 〈s|+ h.c., Hout =

∑
k,j=e,g

λkoutc
out
k |j〉 〈s|+ h.c., Hcav =

∑
k

λkcav(a+ a†)(αk + α†k), (1)

where cink , cout
k , and αk are respectively fermionic annihilation operators for electrons in the in and out reservoirs and

bosonic annihilation operators for free space photons, each one indexed by a generic index k, whose dimensionality
and physical interpretation will depend upon the specific implementation considered. The theory of open quantum
systems [1–3] teaches us that, under suitable weak couplings and Markovian approximations, we can integrate out the
reservoirs, leading to a master equation for the system density matrix ρ in the Lindblad form

ρ̇ = − i
~

[H, ρ] + Lin(ρ) + Lout(ρ) + Lcav(ρ), (2)

where Lj(ρ) =
∑
α6=β Γα→βj D[|α〉 〈β|](ρ), D[O](ρ) = 1

2 (2OρO†−ρO†O−O†Oρ), and the coefficients Γα→βj are just the
transition rates between (closed) system states |α〉 and |β〉 calculated using the Fermi golden rule for the interaction
Hamiltonian Hj . Explicitly we can thus write

Γα→βj =
2π

~
∑
f

|〈α, i|Hj |β, f〉 |2δ(∆), (3)

where i is the initial state of the reservoir, the sum is over all its final states, and ∆ is the energy difference between
the initial and final states of the system and reservoir. Note that while in the weak coupling regime, we recover, for
opportune values of the source chemical potential, state-independent transition rates

Γin ≡ lim
η→0

Γs→gin = lim
η→0

Γs→ein

Γout ≡ lim
η→0

Γg→sout = lim
η→0

Γe→sout

Γcav ≡ lim
η→0

Γ1→0
cav . (4)

In the strong coupling regime this is not possible anymore: as the states are mixed light-matter excitations, the
transition rates will in general depend on both the initial and final states. In order to obtain numerical estimates
for the populations and the photonic emission rates, we numerically solved Eq. (2) over a truncated bosonic Hilbert
space for the cavity. The following sections of this Supplemental Material will detail how we used the transition rates
calculated in Eq. (3) to obtain the perturbative analytical estimates for the emission rates shown in Fig. 3 of the
main text.
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Perturbative transition rates

In order to calculate the transition rates in Eq. (3), we need matrix elements of the form 〈α|O |β〉, where |α〉 and
|β〉 are initial and final states {|s, 0〉 , |s, 1〉 , |G〉 , |±〉}, and the operator O is either one of {|e〉 〈s| , |g〉 〈s| , a} or one
of their hermitic conjugates. We thus need to express the coupled states of the Rabi system, |G〉 and |±〉, in terms
of the uncoupled states, |g, n〉 and |e, n〉, where n is the number of cavity photons. To accomplish this, introducing
the Pauli matrices σz = |e〉 〈e| − |g〉 〈g| and σx = |e〉 〈g|+ |g〉 〈e|, we start by rewriting the one electron sector of the
system Hamiltonian, Eq. (1) of the main text, in the form of a dimensionless Rabi Hamiltonian [4]

HRabi

~ωC
= a†a+

1

2
σz + ησx(a+ a†). (5)

Using standard perturbation theory it is easy to find the required expressions for the coupled states that, to the
second order in η, read

|G〉 = (1− η2

8
) |g, 0〉+

η

2
|e, 1〉+

η2

2
√

2
|g, 2〉

|±〉 = εg |g, 1〉+ εe |e, 0〉+ γg |g, 3〉+ γe |e, 2〉 , (6)

where εg = 1√
2

(
1∓ η

4 −
9η2

32

)
, εe = 1√

2

(
1± η

4 −
η2

32

)
, γg = −η2 +

√
3η2

4 , and γe = ∓η28 . Plugging Eq. (6) into Eq. (3),

and exploiting the fact that we know the unperturbed transition rates from Eq. (4), under the hypothesis of white
reservoirs we are now able to express transition rates between coupled states as functions of η and the bare transition
rates Γin/out/cav

Γ0→G
in = Γin(1− η2

4 )θ(µ− ~ωG) ΓG→0
out = Γout(1− η2

4 ) Γ1→0
cav = Γcav

Γ1→G
in = Γin

η2

4 θ(µ+ ~ωC − ~ωG) ΓG→1
out = Γout

η2

4 Γ±→Gcav = Γcav( 1
2 ∓ 3

4 + 3η2

4 )

Γ0→±
in = Γin( 1

2 ±
η
4 )θ(µ− ~ω± − ~ωG) Γ±→0

out = Γout(
1
2 ±

η
4 ) Γ+→−

cav = 0

Γ1→±
in = Γin( 1

2 ∓
η
4 −

η2

4 )θ(µ+ ~ωC − ~ω± − ~ωG) Γ±→1
out = Γout(

1
2 ∓

η
4 −

η2

4 ) Γ−→+
cav = 0 .

(7)

Photonic emission rates for pure GSE

When the chemical potential of the source is such that ~ωG < µ < ~ωG + ~ω±, then electrons can only populate
the system via the dressed ground state |G〉. Limiting ourselves to states with up to one photon we can then describe
the dynamics of the system through the rate equation

Ṗs,0 = −Ps,0Γ0→G
in + PGΓG→0

out + Ps,1Γcav + P+Γ+→0
out + P−Γ−→0

out

Ṗs,1 = −Ps,1(Γcav + Γ1→+
in + Γ1→−

in + Γ1→G
in ) + PGΓG→1

out + P+Γ+→1
out + P−Γ−→1

out

ṖG = −PG(ΓG→0
out + ΓG→1

out ) + Ps,0Γ0→G
in + Ps,1Γ1→G

in + P+Γ+
cav + P−Γ−cav

Ṗ+ = −P+(Γ+
cav + Γ+→0

out + Γ+→1
out ) + Ps,1Γ1→+

in

Ṗ− = −P−(Γ−cav + Γ−→0
out + Γ−→1

out ) + Ps,1Γ1→−
in ,

(8)

that, together with the normalization condition Ps,0 + Ps,1 + PG + P+ + P− = 1, can be solved analytically yielding
the steady state populations of the different states. The emission rates for the different GSE processes can then be
written, as explained in the main text, as

fC = Ps,1Γcav, f+ = P+Γ+
cav, f− = P−Γ−cav. (9)

Using the perturbative expression for the states in Eq. (6), and assuming for simplicity Γ ≡ Γin = Γout, we finally
obtain

fC =
η2Γ

8
(1− ξ Γ

Γcav
), f± =

η2Γ

16

Γ

Γcav
, (10)

where ξ =
1+θ(µ−µ′+)

2 with µ′+ = ~ω+ − ~ωC These analytical results are plotted (for µ > µ′+) in Figure 3(a) of the
main text.
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Photonic emission rates for GSE plus standard electroluminescence

When the chemical potential is such that µ > ~ωG + ~ω+, electrons can also jump from the source directly into
excited states. In this regime the rate equation takes the following form

Ṗs,0 = −Ps,0(Γ0→G
in + Γ0→−

in + Γ0→+
in ) + PGΓG→0

out + Ps,1Γcav + P+Γ+→0
out + P−Γ−→0

out

Ṗs,1 = −Ps,1(Γcav + Γ1→+
in + Γ1→−

in + Γ1→G
in ) + PGΓG→1

out + P+Γ+→1
out + P−Γ−→1

out

ṖG = −PG(ΓG→0
out + ΓG→1

out ) + Ps,0Γ0→G
in + Ps,1Γ1→G

in + P+Γ+
cav + P−Γ−cav

Ṗ+ = −P+(Γ+
cav + Γ+→0

out + Γ+→1
out ) + Ps,1Γ1→+

in + Ps,0Γ0→+
in

Ṗ− = −P−(Γ−cav + Γ−→0
out + Γ−→1

out ) + Ps,1Γ1→−
in + Ps,0Γ0→−

in .

(11)

Solving exactly as in the previous section, we obtain the emission rates

f ′C =
Γ

6

(
2Γ

Γcav
+ η2

(
1− 11

6

Γ

Γcav

))
, f ′± =

Γ

6

(
1− 2Γ

Γcav
± η

2

(
1− 8Γ

Γcav

)
+
η2

12

(
1− 32Γ

Γcav

))
. (12)

These analytical results are plotted in Figure 3(b) of the main text.
When the chemical potential is such that µ > ~ωG + ~ω− but µ < ~ωG + ~ω+ emission at ~ω+ is suppressed to the
value f ′+ = 3

40
Γ

Γcav
η2 while we similarly get

f ′C =
Γ

5

(
(1− 7η)

Γ

Γcav
+

3

2
η2

(
1

2
− 43

50

Γ

Γcav

))
f ′− =

Γ

5

(
1− 2Γ

Γcav
− η

5

(
2− 19Γ

Γcav

)
+
η2

50

(
3− 469

4

Γ

Γcav

))
. (13)
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FIG. 1: Integrated emission spectrum S(ω) for the total emission (black dashed line), central peak (blue line, ω = ωC) and
both satellites channels (red line, ω = ω− and green line, ω − ω+), as a function of the potential difference between drain and
source electronic reservoirs. Parameters: η = 0.2, Γ = Γin = Γout = 0.5 × 10−6ωC , Γcav = 7 × 10−4ωC .
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Dependency of the photonic emission on the chemical potential

In this section we give a more detailed analysis of the dependency of the photonic emission on the chemical potential
difference between drain and source electronic reservoirs. For concreteness, we will follow and describe the specific
example shown in Fig. 1.
To start, we notice that, as the chemical potential is increased, the photonic emission goes through several disconti-
nuities reflecting the energetic landscape of the system. This behaviour can be traced back to the analytical form of
the transition rates in Eq. (7), which describes how electrons entering the system at different values for the chemical
potential can induce different transitions. We are now going to describe the origin of the different discontinuities in
more detail. We are now going to describe the behaviour at the critical values of the chemical potential

µG = ~ωG
µ′+ = ~ωG + ~ω+ − ~ωC
µ′− = E|2,−〉 − ~ω− where |2,−〉 ≡ |g,2〉−|e,1〉√

2

µ− = ~ωG + ~ω−
µ+ = ~ωG + ~ω+

(14)

where different discontinuities in the emission take place and can be understood as follows. For clarity we also identify
when the processes derive from Ground State Electroluminescence (GSE) or GSE and Regular Electroluminescence
(GSE+RE).

GSE



GSE
+

RE



• µ < µG.

– No emission is possible as the energy of electrons flowing through the system cannot
induce any transition.

• µG < µ < µ′+

– Blue Line. The condition µ > µG implies that the Ground state of the system can
be populated and photons can be emitted at the energy ~ω = ~ωC through the
GSE channel |s, 0〉 → |G〉 → |s, 1〉 −−−−→→

~ωC

|s, 0〉.

– Red Line. The condition µ > µG also implies that µ > E|−〉−E|s,1〉 = ~ω−+~ωG−
~ωC (at second order in η < 1, we have that ωG > ω− − ωC). This allows for the
ancillary channel |s, 1〉 → |−〉 −−−−→→

~ω−
|G〉 to emit at energy ~ω = ~ω−.

– Green Line. Emission at energy ~ω = ~ω+ is due only to residual emission from
the main GSE channel.

• µ′+ < µ < µ′−

– Green Line At µ = µ′+ the ancillary channel |s, 1〉 → |+〉 −−−−→→

~ω+

|G〉 opens allowing

for increased emission at energy ~ω = ~ω+.

• µ′− < µ < µ−

– Red Line. At µ = µ′− ≡ E|2,−〉 − E|−〉 a process involving higher energy states be-
come possible. More precisely, this regime opens the new channel |s, 1〉 → |2,−〉 →
|−〉 −−−−→→

~ω−
|G〉 with an increment of the emission at the energy ~ω−.

• µ− < µ < µ+ In this regime electrons can directly populate the higher excited state |−〉
through the channel |s, 0〉 → |−〉 −−−−→→

~ω−
|G〉 which characterize regular electrolumines-

cence with main emission at the energy ~ω = ~ω−.

• µ > µ+ In this regime electrons can directly populate the higher excited states |±〉
through the channel |s, 0〉 → |±〉 −−−−→→

~ω±
|G〉 which characterize regular electrolumines-

cence with main emission at energies ~ω = ~ω±.
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