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Flatbands feature the distortion-free storage of compact localized states of tailorable shape. Their reliable
storage sojourn is, however, limited by disorder potentials, which generically cause uncontrolled coupling into
dispersive bands. We find that, while detuning flatband states from band intersections suppresses their direct
decay into dispersive bands, disorder-induced state distortion causes a delayed, dephasing-mediated decay, lifting
the static nature of flatband states and setting a finite lifetime for the reliable storage sojourn. We exemplify
this generic, disorder-induced decay mechanism at the cross-stitch lattice. Our analysis, which applies platform
independently, relies on the time-resolved treatment of disorder-averaged quantum systems with quantum master
equations.
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I. INTRODUCTION

Flatbands, which may emerge as a consequence of symme-
tries or fine tuning in certain tight-binding Hamiltonians, are
characterized by a completely dispersionless single-particle
energy spectrum, i.e., the band’s energy E(p) is independent
of the Bloch state momentum p. Predicted several decades
ago [1,2], they have recently become experimentally accessi-
ble in artificial lattice systems, ranging from electronic [3–9],
to atomic [10–12] and photonic [13–25].

Remarkably, flatbands feature the existence of “compact
localized states,” free of any dynamical evolution and with
tailorable shape, the latter by judiciously superposing the
entirely degenerate Bloch states. Notably, these localized
flatband states are even supported by a perfectly periodic lat-
tice, whereas in standard dispersive bands localization usually
emerges as a consequence of defects or disorder. Due to this
localizability and absence of dispersive distortion, flatband
states offer themselves as a means to store states and preserve
information [26,27].

The presence of disorder, however, may limit the static
storage of flatband states. This is because a disorder poten-
tial, even if small, gives in general rise to spatially resolved
phase fluctuations. While these may appear inconspicuous and
initially irrelevant from the lattice perspective, they distort
the wave packet in momentum space. In the vicinity of band
intersections, this may eventually result in an uncontrolled
coupling into dispersive bands (Fig. 1), thus limiting the
reliable storage sojourn and ultimately resulting in the state’s
diffusive delocalization. In this sense, in flatband scenarios the
reasoning is reversed: While localized in the perfectly periodic
case, disorder, mediated by the coupling to a dispersive band,
delocalizes flatband states.

In this paper, we study how disorder potentials induce
the evolution of 1D flatband states in the presence of
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intersecting dispersive bands. This complements other studies
on the impact of perturbations in flatband scenarios [26,28–
37], e.g., describing the flatband-modified propagation in
dispersive bands. We identify and characterize a generic,
disorder-induced decay mechanism for flatband states, lifting
their static nature and causing their effective diffusion, despite
the absence of a kinetic term. We find that their (in)stability is
controlled by the interplay of direct decay near intersections
and dephasing-mediated state distortion. We demonstrate our
findings with the cross-stitch lattice, which exhibits exactly
one flat and one dispersive band (Fig. 1) and therefore serves
as a paradigmatic model system. Generic features, however,
hold also in other (1D) flatband scenarios with band inter-
sections, platform independently. Our analysis relies on the
treatment of disorder-averaged quantum systems with quan-
tum master equations [38–43].

II. SINGLE-INTERSECTION APPROXIMATION

To motivate our ansatz Hamiltonian (2), we derive it now
from the quasi-one-dimensional cross-stitch lattice, which is
composed of two parallel sublattices |a〉 and |b〉 with intra-
and interlattice nearest neighbor hopping, see Fig. 1. The
Hamiltonian (in the absence of a potential) reads (e.g., [44])

Ĥ = −J
∑
j∈Z

{(|j 〉〈j + 1| + |j 〉〈j − 1|)

⊗ (12 + |a〉〈b| + |b〉〈a|)
+ tab|j 〉〈j | ⊗ (|a〉〈b| + |b〉〈a|)}, (1)

exhibiting two bands, one flat, Ef = J tab, and one disper-
sive, Ed(k) = −4J cos(k) − J tab, with hopping constant J

and intracell hopping participation tab. The bands intersect
twice if |tab| < 2, which we assume from now on. States
in a symmetric superposition of the two sublattices re-
side in the dispersive band |d〉, while antisymmetric su-
perpositions reside in the flatband |f〉, |f〉 = (|a〉 − |b〉)/

√
2

and |d〉 = (|a〉 + |b〉)/
√

2. The Hamiltonian (1) then reads
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(b)

FIG. 1. Cross-stitch lattice as paradigmatic flatband model.
(a) It consists of two parallel sublattices, each unit cell |j〉 contain-
ing two sites |a〉 and |b〉 (yellow area). All neighboring sites are
interconnected, i.e., hopping can occur within or by switching the
sublattice. (b) The model exhibits two bands, one flat (FB) and one
dispersive (DB). The intracell hopping tab controls their energetic
relation. While an ideal flatband allows the distortion-free storage
of compact localized states of tailorable shape, a disorder potential
causes distortion and, in the vicinity of intersections (yellow areas),
to a coupling into the dispersive band, limiting the state’s reliable
storage sojourn in the flatband.

Ĥ = −J (4 cos[p̂a/h̄] + tab)|d〉〈d| + tabJ |f〉〈f|, with lattice
constant a.

As the vicinities of the intersections dominate the decay of
flatband states [Fig. 1(b)], we hereafter linearize the disper-
sive band at the intersection p1 closest to the flatband state.
Below, we will reintroduce the second intersection. Without
loss of generality, we assume Ef = 0. Moreover, we assume
that the flatband state extends over at least a few unit cells,
legitimating the continuum limit. The Hamiltonian (1) is then
approximated by

Ĥ = v(p̂ − p1) ⊗ |d〉〈d|, (2)

with [x̂, p̂] = ih̄, and the velocity v the dispersive-band slope
at the intersection.

In a perfect implementation of (1) [or (2), respectively], a
state residing in the flatband would not evolve. More realis-
tically, however, one should consider at least small potential
variations, e.g., due to impurities or stray fields. A general
disorder potential in the cross-stitch model is written (again in
the continuum limit)

V̂ε = V a
ε (x̂) ⊗ |a〉〈a| + V b

ε (x̂) ⊗ |b〉〈b|, (3)

where ε labels different disorder realizations and can be
discrete, continuous and/or a multi-index (for convenience,
we write integrals throughout). We assume that the disorder
potential vanishes on average,

∫
dε pεV̂ε = 0 (pε denotes

the probability distribution over the disorder realizations),

i.e., the full Hamiltonian is Ĥε = Ĥ + V̂ε with the average

Hamiltonian Ĥ as in (2). Moreover, we assume that the
disorder potential is weak, such that only dispersive band
states in the vicinity of the intersection, where the linear band
approximation is valid, become accessible.

The two sublattices |a〉 and |b〉 in general exhibit differing,
but correlated disorder potentials V a

ε (x) and V b
ε (x). Assuming

homogeneous disorder, we define the intra- and intersublattice

correlations

Cσσ ′ (x − x ′) ≡
∫

dε pεV
σ
ε (x)V σ ′

ε (x ′)

=
∫

dq eiq(x−x ′ )/h̄ Gσσ ′ (q ), (4)

with σ, σ ′ ∈ {a, b}, and Gσσ ′ (q ) describing the disorder-
induced scattering. The intersublattice disorder correlations
strongly influence the disorder-induced band coupling. In-
deed, rewriting the disorder potential [44], V̂ε = V +

ε (x̂) ⊗
12 + V −

ε (x̂) ⊗ σ̂x , with σ̂x ≡ |f〉〈d| + |d〉〈f| and V ±
ε (x) =

1
2 [V a

ε (x) ± V b
ε (x)], reveals that the interband coupling, me-

diated by V −
ε (x), vanishes if V a

ε (x) = V b
ε (x).

For simplicity, we assume that the intrasublattice correla-
tions are the same on both sublattices, Gσσ ′ (q ) = Gσ−σ ′ (q )
(for convenience, we replace a → 1/2 and b → −1/2, i.e.,
(σ − σ ′) ∈ {−1, 0, 1}). We then define

Gσ−σ ′ (q ) =
∑

β∈{−1,0,1}
eiπβ(σ−σ ′ )G̃β (q ), (5)

with [G−1(q ) = G1(q )] G̃0(q ) = 1
2 [G0(q ) + G1(q )] and

G̃1(q ) = G̃−1(q ) = 1
4 [G0(q ) − G1(q )]. Finally, as they orig-

inate from the same disorder potentials, we require
that the intersublattice and the intrasublattice correlations
have the same form, generically modified by a factor
−1 � δ � 1:

Cab(x) = δ Caa(x) = δ Cbb(x). (6)

This yields G̃0(q ) = G0(q )(1 + δ)/2 and G̃1(q ) =
G0(q )(1 − δ)/4. Note that δ = +1 (δ = −1) describes
perfectly correlated (anticorrelated) sublattice potentials,
while intermediate δ values can, e.g., result from their
weighted combination, corresponding to several disorder
sources, some causing correlated, some anticorrelated,
disorder potentials on the sublattices. We remark that, if the
intrasublattice correlations differ, Eq. (6) does in general
not hold. While such generalization is feasible within our
framework, no additional insights would emerge.

Note that (2) is not limited to the cross-stitch lattice,
but serves as a generic, linearized model of any flatband-
dispersive band intersection. In general, |a〉 and |b〉 then
correspond to unspecified internal states of the unit cell, with
(|f〉, |d〉)T = U (|a〉, |b〉)T . For our discussion, it suffices to fo-
cus on disorder potentials V̂ε = V intra

ε (x̂) ⊗ 12 + V inter
ε (x̂) ⊗

σ̂x , as in the cross-stitch model; σ̂y and σ̂z contributions could,
however, easily be included. Disorder-induced modifications
of the kinetic term (2) are also neglected here. For clarity, we
continue to discuss the cross-stitch lattice.

III. DISORDER-AVERAGED TIME EVOLUTION

We now describe the time evolution of the disorder-
averaged quantum state ρ(t ) = ∫

dε pε ρε(t ), where ρε(t ) =
e−iĤε t/h̄ρ0e

iĤεt/h̄. This is achieved with a quantum master
equation perturbative in the disorder potential [40,41]. Using
(4) and (5), one obtains the time-local, translation-covariant
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master equation

∂tρ(t ) = − i

h̄
[Ĥeff (t ), ρ(t )] +

∑
α∈{±1}

2α

h̄2

∫ ∞

−∞
dq

×
∑

β∈{−1,0,1}
G̃β (q )

∫ t

0
dt ′L

(
L̂

(α)
q,β (t ′), ρ(t )

)
, (7a)

where L(L̂, ρ) = L̂ρL̂† − 1
2 L̂†L̂ρ − 1

2ρL̂†L̂ and Gβ (−q ) =
Gβ (q ). The effective Hamiltonian Ĥeff (t ) = Ĥ

†
eff (t ) and the

Lindblad operators L̂
(α)
q,β (t ) are given by

Ĥeff (t )

= Ĥ − i

2h̄

∫ ∞

−∞
dq

∑
β∈{−1,0,1}

G̃β (q )
∫ t

0
dt ′ [V̂q,β, ˆ̃V−q,−β (t ′)],

L̂
(α)
q,β (t ) = 1

2
[V̂q,β + α ˆ̃Vq,β (t )], (7b)

where ˆ̃Vq,β (t ) = e−iĤ t/h̄ V̂q,β eiĤ t/h̄ and V̂q,β =
eiqx̂/h̄ ⊗ ei(π/2)βσ̂x . With Ĥ = v(p̂ − p1) ⊗ |d〉〈d|
[cf. Eq. (2)], we then have ˆ̃Vq,β=0(t ) = eiqx̂/h̄ ⊗
(|f〉〈f| + e−ivtq/h̄|d〉〈d|), ˆ̃Vq,β=1(t ) = ie−ivt (p̂−p1 )/h̄eiqx̂/h̄ ⊗
|d〉〈f| + ieiqx̂/h̄eivt (p̂−p1 )/h̄ ⊗ |f〉〈d|, and ˆ̃Vq,β=−1(t ) =
− ˆ̃Vq,β=1(t ).

The master equation (7) describes the disorder-perturbed
evolution of the full two-band quantum state. In the following,
we focus on the flatband component ρf ≡ 〈f|ρ|f〉. Projecting
(7) onto |f〉, we obtain (ρd = 〈d|ρ|d〉)

∂tρf = 2t

h̄2

∫ ∞

−∞
dq G̃0(q ){eiqx̂/h̄ρfe

−iqx̂/h̄ − ρf} (8a)

− 2

h̄2

∫ ∞

−∞
dq G̃1(q )

∫ t

0
dt ′{eivt ′q/h̄e−ivt ′(p̂−p1 )/h̄ρf

− eiqx̂/h̄ρde
−ivt ′(p̂−p1 )/h̄e−iqx̂/h̄ + H.c.}. (8b)

For the dispersive band component ρd, one derives a similar
evolution equation, with intraband dynamics as in Ref. [41].
We remark that Eq. (8) is not equivalent to Fermi’s golden
rule, which, while delivering asymptotic transition rates, re-
mains ignorant about the intermediate dynamics.

Equation (8), which holds for arbitrary correlations and
initial states, presents the basis for our analysis of the decay
of the flatband states. It exhibits two components: A trace-
preserving part (8a) describing the disorder-induced dephas-
ing in the flatband channel, which causes a loss of coherence
of the disorder-averaged state, along with a broadening mo-
mentum distribution. The second contribution (8b) captures
the coupling into the dispersive band. As we show, the in-
terplay between these two contributions ultimately limits the
stability of flatband states.

IV. DECAY INTO THE DISPERSIVE BAND

We first analyze the coupling of the flat into the dispersive
band. We thus neglect for now the intrachannel dephasing
(8a), corresponding to perfectly anticorrelated sublattice po-
tentials, δ = −1 in (6) (we discuss the decay, however, for

general δ). Moreover, we assume that the dispersive-band state
component is negligible, ρd ≈ 0. This is justified, because
we consider the reliable storage sojourn of initial flatband
states, i.e., before a significant dispersive-band component
emerges. Also, any dispersive-band component propagates
with velocity v, i.e., feedback into the flatband generally
occurs remote from the initial flatband state location.

Equation (8) can then be rewritten in momentum represen-
tation (ρf (p) = 〈p|ρf |p〉), ∂tρf (p) = −�t (p − p1) ρf (p),
with the momentum-dependent decay rate

�t (p) = 4

h̄2

∫ ∞

−∞
dq G̃1(q ) t sinc

[
vt (q − p)

h̄

]
. (9)

The solution reads ρf (p) = ρf,0(p) e−�t (p−p1 ), with �t (p) =∫ t

0 dt ′�t ′ (p) = 2
h̄2

∫ ∞
−∞ dq G̃1(q ) t2 sinc2[ vt (q−p)

2h̄
]. Assuming

a finite correlation length � further simplifies the decay in the
limit |v|t � �:

�t (p) = πt

h̄|v| (1 − δ)G0(p). (10)

We thus find a momentum-dependent decay of flatband
states into the dispersive band, determined by the state’s
relative location w.r.t. the intersection, the transport velocity
v at the intersection, and the disorder characteristics. As
previously anticipated, this decay is absent if δ = 1, i.e., if
the disorder potentials on the two sublattices are identical.

In the (unrealistic) limit of vanishing correlations,
Caa(x) = Cbb(x) = C0 δ(x), we obtain G0(p) = C0

2πh̄
, i.e.,

the decay happens homogeneously, irrespectively of the
flatband state’s position w.r.t. the intersection. With Gaus-
sian correlations, Caa(x) = C0 e−(x/�)2

, we obtain G0(p) =
C0�

2
√

πh̄
exp [− 1

4 ( p�

h̄
)
2
], i.e., (10) implies an exponential suppres-

sion of the decay for momenta (p − p1) � h̄/�. We remark
that, in the short period before t ≈ �/|v|, the exact rate (9)
describes a transitional stage with decay spanning over a
wider range of momenta; the impact of this stage is, however,
generically small.

If the flatband state is (partly or fully) on resonance with
the intersection, it rapidly begins to decay and spread in the
dispersive channel, which, through backcoupling, results in
spatial diffusion in the flatband channel. The momentum-
dependent decay for finite �, on the other hand, suggests to
store (sufficiently momentum-localized) states remotely (in
momentum) from the intersection, in order to suppress their
decay into the dispersive channel. However, as we show next,
disorder-induced dephasing limits the temporal success of this
strategy.

V. DEPHASING-MEDIATED DECAY

To assess the disorder-induced dephasing, we now neglect
the dispersive-band coupling (8b), describing perfectly corre-
lated sublattice potentials, δ = 1 (again, we keep δ general in
the discussion). The remaining equation (8) is solved in posi-
tion representation: 〈x|ρf (t )|x ′〉 = 〈x|ρf,0|x ′〉e−F t (x−x ′ ), with

F t (x) = t2

h̄2

∫ ∞

−∞
dq G̃0(q )

{
1 − cos

[qx

h̄

]}
. (11)
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For Gaussian correlations, and with (6), we then obtain
F t (x) = t2(1+δ)C0

2h̄2 (1 − exp[−(x/�)2]), i.e., the off-diagonal
elements decay exponentially, causing a purity loss, while the
diagonal elements remain unaffected.

More importantly, however, the dephasing comes with a
distortion and broadening of the momentum distribution, as
seen from the momentum variance, 〈(�p̂)2〉(t ) = 〈(�p̂)2〉0 +
t2

h̄2

∫ ∞
−∞dq q2G̃0(q ), which, for Gaussian correlations, reads

〈(�p̂)2〉(t ) = 〈(�p̂)2〉0 + (1+δ)C0
�2 t2, i.e., within our approxi-

mation, the momentum width increases linearly in time; the
distribution in position space, however, remains unaffected.

In the general case, −1 < δ < 1, we must consider both
decay and dephasing. Moreover, we now include the contribu-
tion of the second intersection at p2 = −p1. Recast in terms
of the momentum distribution, Eq. (8) then reads

∂tρf (p) = −
∑
j=1,2

�
(j )
t (p − pj ) ρf (p)

+ 2t

h̄2

∫ ∞

−∞
dq G̃0(q ){ρf (p − q ) − ρf (p)}, (12)

where �
(j )
t (p) as in (9) (with v2 = −v1). Note that the de-

phasing contribution manifests nonlocally here. Moreover, we
remark that (12) applies, similarly to (2), also to other 1D
flatband-intersection scenarios, possibly generalized to more
than two intersections.

Based on our previous discussion, we should expect that,
even if the initial state (p0 = 〈p̂〉) is safely (i.e., decay-
protected) located at (p0 − pj ) � h̄/� with momentum width
〈(�p̂)2〉0  (p0 − pj )2, due to disorder-induced momentum
broadening, the wavepacket extension reaches the intersection
region of enhanced decay into the dispersive band, terminating
the time span τ of the decay-protected sojourn. From the
variance growth we estimate

τ � (p0 − p1)�√
C0(1 + δ)

, (13)

with p1 the nearest intersection. In this sense, the presence of
disorder introduces a lifetime for the reliable state storage in
the flatband.

VI. NUMERICAL TEST

Figure 2 displays the time evolution for: the initial flatband
state (i) partially overlapping with one intersection or (ii)
residing in between the two intersections. In both cases we
compare the numerically exact evolution in the cross-stitch
model (N = 100 unit cells, periodic boundary conditions,
averaged over K = 200 realizations) with our analytical pre-
diction (12). We use Gaussian correlations [the integral in
(9) can then be solved analytically] with W = 0.5J (C0 =
W 2/12), � = 6a, and δ = 0. The intracell hoppings are (i)
tab = 1.0 and (ii) tab = 0.6, along with the intersections (i)
p1,2 = ±2.09 h̄/a and (ii) p1,2 = ±1.88 h̄/a, and the veloci-
ties (i) v = ±3.46 aJ/h̄ and (ii) v = ±3.82 aJ/h̄. The initial
flatband state is Gaussian, ψ0(x) ∝ e−(x−x0 )2/(2σ 2

x )+ip0x , cen-
tered around x0 = 50a with σ 2

x = 12a2, and (i) p0 =
1.26 h̄/a and (ii) p0 = 0.

t =

〈p
|  

 |p
〉 [

a.
u.

]

20h̄/J

h̄/a

t = 20¯

t = 0t =

�

0

0

t =
0

h/J

t = 50h̄/J

G0 G0 G0

(i)(a) (b)

(c) (d)

(i)

(ii)

(ii)
p[ ]

h̄/J jt [ ]

h̄/ap[ ]

ρ
f

〈p
|  

 |p
〉 [

a.
u.

]
ρ

f

tr
[  

 ]
ρ

π 0 ππ �π

f

FIG. 2. Disorder-induced decay of flatband states in the cross-
stitch lattice. We compare the numerically exact evolution (black
solid, E) with our prediction (12) (red dash-dotted, P). Depending
on whether the initial state (blue dashed) is (a)/(i) resonant with or
(b)/(ii) detuned from the intersection (green dotted, for Gaussian
correlations), the initial flatband state decays (c)/(i) steadily from
the beginning, or (c)/(ii) not before the tails reach the intersections
[t = 20 h̄/J in (b) and (c)]. While the overall decay into the dis-
persive band rapidly slows down [black dashed in (c), EFT = exact
full trace], the flatband component exhibits ongoing diffusion
[EPT = exact partial trace], resulting in the state’s delocalization in
(d). Depending on the state’s relative position w.r.t. the intersections
and their transport velocities, this diffusion is symmetric [red dashed,
(ii) at t = 20 h̄/J ], or directional [green dotted, (i) at t = 10h̄/J , and
black solid, (i) at t = 20 h̄/J ].

We find good agreement between our theory, within its
range of validity, and the numerically exact results. In case
(i) there is, due to the partial overlap of the initial state with
the intersection, from the beginning a steady decay into the
dispersive band. As anticipated, with a detuned initial state in
(ii), the decay is delayed and sets in only after τexp ≈ 20 h̄/J .
This delayed decay would be absent if δ = −1, i.e., without
intrachannel dephasing. In graphene, where J ≈ 2.8 eV and
1D flatbands can, e.g., be found at the edges [45], the resulting
lifetime estimate would, for above parameters, be τ ≈ 5 ×
10−15 s. In 1D Lieb lattices of coupled micropillars [20], with
J ≈ 0.1 meV, one would obtain τ ≈ 10−10 s. Note that (13)
overestimates the lifetime, τ ≈ 80 h̄/J , as it is based on the
variance, while the decay is sensitive to the tails reaching the
intersections.

We remark that, in the numerical experiments, we measure
the decay of the flatband state by taking the partial trace
over the approximate carrier [x0 − 8a, x0 + 8a] of the initial
state in position space [yellow area in Fig. 2(d)]. This is
because, due to backcoupling (not modeled by our theory),
the dispersive-band state partly reenters the flatband, however,
due to propagation, remotely, this way contributing to the
diffusive delocalization of the flatband state. The difference
between partial and full trace then measures the fraction fed
back into the flatband outside the carrier. We find a rapid
slowdown of the overall decay into the dispersive channel,
along with an ongoing diffusion of the flatband compo-
nent, as predicted. The remaining deviations between our
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analytical predictions and our numerical results are explained
by immediate partial feedback into the flatband before leaving
the carrier, by reentering the carrier due to our finite, periodic
lattice, by higher orders in V̂ε, and by discreteness effects.
Note that the partial trace sets in slightly below 1, due to the
neglected initial-state fraction outside the carrier.

VII. CONCLUSIONS

We specified a generic, disorder-induced decay mechanism
in the interplay between flat and intersecting dispersive bands.
We find that detuning flatband states from intersections de-
lays their decay, limited by dephasing-mediated momentum
diffusion. Backcoupling from the dispersive into the flatband
eventually causes (potentially directional, i.e., “chiral”) spatial
diffusion of the flatband component. In this sense, disorder,
while ineffective in isolated flatbands, when mediated by
dispersive channels, delocalizes flatband states.

Whereas we exemplify our findings with the cross-stitch
model, our theory holds for a wide range of 1D flatband sce-
narios with dispersive-band intersections, platform indepen-
dently. If intersections are absent (in the cross-stitch model,
if |tab| � 2), however, the identified mechanism is expected to
be suppressed. Beyond their fundamental interest, we expect
that our results are relevant, for instance, for the prospect of
utilizing flatbands for state/information storage.

We stress that, in experimental implementations, depend-
ing on the platform, other factors, e.g., environmentally-

induced decoherence and/or many-particle effects, can af-
fect the evolution of the flatband states, possibly further
reducing their stability. In this sense, the identified mech-
anism may serve as a baseline estimate on the stability of
flatband states. Near-future experimental confirmations in ex-
isting platforms are conceivable [6–8,10–21]. Generalizing
the theory to 2D/3D, and including the evolution of dispersive-
band components, could further illuminate the interplay of
flat and dispersive bands. We expect that, in 2D or 3D, a
similar mechanism prevails, i.e., the detuning from the closest
dispersive-band intersection delays the onset of the diffusion
process.
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