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Spin-valley half-metal in systems with Fermi surface nesting
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Half-metals have fully spin-polarized charge carriers at the Fermi surface. Such polarization usually occurs
due to strong electron-electron correlations. Recently [Phys. Rev. Lett. 119, 107601 (2017)] we have demon-
strated theoretically that adding (or removing) electrons to systems with Fermi surface nesting also stabilizes
the half-metallic states even in the weak-coupling regime. In the absence of doping, the ground state of the
system is a spin or charge density wave, formed by four nested bands. Each of these bands is characterized by
charge (electron/hole) and spin (up/down) labels. Only two of these bands accumulate charge carriers introduced
by doping, forming a half-metallic two-valley Fermi surface. Analysis demonstrates that two types of such
half-metallicity can be stabilized. The first type corresponds to the full spin polarization of the electrons and holes
at the Fermi surface. The second type, with antiparallel spins in electronlike and holelike valleys, is referred to as
a “spin-valley half-metal” and corresponds to the complete polarization with respect to the spin-valley operator.
We analyze spin and spin-valley currents and possible superconductivity in these systems. We show that spin or
spin-valley currents can flow in half-metallic phases.

DOI: 10.1103/PhysRevB.98.155141

I. INTRODUCTION

Electron states at the Fermi surface of usual metals are de-
generate with respect to the spin projection. Consequently, the
spin polarization of such electron systems is zero. However,
strong electron-electron interactions can lift this degeneracy
and thus, the electron liquid at the Fermi surface acquires
spin polarization. In the most extreme case, electrons with
only one spin projection (spin-up or spin-down) reach the
Fermi surface, while the states with opposite spin projection
are pushed away from the Fermi energy. These systems are
referred to as half-metals [1–3]. The most immediate conse-
quence of the half-metallicity is the perfect spin polarization
of the electric current. This makes half-metals promising
materials for applications in spintronics [3,4]. Many rather
different materials are now classified as half-metals; for exam-
ple: NiMnSb [5], La0.7Sr0.3MnO3 [6], CrO2 [7], Co2MnSi [8],
among others. Along with the listed above ferromagnets, the
half-metallicity can exist in the systems with different mag-
netic ordering. In Ref. [9] using the first-principles density
functional approach, it was shown that in double-perovskite
structure [Pr2−xSrxMgIrO6]2 synthesized recently, half-metal
antiferromagnetism or ferrimagnetism can be observed de-
pending on the Sr doping level.

It is commonly accepted [2] that the half-metallicity of
the compounds listed above is related to an appreciable
electron-electron interaction, associated with the transition-
metal atoms. However, in recent years, transition-metal-free
half-metallicity has been a subject of intense research activity.

As a specific example, one can mention density-functional
studies [10,11], which predict the existence of half-metallicity
in graphitic carbon nitride g-C4N3. Another well-known sug-
gestion is to look for half-metallicity at the zigzag edges
of graphene nanoribbons [12]. Some other proposals have
also been discussed [13,14]. Transition-metal-free half-metals
could be of interest for biocompatible applications and, in
general, are consistent with current interest in carbon-based
and organic-based mesoscopic systems [15–20]. The spin-
orbit coupling produces a significant effect on the spin po-
larization and, consequently, on the condition under which the
half-metallicity is observed. In the materials without transition
metals, this coupling is small. In our consideration, we neglect
spin-orbit interaction since the main idea of our proposal is
to demonstrate that the half-metallic state can exist in the
systems consisting only of light atoms, when all effects related
to heavy atoms are disregarded.

A strong electron-electron interaction is not characteristic
of materials composed entirely of s and p elements. There-
fore, it is reasonable to focus the search for transition-metal-
free half-metals on systems, in which the electrons at the
Fermi surface can be completely polarized under the condition
of weak electron-electron coupling.

In our recent work [21], we have proposed a mechanism
for half-metallicity in the weak-coupling regime. We demon-
strated that doping a spin-density wave (SDW) or charge-
density wave (CDW) insulator may stabilize a certain type
of half-metallic state provided that the undoped system has
two nested spin-degenerate Fermi surface sheets, which we
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will also refer to as valleys. The nesting between the electron
and hole Fermi surface sheets makes the system unstable
with respect to density wave formation [21]. The SDW or
CDW instability opens a gap, giving rise to an insulating
ground state. When doping is introduced, the system becomes
metallic, with two new Fermi surface sheets [21]. Both sheets
are half-metallic. If the spin polarizations of the sheets are
parallel to each other, a half-metallic state, denoted below
as a CDW half-metal, emerges. For antiparallel polarizations,
a different half-metallic state, the SDW or spin-valley half-
metal, appears [21].

In this paper, we present a more detailed analysis of the
previously proposed approach [21] to half-metallicity. The
most immediate consequences of the half-metallicity are also
discussed. Specifically, we calculate the phase diagram of
the model as a function of doping. Then, the relation of
the electric current to the spin and spin-valley currents is
discussed. Namely, below we show that, depending on the
specific parameters, the current carries, in addition to the
electric charge, either spin or spin-valley quantum numbers.
Finally, the structure of a possible superconducting order
parameter is discussed. Since there is no spin degeneracy in
a half-metal, but two valleys are available, the superconduc-
tivity in such a system is rather different from that of common
s-wave superconductors.

This paper is organized as follows. In Sec. II we formulate
the model, derive its mean-field solution, and construct the
model’s phase diagram. Both commensurate and incommen-
surate density wave order parameters are investigated. In
Sec. III the conductivity of the system is analyzed. Supercon-
ductivity is considered in Sec. IV. Finally, the main results are
discussed in Sec. V.

II. MODEL

We consider here an isotropic two-band electron model.
Both bands or valleys have a quadratic dispersion law. Bands
a and b are the electron and hole bands, respectively. The
bands are schematically shown as blue and orange parabolas
in Fig. 1(a). Thus, the single-particle dispersions of the bands
can be written as (h̄ = 1)

εa (k) = k2

2ma

+ εa
min − μ, εa

min < εa < εa
max, (1)

εb(k+Q0) = − k2

2mb

+ εb
max − μ, εb

min < εb < εb
max. (2)

Here band a is centered at k = 0, and band b is shifted
by some momentum Q0. Below, for simplicity, we assume
perfect electron-hole symmetry: ma = mb = m and εb

max =
−εa

min = εF. Zero doping corresponds to μ = 0. In the ab-
sence of doping, the Fermi surface sheets for the a and b bands
are spheres [see Fig. 1(b)] with the same Fermi momentum
kF = √

2mεF and the same density of states (per spin projec-
tion) NF = mkF/(2π2) at the Fermi energy. A model of this
kind was introduced long ago by Rice in connection to the
incommensurate SDW in chromium [22]. Hereafter, εF, kF,
and NF denote the corresponding values at zero doping.

The quasiparticle dispersion given by Eqs. (1) and (2)
exhibits perfect nesting; that is, after translating the electron

FIG. 1. Electron bands of the model when the electron-electron
coupling is neglected and doping is zero. (a) Electron band εa (k) and
hole band εb(k) are shown by solid curves. The dashed parabola is
the hole band translated by the nesting vector Q0. The vertical axis is
energy and the horizontal axis is momentum, while the Fermi level μ

is shown by the horizontal dash-dot line. (b) Spherical Fermi surfaces
of the electron and hole bands. The spheres coincide if we translate
one of them by the nesting vector.

Fermi surface by the vector Q0, the electron sheet completely
coincides with the hole sheet, see Fig. 1. The vector Q0 is
usually referred to as the nesting vector.

In general, electrons interact with each other, so the total
Hamiltonian of the system is

Ĥ = Ĥe + Ĥint. (3)

Here Ĥe is the one-electron term, which corresponds to the
dispersion laws (1) and (2). The term Ĥint describes the
interaction between quasiparticles.

We are interested in the weak-coupling regime, as it was
mentioned above. We assume that the interband and intraband
interactions are of the same order. Thus, to treat the SDW
or CDW instability, it is sufficient to keep in Hint only the
interaction between the electrons in band a and holes in band
b, respectively [21,22]. It is this term in the interaction Hamil-
tonian, which generates the gap and cannot be considered
as a perturbation. A weak intraband coupling can be treated
perturbatively, but this can be safely neglected because it only
provides small corrections to our results. This common feature
of BCS-like approaches can be proved by a direct calculation.

Below we assume that the interaction is a short-range one.
In this case, Ĥint can be written as

Ĥint = Ĥdir + Ĥex, (4)

where

Ĥdir =g

∫
d3r

∑
σσ ′

ψ†
aσ (r) ψaσ (r) ψ

†
bσ ′(r) ψbσ ′(r) (5)
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and

Ĥex =g⊥
∫

d3r
∑
σσ ′

ψ†
aσ(r)ψbσ (r)ψ†

bσ ′(r)ψaσ ′ (r). (6)

Here ψασ(r) denotes the usual fermionic field operator for
band α (= a, b) and spin projection σ onto the z axis;
and r refers to spatial coordinates. The term Ĥdir represents
the direct part of the density-density interaction, while Ĥex

corresponds to the exchange part of this interaction. The
constants g and g⊥ describe the electron-hole interaction. We
assume that the interaction is repulsive (g, g⊥ > 0) and weak
(gNF, g⊥NF � 1).

A. SDW instability and spin-valley half-metal

Hamiltonian (3) can be used to describe the spontaneous
formation of low-temperature density-wave order when the
Fermi surface sheets of holes and electrons perfectly match
each other (perfect nesting). We start with the SDW. Looking
ahead, we can state that the SDW order has a lower free
energy than the CDW one if we take into account only
electron-electron coupling Eqs. (5) and (6), and disregard,
say, electron-lattice interactions. Up to rotations of the spin-
polarization axis, the SDW ground state is believed to be
unique. In the weak-coupling regime, it is well described by a
mean-field BCS-like theory.

To construct a mean-field theory of the SDW order, we
group the electron operators into two sectors, labeled by the
spin index σ = ±1/2 (or σ =↑, σ =↓): sector σ consists of
ψaσ and ψbσ̄ (here σ̄ means −σ ). In the mean-field approach,
the sectors are decoupled, and the (sector-dependent) SDW
order parameter is

�σ = g

V

∑
k

〈ψ†
kaσ ψkbσ̄ 〉, (7)

where V is the system volume, and 〈· · · 〉 denotes the diagonal
matrix element for the ground state. The symbol ψkασ is
the Fourier transform of the operator ψασ (r), in which the
momentum k is measured from the center of the band α.
The latter convention simplifies the notation; however, one
must remember that the centers of the band a and band b are
separated by the nesting vector Q0. Consequently, the order
parameter �σ oscillates in space with a period related to the
wave vector Q0.

Following a mean-field approach, it is straightforward to
check that only the direct interaction (5) contributes to the
SDW ordering. The exchange term Eq. (6) cannot be ex-
pressed as a product of two bilinear combinations of the form
ψ

†
aσ ψbσ̄ , which enter the definition of order parameter (7).

Therefore, Ĥex can be neglected in the lowest approximation,
similar to the intravalley terms. Thus, in the mean-field ap-
proximation, the model Hamiltonian can be rewritten as

ĤSDW =
∑
kασ

[
εα (k)ψ†

kασ ψkασ −�σ ψ
†
kᾱσ̄ ψkασ + �2

σ

g

]
, (8)

where α = a, b, and ᾱ means “not α.” The spectrum of
Hamiltonian (8) is

E
(1,2)
kσ = ∓

√
ε2

k + �2
σ , (9)

where εk = k2/2m − εF .

The equilibrium parameters of the system can be derived
by minimizing the grand thermodynamic potential, defined for
arbitrary temperature T by the usual formula

� = −T ln{Tr exp[−(Ĥ − μN̂ )/T ]}. (10)

In this expression, N̂ is the operator of the total particle
number and the Boltzmann constant kB = 1. In the zero-T
mean-field approach, the grand potential of our system is a
sum � = ∑

σ �σ , where the partial grand potentials �σ are
equal to [21]

�σ = �2
σV

g
−

∑
k

[
μ−E

(1)
kσ + (

μ−E
(2)
kσ

)
θ
(
μ−E

(2)
kσ

)]
. (11)

The symbol θ (z) denotes the Heaviside step function. To
describe the system at finite doping x it is convenient to
introduce the partial dopings

xσ = −∂�σ

∂μ
, (12)

which are the amounts of additional charge accumulated in
sector σ . Obviously they satisfy

x↑ + x↓ = x. (13)

The order parameter �σ minimizes the grand potential
�σ (�σ ):

∂�σ

∂�σ

= 0. (14)

Thus, to describe the system at finite doping, one has to solve
the system of Eqs. (12)–(14) to obtain μ and �σ as functions
of x. Expressions (11)–(14) are valid provided that the state
of the system remains homogeneous, and the SDW order
remains commensurate even at finite doping (see Sec. II C
and Ref. [23]). Note here that different electron pockets are
usually located near the high-symmetry points of the Brillouin
zone. Thus, the vector Q0 is related to the underlying lattice
structure and the order may be called commensurate. At
nonzero doping, we may try to optimize the energy further by
treating the translation vector Q1 = Q0 + Q as a variational
parameter, which is not directly related to the lattice constant.
Further on, such order is referred to as an incommensurate
one.

Direct calculations show that, at zero doping, the sectors in
the ground state are degenerate: �↑ = �↓ = �0. The nesting
is perfect and the order parameter is equal to the BCS-like
value

�0 ≈ εF exp (−1/gNF). (15)

The obvious BCS structure of this expression is a consequence
of the fact that in each sector, the mean-field procedure is
mathematically equivalent to the BCS calculations.

Once �0 is known, the spectrum of the model at x = 0
can be evaluated, see Fig. 2(a). Note also that at zero doping,
the definition of the order parameter Eq. (7) implies that the
total SDW polarization in real space is directed along the
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FIG. 2. Electron band structure for the insulating and half-
metallic states. The vertical axis is the energy, while the horizontal
axis is the momentum. The Fermi level μ is shown by the horizontal
dash-dot lines. (a) If doping is zero (x = 0), the ground state is
an insulating SDW or CDW depending on the model parameters,
with degenerate sectors (�↑ ≡ �↓). The energies of electron and
hole bands E (1,2)

σ are given by Eq. (9). (b) and (c) If x > 0, the
sectors are no longer degenerate (�↑ < μ < �↓ ≡ �0), with the
charge accumulating in sector ↑, in which a Fermi surface appears.
The spin polarizations (arrows) of the Fermi surface sheets in (b)
correspond to the spin-valley half-metal, and in (c) to the CDW
half-metal.

x axis [21]

〈Sx (r)〉 = �↑ + �↓
2g

exp(iQ0r) + c.c.

= 2�0

g
cos(Q0r), (16)

〈Sy (r)〉 = �↑ − �↓
2ig

exp(iQ0r) + c.c. ≡ 0 . (17)

The doping shifts the chemical potential from zero and
destroys the perfect nesting. The number of low-energy states
competing to become the true ground state increases. Both
incommensurate and inhomogeneous phases [22,24–31] were
considered as ground states of Hamiltonian (3) and its mod-
ifications. In our previous paper [21], we show that the half-
metallic state is yet another viable contender in the case of
imperfect nesting. Here we consider this problem in more
detail.

According to Eqs. (12) and (14), the two sectors σ are
decoupled within the mean-field approach. Then, applying a
well-known procedure [23,24,31], one can calculate the order
parameters �σ and the chemical potential μ as functions of
xσ . This gives the following expression

�σ = �0

√
1 − xσ

NF�0
, μ = �0 − xσ

2NF
. (18)

We see that the doping of sector σ suppresses the order
parameter in this sector. In the homogeneous commensurate
state, �σ is zero when xσ � x0, where

x0 = NF�0 (19)

is a characteristic doping level.
It is usually assumed without extra examination (see, e.g.,

Refs. [22,23,31]) that the charge carriers are spread evenly
between both sectors, that is,

x↑ = x↓ = x

2
and �↑ = �↓. (20)

Nevertheless, it is easy to show that the spontaneous lifting of
the degeneracy (20) optimizes the energy. To prove this, the
system free energy F must be obtained. (Switching from �

to F is necessary to work at fixed doping.) The free energy
equals to the sum F = ∑

σ Fσ , where the partial free energy

Fσ (xσ ) = �σ (μ(xσ )) + μ(xσ )xσ (21)

can be calculated as

Fσ (xσ ) = Fσ (0) +
∫ xσ

0
dx ′μ(x ′), (22)

where

Fσ (0) = − 1
2NF�

2
0 (23)

is a well-known BCS-like expression for the free energy at
perfect nesting. Then, using μ from Eq. (18), we derive

Fσ

V
= −NF�

2
0

2
+ �0xσ − x2

σ

4NF
, xσ < x0, (24)

F

V
=

∑
σ

Fσ

V
= −NF�

2
0 + �0x − x2

↑ + x2
↓

4NF
. (25)
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Thus, only the third term in Eq. (25) depends on the distribu-
tion of the charge between the two sectors. Expression (25)
has to be minimized under the constraint (13). It is easy
to check that F has the smallest value when xσ = x and
xσ̄ = 0. In other words, for fixed x, within the studied class
of spatially homogeneous mean-field states, the most stable
one corresponds to the case when all the doped charge is
accumulated in one sector. The other sector is completely free
of extra charge carriers. Thus, the degeneracy between sectors
σ =↑ and σ =↓ is lifted, and Eqs. (20) are no longer valid.
To be specific, let us assume that σ =↑ represents the sector
accumulating extra charge. Therefore, in the ground state, we
have

F

V
= −NF�

2
0 + �0x − x2

4NF
, (26)

μ = �0 − x

2NF
, (27)

�↑(x) = �0

√
1 − x

NF�0
, �↓(x) = �0. (28)

These relations are valid for low doping x < x0.
An important feature of Eq. (26) is that the second deriva-

tive ∂2F/∂x2 is negative. This means that the doped system
may be unstable with respect to electronic phase separation
[23,24,28,29,32–35]. However, the long-range Coulomb in-
teraction can suppress phase separation [36,37]. Thus, it is
reasonable to study here the properties of the homogeneous
state.

It follows from Eqs. (27) and (28) that

�↑(x)<μ(x)<�↓(x) = �0 when 0<x <x0. (29)

This means that in the sector ↓, the order parameter remains
equal to �0. Since the chemical potential is lower than �↓,
no charge enters sector ↓, see Fig. 2(b). In the sector ↑, two
Fermi surface sheets emerge. According to Eqs. (9), (19), (27),
and (28), they are determined by

ε2
k = [μ(x)]2−[�↑(x)]2 or k = kF

√
1 ± �0

2εF

x

x0
. (30)

The doped state acquires nontrivial macroscopic quantum
numbers, since charge carriers introduced by the doping are
distributed unevenly between the sectors. To characterize the
macroscopic state, it is useful to specify the spin operator Ŝ

and spin-valley operator Ŝv:

Ŝ =
∑
ασ

σ N̂ασ , Ŝv =
∑
ασ

σναN̂ασ , (31)

where

N̂ασ =
∑

k

ψ
†
kασ ψkασ . (32)

Here the operator N̂ασ describes the number of electrons with
spin σ in valley α. The index να is defined according to the
rule νa = 1, νb = −1.

Hamiltonian (3), as well as the mean-field Hamiltonian (8),
commutes with both Ŝ and Ŝv. The field operators satisfy

obvious commutation rules

[Ŝ, ψασ ] = σψασ , [Ŝv, ψασ ] = σναψασ . (33)

Namely, in addition to the usual spin-projection quantum
number σ , the field ψασ can be characterized by the spin-
valley projection σνα .

Using Eqs. (33), it is easy to check that in the sector σ ,
both ψaσ and ψbσ̄ carry the same spin-valley quantum number
equal to +σ . In the sector σ̄ , the field operators correspond
to a −σ quantum of Ŝv. That is, the Fermi surface sheet of
the doped system is characterized by only one projection of
the spin-valley operator. The Fermi surface sheets with the
opposite projection of Ŝv are absent, since the sector σ =↓
is gapped. Thus, the doped system can be referred to as a
spin-valley half-metal [21]: like a classical half-metal, our
system exhibits complete polarization of the Fermi surface.
However, in contrast to the usual half-metal, the polarization
is not just the spin polarization, but rather, the spin-valley one.
Therefore, the electric current flowing through the spin-valley
half-metal is completely spin-valley polarized.

What does Fermi surface polarization of this type mean?
Imagine that the spin-valley half-metal is in the state with
spin-valley projection +1. Therefore, electron states at the
Fermi energy have spin projection ↑, hole states have ↓
projection (of course, if an electric current is present, it is
carried by electrons with spin ↑ and holes with spin ↓).

Experimental measurements of the spin-valley polarization
are likely to be more complicated than the measurements
of pure spin polarization. Indeed, to extract the spin-valley
data, it is necessary to determine how spin polarization is
distributed over the Brillouin zone, as the definition of Sv,
Eq. (31), implies. On the other hand, the spin-valley po-
larization may be useful for valley filtering: if we insert
perfectly spin-polarized electrical current into a spin-valley
half-metal, we can determine which valley is participating in
the transport. For example, if the current spin polarization is
↑, it is carried by the electron valley (no holes with σ =↑ are
present at the Fermi level).

A spin-valley half-metal has some similarities with the
antiferromagnetic half-metals widely discussed mostly in the-
oretical papers, see, e.g., Refs. [3,9]. In an antiferromagnetic
half-metal, itinerant charge carriers at the Fermi level are still
spin polarized. However, in contrast to the usual ferromag-
netic half-metal, the magnetic moment per unit cell is zero
owing to the presence of electrons in different bands, which
compensates the spin polarization of the itinerant electrons.
In the spin-valley half-metal, we also have spin compensation
of two groups of charge carriers, but here both electron-like
and hole-like charge carriers are itinerant ones and contribute
to the Fermi energy belonging to different Fermi surface
sheets.

Since the sector ↓ is free of electrons introduced by the
doping, the average values of N̂a↓ and N̂b↑ remain unaffected
by the doping, while 〈N̂a↑〉 and 〈N̂b↓〉 change. Let us denote
the average occupation numbers 〈N̂ασ 〉 as Nασ = 〈N̂ασ 〉. It
is convenient to assume that in the undoped state Nασ = 0.
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Therefore, we can write

Na↓ = Nb↑ = 0 and Na↑ + Nb↓ = xV. (34)

Consequently, Sv = 〈Ŝv〉 is proportional to x,

Sv = σxV. (35)

In a system with perfect electron-hole symmetry, we have

Na↑ = Nb↓ = xV

2
, (36)

which corresponds to S = 〈Ŝ〉 ≡ 0, for any x. If the symmetry
is absent, then

|S| ∝ x. (37)

However, the net spin polarization of the spin-valley half-
metal meets the inequality

|S| < |Sv|. (38)

The doping also affects the SDW order inherited from
the undoped state. Intuitively, since the charge is accumu-
lated only in one of the two sectors, the order parameters
in different sectors become unequal to each other for x > 0
[Eqs. (28) express this fact mathematically]. As a result,
the simple SDW is replaced by a more complicated order
parameter. Analyzing Eqs. (16) and (17), one can prove
that at finite doping, a circularly polarized spin component
emerges:

δS(r) =
(

δSx (r)

δSy (r)

)
= �↑−�↓

g

(−cos(Q0r)

sin(Q0r)

)
. (39)

The amplitude of this component grows as 1 − √
1 − x/x0,

when the doping increases.
The above considerations are valid if the doping x is less

than x0. To investigate the behavior of the system in a wider
doping range, we calculate the function

�F (x, xσ ) = Fσ (xσ ) + Fσ (x − xσ ) − 2Fσ (x/2). (40)

If x < x0, the doping in both sectors is less than x0. In this
case, the free energy Fσ (xσ ) is determined by Eq. (24) and

�F (x, xσ )

V
= 1

NF

[
−x2

8
+ xσ (x − xσ )

2

]
. (41)

The corresponding parabolic curve is shown in Fig. 3 for
x = 0.75x0 by a dashed line as a function of the ratio xσ /x.
This function is negative and reaches its minimum when all
charge carriers introduced by the doping are concentrated
within one sector (that is, when either xσ = 0, or xσ = x);
whereas the maximum of the function �F (x, xσ ) represents

FIG. 3. Dependence of �F = Fσ (xσ ) + Fσ (x − xσ ) − 2F (x/2)
on the partial doping xσ calculated at T = 0 and fixed total doping:
x = 0.75x0 [(green) dashed curve], x = 1.5x0 [(red) solid curve],
and x = 1.9x0 [(blue) dash-dot curve]. The free energy curves for all
three doping values have a global maximum at xσ = x/2, implying
that the usual metallic phase is unstable. The free energy is the lowest
for either xσ = 0 or xσ = x: the free energy minimum at xσ = 0
(xσ = x) represents a half-metallic state with empty (filled) sector
σ and filled (empty) sector σ̄ .

the usual SDW state with x↑ = x↓ = x/2. This means that the
ground state corresponds to the spin-valley half-metal phase,
while the usual SDW phase is unstable, in agreement with the
results obtained above.

When x > x0, the doping in one sector can be larger than
x0. If xσ > x0, the order parameter in sector σ vanishes, and
the partial free energy becomes

Fσ (xσ ) = x2
σ

4NF
, (42)

as in the disordered paramagnetic (PM) phase. Thus, for
x > x0, the function �F (x, xσ ) is a piecewise function with
the continuous first (but not second) derivative ∂�F/∂xσ . In
the vicinity of the point xσ = x/2, the function �F has a
parabolic shape. It coincides with linear functions of xσ away
from that point, see the (red) solid (x = 1.5x0) and (blue)
dot-dash (x = 1.9x0) curves in Fig. 3. However, the function
�F (x, xσ ) is negative and attains a minimum if either xσ = 0
or xσ = x. Therefore, the ground state of the model is, again,
a spin-valley half-metal. In doing so, we readily obtain that
a second-order transition occurs at x = x0, where the gap
in the doped sector is closed. Comparing the free energies
of the spin-valley half-metal phase and of the usual PM
state, we conclude that the PM state becomes favorable when
x = 2x0. At this point, the gap in the undoped sector closes
in a jumplike manner, and a first-order transition to the usual
PM phase occurs. The obtained results are summarized in
Fig. 4(a).
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FIG. 4. Phase diagram of the system: (a) commensurate and (b)
incommensurate ordering. (a) Spin-valley half-metals exist within
the doping range 0 < x < 2x0. At x = x0 (vertical dashed line) order
parameter �↑ vanishes and a second-order phase transition occurs.
However, a characteristic polarization of the charge carriers at the
Fermi surface (half-metallicity) is not destroyed. When x = 2x0

[vertical (red) solid line] a first-order transition occurs from the
spin-valley half-metal phase to the PM phase. (b) Spin-valley
half-metal exists within the doping range 0 < x � 1.8x0. At x ≈
1.8x0 [(red) solid line] a second-order phase transition occurs from
the spin-valley phase to the usual SDW incommensurate state. If
x ≈ 3x0 [vertical thin (black) solid line] a first-order phase transition
occurs to the PM phase. The dashed vertical line shows the point
(x ≈ 0.83x0) when the incommensurate SDW order can exist as a
metastable phase.

B. CDW half-metal

The CDW order is characterized by a finite average value
〈ρ̂(r)〉 of the density operator

ρ̂(r) =
∑
σk

ψ
†
kaσψkbσ exp(iQ0r) + H.c. (43)

The CDW order is described by a formalism similar to the
one developed above for the SDW. To switch between the
two types of density waves, the mean-field sectors must be
redefined. Specifically, we will assume below that the sector
σ consists of the operators ψaσ and ψbσ . This rearrangement
of the sectors may be formally expressed by the substitution

ψb↑ → ψb↓, ψb↓ → ψb↑. (44)

Under this substitution we have∑
kσ

〈ψ†
kaσ ψkbσ̄ 〉 →

∑
kσ

〈ψ†
kaσ ψkbσ 〉. (45)

Therefore, the finite modulation of the spin density is replaced
by a finite modulation of the charge density:

2〈Ŝx (r)〉 → 〈ρ̂(r)〉. (46)

Equation (44) allows us to adopt the results derived for the
SDW to describe the CDW state with little modifications.

In the CDW phase we use the finite expectation values of
〈ψ†

kaσ ψkbσ 〉 and 〈ψ†
kbσ ψkaσ 〉 to apply the mean-field decou-

pling in Hamiltonians (5) and (6). Unlike the SDW case, both

the direct and exchange terms contribute to the mean-field
Hamiltonian of the CDW phase:

ĤCDW =
∑
kσα

[
εα (k)ψ†

kασ ψkασ −�̃σ ψ
†
kασψkᾱσ + �̃2

σ

g̃

]
, (47)

�̃σ = g̃

V

∑
k

〈ψ†
kaσ ψkbσ 〉, (48)

where
g̃ = g − 2g⊥ (49)

is the renormalized electron-electron coupling. Hamilto-
nian (47) is similar to the SDW Hamiltonian, Eq. (8). Thus,
as expected, the CDW problem is mapped onto the SDW one
solved in the previous section. In particular, the CDW order
parameter at zero doping is �̃0 ≈ εF exp (−1/g̃NF). Since
g⊥ > 0 (repulsive interaction), the CDW is always either
metastable (�̃0 < �0) or absolutely unstable (2g⊥ � g ⇔
g̃ < 0). Of course, the stability of the CDW order may be
improved by adding parameters, which are beyond our simple
model; for example, also considering an applied magnetic
field and the interaction with the lattice.

Calculations identical (up to relabeling) to the case of the
SDW order demonstrate that for x > 0 the charge carriers
are accumulated in a single mean-field sector. However, the
sectors structure is changed by the transformation (44): un-
like the case of spin-valley half-metals, now both electronic
fields within a single sector have the same spin projection.
Therefore, if the introduced charge fills sector σ , both Fermi
surface sheets have identical spin polarizations equal to σ , see
Fig. 2(c). This perfect polarization of the Fermi surface is a
hallmark feature of half-metals. Thus, the spin-valley half-
metal is related to the CDW half-metal by substitution (44).
This substitution, in particular, switches the operators Ŝ and
Ŝv. Consequently, in the CDW half-metal we have

S = σxV and |Sv| < |S|, (50)

and Sv = 0 in the case of the perfect electron-hole symmetry.
When x > 0, in addition to the CDW order parameter, the
SDW order parameter 〈δSz〉 is generated:

〈δSz(r)〉 = �̃↑−�̃↓
g

cos(Q0r). (51)

It grows monotonically with x. This is a direct analog of
Eq. (39).

In the case of CDWs, we obtain formulas for the free
energy, chemical potential, and order parameter similar to
Eqs. (26)–(28), replacing �0 by �̃0. Thus, the CDW order
parameter is at least metastable in the doping range

0 < x < 2x̃0 = 2NF�̃0. (52)

Since x̃0 < x0, the CDW phase becomes absolutely unstable
at lower doping value than that in the SDW. To illustrate this,
let us now calculate the difference in the free energy between
the CDW half-metal and the spin-valley half-metal

�F

V
= NF

(
�2

0 − �̃2
0

) − (
�0 − �̃0

)
x. (53)

It is easy to see that, as long as x < x̃0 and �0 > �̃0, the
difference �F decreases when doping grows; however, it is
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always positive. Thus, we conclude that the spin-valley state
is more stable than the CDW half-metal phase.

C. Incommensurate ordering

Here we analyze a possible incommensurate ordering in
the model under discussion [22,23]. We start with the SDW
order. The order parameter �σ , calculated in the previous
sections, couples electrons with unequal momenta. Conse-
quently, in coordinate space, the local spin polarization rotates
with wave vector Q0. Typically, the centers of different Fermi
surface pockets are located near the high-symmetry points
of the Brillouin zone. Therefore, the vector Q0 is related to
the underlying lattice structure. Such an order may be called
commensurate. Yet, as it has been already mentioned above,
we may try to relax the requirement of the commensurability
and optimize the energy further by treating the translation
vector Q1 = Q0 + Q as a variational parameter. The new
order parameter has the form

�σ (Q) = g

V

∑
k

〈ψ†
kaσ ψk+Qbσ̄ 〉, (54)

where, as before, the momentum for electrons in band α is
measured from the center of the band α. The vector Q is small,

|Q| ∼ �0m/kF � |Q0|. (55)

Order parameter (54) describes the SDW order with a rotating
spin polarization. This rotation is characterized by the spatial
period 2π/|Q0 + Q|. This value is unrelated to the underlying
lattice and such order is called incommensurate.

To describe the incommensurate state, we calculate the
grand potential �. In the mean-field approach, � is a sum
of grand potentials �σ = �σ (xσ ). Similar to Eq. (9), the
eigenvalues of the mean-field Hamiltonian are

E
(1,2)
kσ = εk+Q−εk

2
∓

√
�2

σ (Q)+
[
εk+Q+εk

2

]2

. (56)

With this new formula for E
(1,2)
kσ , the expression for the partial

grand potentials �σ , Eq. (11), remains unchanged. We add the
minimization condition ∂�σ /∂Q = 0 to Eqs. (12)–(14) and
solve the obtained system numerically as it was described in
Ref. [23] [see Eqs. (11)–(20) of that paper].

The partial free energy F ic
0 (xσ ) of a sector with partial dop-

ing xσ in the incommensurate state is calculated according to
Eq. (22). Within the considered mean-field approach, the free
energy of the system in the presence of the incommensurate
SDW equals

F ic(x) = min
x↑+x↓=x

[
F ic

0 (x↑) + F ic
0 (x↓)

]
. (57)

The free energy of the system in the ground state is found
by its minimization under the condition x↑ + x↓ = x. Our
numerical analysis shows that

∂2F ic
0 (xσ )

∂x2
σ

< 0, (58)

for xσ less than the threshold value x∗ ∼= 0.83x0. Since the
second derivative of F ic

0 is negative, the sum F ic
0 (x↑) +

F ic
0 (x − x↑) as a function of x↑ ∈ [0, x] is concave at not too

FIG. 5. Dependence of �F ic
0 (xσ , x − xσ ) ≡ F ic

0 (xσ ) + F ic
0 (x −

xσ ) − 2F ic
0 (x/2) on the partial doping xσ , calculated at T = 0 and

fixed total doping x = 1.4x0 [(red) solid curve], x = 1.76x0 [(green)
dashed curve], and x = 2.0x0 [(blue) dash-dot curve]. At high doping
(x = 2.0x0), the state at xσ = xσ̄ = x/2 has the lowest free energy,
therefore, the usual metal, with even distribution of the doped
charges among the sectors, is a stable phase. When the doping is
low (x = 1.4x0), the half-metal is stable. In this situation, the free
energy minimum at xσ = 0 (xσ = x) represents a half-metallic state
with empty (filled) sector σ and filled (empty) sector σ̄ . At some
intermediate doping 1.4x0 < x∗ < 2.0x0, a first-order transition from
the usual metal to the half-metal occurs. Near the transition, one
of the phases may become metastable. For example, a well-defined
local (but not global) minimum of the free energy at xσ = xσ̄ = x/2
is clearly seen for the (green) dashed curve. This implies that for
x = 1.76x0, the usual metal is metastable, while the half-metal is
truly stable. The activation barriers for the transition into the more
stable half-metallic phase are shown by the vertical arrows. The
presence of the metastable phase is marked in Fig. 4(b).

large x. Consequently, the extremum of the latter sum at x↑ =
x/2 corresponds to a maximum, not a minimum (see Fig. 5).
Therefore, the total free energy is minimized as follows:

F ic(x) = F ic
0 (x) + F ic

0 (0) at xσ = x and xσ̄ = 0. (59)

Thus, the undoped sector σ̄ remains insulating. All doped
charge goes to sector σ , which becomes metallic, with a
well-defined Fermi surface, and we recover the spin-valley
half-metal with an incommensurate SDW.

Note that the compressibility of the material has the same
sign as the second derivative of its free energy. Hence, the
compressibility of the system under study is negative at low
doping. This is a rather general feature of models with imper-
fect nesting, which, in particular, gives rise to the possibility
of phase separation in them [23,24,28,29,35].

If xσ > x∗, then

∂2F ic
0 (xσ )

∂x2
σ

> 0, (60)

and the total free energy F ic
0 (xσ ) + F ic

0 (x − xσ ) acquires a
local minimum at x↑ = x↓ = x/2 (see Fig. 5). When dop-
ing increases even further, this minimum becomes a global
minimum for x ∼= 1.8NF �0. Consequently, the first-order
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transition from incommensurate spin-valley half-metal to the
usual incommensurate SDW phase occurs at this point.

The results obtained are summarized in Fig. 4(b). Compar-
ing them with the case of commensurate order [Fig. 4(a)], we
observe a definite difference. While the spin-valley half-metal
exists in both cases approximately within the same doping
ranges, the transition from the half-metal to the PM phase
occurs in a different way: directly from the half-metal to the
PM if Q = 0 and via the intermediate incommensurate SDW
state if Q �= 0.

Comparing the computed free energies of the commen-
surate and incommensurate phases, we see that the incom-
mensurate phase is more stable than the commensurate one.
Accounting for the incommensurability allows us to extend
the range of existence for the ordered state, as one can
notice comparing Figs. 4(a) and 4(b). However, the difference
between the ordering with Q = 0 and Q �= 0 is small. The
contributions, which are ignored in our treatment (e.g., disor-
der), can be favorable for commensurate ordering.

The results for the CDW phase can be obtained from the
above calculations by a simple replacement �0 → �̃0, and,
consequently, the incommensurate CDW half-metal is the
ground state of the system at low doping.

Among the four mean-field states discussed here (commen-
surate SDW/CDW half-metals, incommensurate SDW/CDW
half-metals), the incommensurate SDW has the lowest energy
at low doping, within the framework of our model. However,
the difference in free energy between the SDW and CDW
phases may be small. Indeed, the direct interaction parameter
g equals g(0), where g(k) is the Fourier transform of the inter-
electron repulsion energy g(r), while the exchange interaction
parameter g⊥ represents the interaction at the momentum
transfer Q1 ≈ Q0: g⊥ = g(Q1). If g(Q1) � g(0) (e.g., as
in the case of bare Coulomb repulsion), then g⊥ � g and
� ≈ �̃. Also, other factors, which are not included in our
study, could favor the CDW half-metal. For example, the
proximity to a lattice instability can make the CDW half-metal
a ground state. The applied magnetic field acts similarly, since
the total spin of the CDW half-metal exceeds the spin of the
spin-valley half-metal.

III. ELECTRIC, SPIN, AND SPIN-
VALLEY CONDUCTIVITIES

In the system under study, the charge carriers at the Fermi
surface are spin or spin-valley polarized. Consequently, the
currents are also polarized. The problem of the polarized
currents in our half-metal deserves a separate investigation
and here we only discuss this very briefly. In particular, we
assume the perfect electron-hole symmetry and consider only
commensurate ordering, since in the case of incommensurate
SDW or CDW the results are qualitatively similar.

The electrical conductivity of the isotropic system at zero
temperature in the free-electron approximation can be written
as [38]

σE = e2

3
NF(μ) τ (μ) v2(μ), (61)

where NF(μ) is the density of states, τ (μ) is the mean free
time, and v(μ) = |∂εk/∂k| is the electron velocity, and all

values here are taken at the Fermi level μ. For simplicity
we assume further that the mean free time is the same for
electrons and holes and is independent of μ. In Eq. (61),
electrons with both spin projections are taken into account.
For a quadratic electron dispersion, we have σE = e2nτ/m,
where n is the electron density in the conduction band.

If we neglect the electron-hole coupling, the conductivity
of the two-band system, Fig. 1, is the sum of the electron and
hole conductivities σE = σa + σb. When doping is zero, we
have

σa = σb = e2n0τ/m = σ0, and thus σE = 2σ0. (62)

Here n0 = k3
F/(6π2) is the density of electrons (na) or holes

(nb) in the conduction band at zero doping. If we dope
the system electronically, then na = n0 + x. Assuming that
x � n0, we obtain in the linear approximation: nb ≈ n0 − x.
Therefore, the electrical conductivity remains approximately
constant, σE(x) ≈ 2σ0. In this framework, the Fermi surface
is spin degenerate; consequently, the corresponding spin con-
ductivity is zero.

A. Spin-valley half-metal

First, we consider the case of SDW instability and spin-
valley half-metal. The electron-hole coupling opens a gap
in the spectrum and the conductivity in the system becomes
equal to zero at zero doping.

At finite doping, the mobile charge carriers are accu-
mulated in the conduction bands. When x < x0, the band
corresponding to the sector σ = +1/2 is filled, while the band
corresponding to σ = −1/2 is empty. We have two Fermi
pockets in the filled band, one electronlike (∂Ek/∂k > 0) and
one holelike (∂Ek/∂k < 0), see Fig. 2. The Fermi momenta
of these pockets are given by Eq. (30), where μ = Ekσ . Using
Eqs. (18) and having in mind that �/εF � 1, we derive

k
(e,h)
F

kF
= 1 ± �0

4εF

x

x0
≈ 1, x < x0, (63)

where the superscript e (superscript h) and the plus (minus)
sign corresponds to the electron (hole) pocket. Recall that kF

and εF denote the corresponding values at zero doping. In the
same approximation, we have

v
(e,h)
F ≈± x

2x0−x

kF

m
, N

(e,h)
F ≈ 2x0−x

x
NF, x <x0. (64)

Therefore, in the lowest-order approximation, when �0/εF �
1, the electron-hole symmetry is preserved.

The energy gap �σ in the σ = +1/2 sector vanishes if
x > x0, while the filling of the σ = −1/2 sector remains
zero (see Sec. II A). Thus, for �0/εF � 1, the conductivity
becomes σ0, that is, one-half of the conductivity of the system
in the PM state.

Now we can calculate the electric conductivity σE, which
is the sum of the electron σe and the hole σh contributions.
Using Eqs. (61) and (64), we obtain

σE = σ0G(x) ≈ σ0

{
x/(2x0 − x), 0 < x < x0,

1, x0 < x < 2x0.
(65)
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The derivative of the function σE(x) has a singularity at x =x0,
when the second-order transition occurs [see Fig. 4(a)]. When
x > 2x0, the half-metal phase disappears, the spin degeneracy
of the Fermi surface is restored, and the conductivity exhibits
a stepwise change from σ ≈ σ0 to σ ≈ 2σ0.

The conductivity in the half-metallic state is of the order of
σ0 if the doping x is not small, x ∼ x0. The results obtained
are valid if the temperature T and scattering frequency 1/τ

are both smaller than the characteristic energy μ − �σ , which
is necessary “to mix” the electron-like and the hole-like
excitations. When x ∼ x0, this means that both T , 1/τ � �0.

If the electric current j is spin polarized, the spin current
j s associated with j is nonzero. We can define the spin current
as j s = j 〈sz〉/e, where 〈sz〉 is the average spin projection per
one electron or hole at the Fermi surface. Using Eq. (61), we
define a spin conductivity as

σ s = e〈sz〉
3

NF(μ) τ (μ) v2(μ), (66)

where we assume that there are no magnetic impurities in the
sample. The spin conductivity of the system is the sum of
spin conductivities in the electron σ s

e and the hole σ s
h pock-

ets. To calculate σ s , we need to know the spin polarization
of the Fermi surface valleys. At small doping x � x0, the
valley polarizations are weak |〈sz〉| � 1/2. They grow as the
doping increases, and saturate when x ∼ x0. In this case, we
have 〈sz〉 ≈ 1/2 for the electrons and 〈sz〉 ≈ −1/2 for holes.
Therefore, σ s

e ≈ −σ s
h and

σ s ≈ 0, (67)

with an accuracy ∼ σ s
0 (�0/εF), where σ s

0 = σ0/2e.
In our system, we can define the spin-valley conductivity

as well. Indeed, similarly to the electron spin, we can attribute
the spin-valley quantum number ±1/2 to the electron states
at the Fermi energy, see Eq. (33). When the electrical current
flows through the system, it can carry this quantum number,
in addition to the charge.

To specify the spin-valley conductivity, we replace the
spin polarization 〈sz〉 in Eq. (66) by an average spin-valley
projection 〈sv〉. For the spin-valley half-metal, 〈sv〉 = 1/2 for
both Fermi pockets. As a result, we readily obtain

σv = σv
0 G(x), (68)

where σv
0 = σ s

0 = σ0/2e.

B. CDW half-metal

In the case of the CDW half-metal, electron-like and
hole-like charge carriers have the same spin projections, while
the spin-valley projections have opposite signs. It is easily
proven that in the CDW case, the charge conductivity is the
same as for the SDW phase, Eq. (65), while the spin and
spin-valley conductivities must be interchanged, as compared
to the spin-valley half-metal phase, that is,

σE = σ0G(x), σ s = σ s
0 G(x), σ v ≈ 0. (69)

We can see from Eqs. (69) and (68) that the electric current
in our systems carries, besides charge, an additional quantum
number: either spin, or spin-valley projection.

IV. SUPERCONDUCTIVITY

In the half-metal phases under study, we have itinerant
electrons in two Fermi pockets. Therefore, an attractive inter-
action between these quasiparticles can give rise to unconven-
tional superconductivity. We briefly analyze such a possibility.
For simplicity, we consider below only commensurate SDW
or CDW ordering.

Let us assume that the effective Hamiltonian of the system
can be written as

Ĥeff = ĤHM + ĤBCS, (70)

where the first term on the right-hand side, ĤHM, corresponds
either to the spin-valley SDW phase, Eq. (8), or to the CDW
half-metal, Eq. (47). The second term is a usual BCS at-
traction. We consider first the CDW phase. In this case, all
electrons in both Fermi pockets have the same spin projection
σ =↑. Thus, the BCS term can be expressed as

ĤBCS = −
∑

kk′αβ

V
αβ

kk′ C
†
k↑αC

†
−k↑αC−k′↑βCk′↑β, (71)

where C
†
k↑α (Ck↑α) are the creation (annihilation) operators

of a quasiparticle with momentum k and spin projection ↑
at the Fermi surface pocket α = e, h; while V

αβ

kk′ = V
βα

kk′ are
the corresponding matrix elements of the electron-electron
attraction.

The superconducting order parameter is commonly defined
as

�α
sc(k) =

∑
k′β

V
αβ

kk′ 〈C†
k′↑βC

†
−k′↑β〉. (72)

In particular, this means that

�α
sc(k) = −�α

sc(−k). (73)

Following the standard Bogolyubov approach for the case
of two-band superconductivity [39], we obtain a system of
equations for calculating the two superconducting gaps

�α
sc(k) = −

∑
k′β

V
αβ

kk′ �
β
sc(k′)

2E
β

k′
tanh

(
E

β

k′

2T

)
, (74)

where

Eα
k =

√(
E

(2)
k↑ − μ

)2 + �α
sc(k)2 . (75)

In this expression, E
(2)
k↑ is determined by Eq. (9), in which

the SDW order parameter �σ should be replaced by the
CDW order parameter �̃σ . Note that in the case of the CDW
half-metal, both gaps �e,h

sc (k) correspond to superconductivity
with a spin-polarized supercurrent.

In the case of a usual half-metal, an unconventional
superconducting ordering exists if the matrix element of
the electron-electron attraction obeys certain symmetry rules
[40,41]. In contrast to a usual half-metal, we have a two-
component superconducting order parameter, one component
per one valley. However, the symmetry analysis of V

αβ

kk′ is very
similar to the case of a single-component unconventional su-
perconductivity. We simply have to demand that the symmetry
of the matrix element should be consistent with the symmetry
of the order parameters, Eq. (73).
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For simplicity let us assume that V ee
kk′ =V hh

kk′ =V eh
kk′ =Vkk′ .

These assumptions are reasonable, since the difference in the
Fermi momenta of different Fermi pockets is small. From the
definition

Vkk′ = 〈k′ ↑,−k′ ↑ |V |k ↑,−k ↑〉. (76)

Thus, the matrix element must obey the following symmetry
rules [41,42]:

Vkk′ = −V−kk′ = −Vk−k′ = V−k−k′ . (77)

We conclude that the interaction matrix element should have
a definite k-space dependence, otherwise Vkk′ = 0 according
to Eq. (77) and then superconductivity would be impossible.
This nontrivial k-space dependent interaction must ensure a
correct sign of the sum on the right-hand side of Eq. (74). For
example, if the matrix element has the form

Vkk′ = −kk′

k2
F

V0, (78)

then V0 must be positive and

�α
sc(k) = f (k)�̄α

sc. (79)

Here �̄α
sc is k independent and derived as the usual BCS

superconducting gap in the case of the two-band model [39].
It depends on the Fermi momenta kα

F defined by Eq. (63) and
on the interaction parameter V0.

The above discussion can be easily adopted to the case
of the spin-valley half-metal phase. The only difference is
that the spin polarizations of the two valleys are antiparallel
to each other. Consequently, the supercurrent carries a spin-
valley polarization. As for the spin polarization of the current,
it is small, or even zero.

As in the case of the usual BCS treatment, our consider-
ation of the superconductivity is valid if the superconducting
gap is much smaller than the characteristic Fermi energy of
the half-metal state. That is,∣∣�̄α

sc

∣∣ � �0(1 − x/2x0 −
√

1 − x/x0), (80)

which in the case of sufficiently high doping, x ∼ x0, reduces
to the condition |�̄α

sc| � �0.

V. DISCUSSION

Here we have discussed a weak-coupling mechanism of
half-metallicity. Since it does not require a strong electron-
electron coupling, it may be operational in systems composed
of light atoms only. For example, the proposed half-metallicity
could exist in systems without transition metals. Moreover, in
addition to the usual half-metal with spin-polarized electrons
at the Fermi surface, we predicted the possible existence of a
new phase, which we referred to as a spin-valley half-metal.
This phase is characterized by the valley quantum number,
and the charge carriers at the Fermi surface are not only spin
polarized but also valley polarized. This unique property may
be of interest for applications in spintronics, and the newly
emerging field of spin-valley-tronics.

The presented mechanism for the formation of half-
metallicity is quite general, and may be relevant to any ma-
terial with nesting-driven density waves. However, here we
consider only a specific type of interaction, namely, short-
range electron-electron repulsion, Eqs. (4)–(6), with g and

g⊥ > 0. In this case, we observe two instabilities of the
electronic state: SDW and CDW. From the former, the spin-
valley half-metal state emerges, Fig. 2(b), while the latter
one gives rise to the CDW half-metal state, Fig. 2(c). Note
that in real materials, a short-range approximation for the
electron-electron coupling is well justified when the system
is in a metallic (or in our case half-metallic) state. In the SDW
or CDW insulating state, the long-range interaction could be
of significance. However, the use of a more sophisticated
interaction potential does not affect our main results: the
density-wave instability occurs in the system with nesting
under the condition of weak coupling and the ground state
of doped system (when the electron-electron interaction is a
short-range one) is the half-metal.

We assume that both the electron and hole sheets of the
Fermi surface are perfectly nested at zero doping. More re-
alistically, the sheets have nonidentical shapes, causing finite
denesting even at zero doping. For example, one sheet may be
spherical, while the other may be elliptical [29].

If the zero-doping denesting is sufficiently weak, the range
of doping where ∂2F ic

0 (x)/∂x2 < 0 shrinks [29], but does
not disappear. When the sheet shapes differ significantly, one
has ∂2F ic

0 (x)/∂x2 > 0 for all x, and the half-metallic states
become impossible.

On the other hand, if the sheets are nonspherical, but the
zero-doping nesting is preserved (at x = 0 the sheets are iden-
tical), our conclusions endure, and only minor mathematical
modifications to the formalism are required (the density of
states acquires a dependence on the spherical angles).

In addition, we assumed the electron-hole symmetry of
the “bare” (when the electron-hole coupling is neglected)
bands, Fig. 1. This approximation simplifies the intermediate
formulas considerably; fortunately, it does not trivialize the
main results. Straightforward modifications to the formalism
allows one to investigate a more general model.

It is interesting to note that the model we study here is
well known and was discussed in many research papers. Yet,
despite these efforts, Hamiltonian (3) provides an unexpected
many-body phase of electronic liquid. This is associated with
the fact that a doped density-wave system has several states
whose energies are almost identical (“stripes,” phase separa-
tion, incommensurate density waves). They compete against
each other to become the “true” ground state. The multiplicity
of competing phases makes a theoretical description particu-
larly challenging: it is impossible to prove that no new states
will not be added to the list in the future. Thus, to realize
the proposed mechanism in an actual material, a multidisci-
plinary study is necessary. In addition to analytical many-body
tools, numerical ab initio calculations of Fermi surfaces and
other electronic and lattice properties are highly desirable. Of
course, guidance from experiments is indispensable in such a
study.

The most striking feature of the half-metal states consid-
ered in this paper is the possibility to observe spin or spin-
valley polarized currents. The corresponding conductivities
are significant if the doping is not small and is of the order
of the characteristic value

x0 = NF�0 ∼ �0n0/εF. (81)

155141-11



RAKHMANOV, SBOYCHAKOV, KUGEL, ROZHKOV, AND NORI PHYSICAL REVIEW B 98, 155141 (2018)

In this regime, the results obtained are valid at sufficiently
low temperatures, T � �0, and in the absence of a strong
electron scattering, 1/τ � �0. The absence of magnetic im-
purities that spoil the spin polarization is also necessary. We
neglected here several perturbations (disorder, spin-orbit cou-
pling, Umklapp processes). The stability margins of the half-
metallic phases against these factors, as well as their effects on
the polarized currents, should be checked in further studies.

Since the half-metals posses an ungapped Fermi surface,
superconductivity may coexist with these phases. The allowed
type of superconductivity is p-wave, with parallel or antipar-
allel orientations of spin polarizations on the electronic and
hole sheets. When the polarizations are parallel (antiparallel),
the supercurrent, in addition to the electric charge, carries also
spin (spin-valley) quantum.

The electronic phase separation and formation of inhomo-
geneous states of electronic matter is an inherent property of
systems with imperfect nesting [23,43]. A strong long-range
Coulomb repulsion suppresses the formation of inhomoge-
neous states. We assumed that this Coulomb interaction guar-
antees the homogeneity of the electron liquid and neglected
the possibility of phase separation. However, the problem of
phase separation in the system considered here is of interest
and deserves a separate analysis because it makes the phase
diagram of the model richer.

The above calculations demonstrate that, among several
mean-field states discussed above, the incommensurate spin-
valley half-metal has the lowest energy, at least for not too
strong doping. However, in realistic sp-electron materials the
exchange interaction is small [44]. Then, the renormalization
of the interaction constant for the CDW ordering Eq. (49)
is also small. Therefore, the difference in the free energy
between the SDW and CDW phases cannot be large. The
difference in the free energies between the incommensurate
and commensurate states is also small if coupling is weak,
as it follows directly from our calculations. It is reasonable
to assume that, in general, factors neglected in our treatment
(temperature, magnetic field, disorder, electron-lattice cou-

pling, etc.) may change the ground state. However, in any of
the studied half-metal phases, one can observe either spin or
spin-valley currents.

To conclude, we discussed the recently proposed weak-
coupling mechanism for half-metallicity, as well as its most
immediate consequences. We calculated the phase diagram
for the studied model and explored the connection between
spin conductivity, spin-valley conductivity, and usual elec-
tric conductivity for different phases of the model. We also
pointed out that in our model the half-metallicity may coexist
with superconductivity. The supercurrent in such a super-
conducting phase would demonstrate nontrivial spin or spin-
valley polarization. The mechanism discussed in this work
may be of importance for the current search for nontoxic
biologically compatible materials with nontrivial electronic
properties.
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