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Pattern formation in vortex matter with pinning and frustrated intervortex interactions
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We investigate the effects related to vortex-core deformations when vortices approach each other. As a result of
these vortex-core deformations, the vortex-vortex interaction effectively acquires an attractive component leading
to a variety of vortex patterns typical for systems with nonmonotonic repulsive-attractive interaction, such as
stripes and labyrinths. The core deformations are anisotropic and can induce frustration in the vortex-vortex
interaction. In turn, this frustration has an impact on the resulting vortex patterns, which are analyzed in the
presence of additional random pinning, as a function of the pinning strength. This analysis can be applicable to
vortices in multiband superconductors or to vortices in Bose-Einstein condensates.
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I. INTRODUCTION

Vortex-vortex interactions in superfluid atomic gases or
type-II superconductors are purely repulsive, and can be
described by a simple pairwise potential for two well-separated
vortices. For dilute vortex matter, the description of the total
interaction energy in terms of pairwise potentials is an ap-
proximation that is widely applicable and that describes many
observed phenomena in both superfluids and superconductors,
including the formation of the vortex lattice, vortex dynamics,
and vortex pinning [1]. However, it must be kept in mind
that this approximation leads to results that deviate from
the full time-dependent Ginzburg-Landau (GL) results when
(i) the vortex density becomes high (with cores in close vicinity
of each other) or strongly inhomogeneous, or (ii) when the
vortices move at a velocity comparable to the critical superfluid
velocity and a transition from vortex channels to phase
slip lines is possible. Despite these shortcomings, molecular
dynamics simulations using pairwise potentials have been used
very successfully to describe, for example, the vortex ratchet
effect [2–4] or quasiperiodic vortex structures [5–9].

Due to their spatial extension, the vortex-vortex interaction
acquires a threshold that can be effectively described as a sum
of a purely repulsive vortex-vortex interaction potential and
an additional attractive term. This situation is similar to the
earlier-studied case of multiscale vortex-vortex interactions
when two or more purely repulsive potentials characterized
by different length scales result in the appearance of an
attractive component in the resulting intervortex interaction
(see, e.g., [10]). The same idea stands behind the simple
interpretation of the origin of an attractive interaction in two-
and multiband superconductors [11–15], where different bands
are characterized by different sets of the characteristics lengths,
the coherence length, ξi , and the magnetic field penetration
depth, λi . As a result, different bands have different GL
parameters κi that define the length scales of the vortex-vortex
interaction. Furthermore, in the special case of a two-band
superconductor (called “type-1.5 superconductor” [12]), such
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as MgB2, two different GL parameters, corresponding to the
different bands, can be either smaller or larger than the dual
point, κπ < 1/

√
2 (type I) and κσ > 1/

√
2 (type II), thus

leading straightforward to a nonmonotonic repulsive-attractive
intervortex interaction [11–13]. Another example of a vortex
system that acquires an attractive term in the intervortex
interaction is a layered superconductor in a tilted magnetic field
[16–18]. Vortices become anisotropic due to the elongation in
the direction of the field tilting, and interact attractively which
may lead to the formation of stable vortex complexes [18].

In this context, it is also worth mentioning so-called “low-
κ” superconductors, i.e., materials with κ � 1/

√
2 (called

“low-κ” as opposite to the case of κ � 1 [19]). The detailed
calculations of the free energy of the vortex state in type-I and
type-II superconductors first have been carried out decades
ago [20–23]. It was also shown that materials with κ in a very
narrow range close to κ � 1/

√
2 revealed attraction between

vortices (this narrow region close to the phase transition
to type-I superconductivity was called “type II/1” [23], to
distinguish it from type-II superconductivity). Recently, the
interest in low-κ superconductors has been renewed thanks to
the advances in the studies of new materials and visualization
techniques. Thus recent experiments with ZrB12 and LuB12

with κ � 1/
√

2 [24,25] revealed the earlier theoretically
predicted so-called intermediate mixed phase (IMP) [or
intermediate mixed state (IMS)], which is a combination of
the mixed phase and the Meissner phase. These experiments
confirm that the intervortex interaction in the IMP is repulsive-
attractive, and they allow one to analyze the transition to the
type-I superconductivity where vortices are attractive (see,
e.g., the recent experiment [26]). Note that the appearance of
the attraction between vortices in the IMP (i.e., in the vicinity to
the dual point) is related to the onset of the overlap of the vortex
cores. This provides a direct link of our model (described
below) to low-κ superconductors. In addition, the appearance
of an effective attractive term has been recently demonstrated
also for nonpairwise vortex-vortex interaction [27].

In turn, systems interacting via repulsive-attractive poten-
tial (in particular, of Lennard-Jones type) were extensively
studied in physics and were shown to result in a variety of
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nontrivial patterns, including stripes, labyrinths, and lattices
with voids [28,29]. For vortices interacting via nonmonotonic
repulsive-attractive interactions, vortex pattern formation has
been analyzed [10,27,30–36], using various models. In par-
ticular, vortex clusters, stripes, labyrinths, deformed lattices,
and lattices with voids were found [35]. In addition, systems
with nonmonotonic interaction were shown to display unusual
dynamics, such as size-selective dynamical cluster formation
and reorientation of longitudinal stripes to transverse stripes
[36]. Some of the obtained static patterns were employed
to explain the observed vortex patterns in superconductors,
either in two-band materials, such as MgB2, or in low-κ
superconductors.

Let us take a more careful look at the similarities and
differences between the calculated regular vortex patterns
(see, e.g., [10,27,35–37]) and the observed vortex patterns
in multiband superconductors [12,13,15]. The most promi-
nent features that the numerical simulations reproduce are
the formation of vortex clusters and vortex stripes. These
are at the same time the most generic types of patterns
derived from nonmonotonic interactions [28,29]. Despite these
basic similarities, the measured vortex patterns are much
less perfect: e.g., less ordered broken stripes [12,13,15] or
chains of dimers rather than regular stripes [38]. Clearly,
these discrepancies require improvement of the employed
theoretical approaches in order to reach a better understanding
of the factors contributing to the vortex pattern formation.

In this work, we analyze effects related to (i) a short-
range effective attraction in the overall repulsive intervor-
tex interaction, in the presence of random pinning, and
(ii) frustration in the vortex-vortex interaction, combined with
random pinning. The latter effect, random pinning, is rather
obvious: pinning is inevitably present in superconductors
(although it is less evident in the case of vortices in Bose-
Einstein condensates (BECs) [39]), and it clearly has an impact
on vortex pattern formation. The appearance of frustration in
the intervortex interaction can be understood from the fact that,
when deformed, vortex cores elongate in the direction of the
closest neighbor resulting in an anisotropy and thus breaking
the symmetry of the interaction in the system [40,41]. As a
result, the interaction of the vortex with elongated core with
a second closest neighbor will depend on the orientation of
the vortex core with respect to the direction to that second
closest neighbor. Clearly, in the ideal case of two equally
close neighbors (such as in the case of antiferromagnetically
interacting spins placed on vertices of 2D polygons with an
odd number of vertices or on vertices of 3D tetrahedra) the
vortex-vortex interaction appears to be frustrated: the chosen
vortex should “decide” whether to elongate in the direction of
the first neighbor or in the direction of the second neighbor.
Geometrical frustration has been extensively studied in physics
[42,43] including condensed matter physics [44], liquids
and glasses [45,46], and superconducting vortices in various
artificial pinning arrays [5,6,34,47]. Here we will analyze
the effect of frustration that appears in the vortex-vortex
interaction due to deformations of vortex cores being perturbed
by close neighbors.

The paper is organized as follows. The model is introduced
in Sec. II. In Sec. III, we analyze the effects related to core
deformations without pinning and in the presence of pinning,

assuming the isotropic case not leading to frustration. The
calculated vortex patterns are compared to the experimental
images. Effects related to anisotropy and frustration in the
vortex-vortex interaction are discussed in Sec. IV, and a
comparison of the calculated vortex patterns to the experi-
mental patterns is presented. The conclusions of this work are
summarized in Sec. V.

II. MODEL

We model a 3D column, infinitely long in the z direction,
by a 2D (in the xy plane) square simulation cell with periodic
boundary conditions. To study the dynamics of vortex motion,
we numerically integrate the overdamped equations of motion
(see, e.g., Refs. [5,6]):

ηvi = fi = fvv
i + fvp

i + fT
i + fd

i . (1)

Here fi is the total force per unit length acting on vortex i,
fvv
i and fvp

i are the forces due to vortex-vortex and vortex-
pin interactions, respectively, fT

i is the thermal stochastic
force, and fd

i is the driving force; vi is the velocity, and
η is the viscosity. All the forces are expressed in units of
f0 = �2

0/8π2λ3, where �0 = hc/2e, and lengths (fields) in
units of λ (�0/λ

2).
The force due to the interaction of the ith vortex with other

vortices (see, e.g., Refs. [5,6,30,31,48]) is

fvv
i =

Nv∑
j

f0 K1

( |ri − rj |
λ

)
r̂ij , (2)

where Nv is the number of vortices, K1 is a first-order modified
Bessel function, and r̂ij = (ri − rj )/|ri − rj |. To study the
effects related to vortex-core deformations and frustration, we
modify Eq. (2) by introducing an additional attractive term in
the form of a Gaussian (cf. Ref. [10] for multiscale intervortex
interaction),

fvv
i =

Nv∑
j

f0

{
K1

( |ri − rj |
λ

)

−β
 exp

[
−γ

( |ri − rj |
λ

− r0

)2]}
r̂ij , (3)

where the model parameters γ and r0 are fixed (γ = 14, r0 =
0.7), and we vary the attraction strength β in our simulations.
The coefficient 
 is 
 = 1 for an isotropic interaction; 
 =
|(r̂ij · r̂ik)|, where (. . . · . . .) denotes a scalar product of two
vectors, and r̂ik = (ri − rk)/|ri − rk| is a unit vector along the
direction connecting vortex i and the closest-neighbor vortex
k, in the anisotropic case when frustration in the vortex-vortex
interaction is taken into account. The modified vortex-vortex
model potential is illustrated in Fig. 1.

Vortex pinning is modeled by short-range parabolic poten-
tial wells located at positions r(p)

k . The pinning force is

fvp

i =
Np∑
k

(
fp

rp

)∣∣ri − r(p)
k

∣∣�
(

rp − ∣∣ri − r(p)
k

∣∣
λ

)
r̂(p)
ik , (4)
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FIG. 1. Schematic plot of the model vortex-vortex interaction.
At large distances, vortices characterized by unperturbed circular-
symmetric cores (as shown in the right-hand lower inset) are repelled
by the repulsive intervortex interaction force (red arrow in the
inset). Eventual vortex-core deformations at short distances (as
shown in the left-hand lower inset) give rise to the appearance of
effectively multiscale vortex-vortex interaction which, in turn, leads
to an additional attractive term in the vortex-vortex interaction. The
degree of the core deformation and the corresponding strength of
the vortex-vortex attraction force is controlled by the parameter β.
In the plot, the curves are shown for β = 0, 0.2, 0.4, 0.6, 0.8, 1.0,
and 1.2, γ = 14, and r0 = 0.7. The left-hand upper inset shows the
profile of the vortex-vortex interaction force in the xy plane, for an
anisotropic interaction, where the direction of the vector r̂ik [see the
notations of Eq. (3)] is shown by the black arrow. The right-hand upper
inset illustrates the effect of frustration in the intervortex interaction
when two close-neighbor vortices with elongated cores are equally
separated from a given vortex.

where Np is the number of pinning sites, fp is the maximum
pinning force of each potential well, rp is the range of the
pinning potential, � is the Heaviside step function, and r̂(p)

ik =
(ri − r(p)

k )/|ri − r(p)
k |.

The temperature contribution fT
i is represented by a

stochastic term obeying the following conditions:〈
f T

i (t)
〉 = 0 (5)

and 〈
f T

i (t)f T
j (t ′)

〉 = 2 η kB T δij δ(t − t ′). (6)

To obtain the ground state of a system of vortices, the system
starts at some nonzero value of the “temperature” and gradually
decrease it to zero; i.e., we perform a simulated-annealing
simulation. This procedure mimics the annealing procedure in
field-cooled experiments.

III. ATTRACTIVE COMPONENT AND PINNING

First we consider the effect of a short-range attractive
component in the vortex-vortex interaction. This may arise
from the relaxation deformation of vortex cores when two

vortices come in close proximity [50], or from the multiband
nature of the underlying superconductor or superfluid.

Above, in Sec. I, we discussed the origin of the attractive
intervortex interaction in the case of multiband superconduc-
tors. The effective attraction, as explained above, arises from
different length scales for the different bands [10], or from the
different signs of the interaction in the different bands, in the
case of the type-1.5 superconductors [11–13]. Note that the
term “effective” here means that the interaction force between
two vortices might not necessarily change the sign or even have
a local minimum, but only become lower in absolute value for
some r (see Fig. 1); i.e., the force becomes “less repulsive” as
compared to the bare expression, Eq. (2).

In Sec. I, we also discussed the relation between our model
and low-κ superconductors. In the vicinity to the dual point,
where κ � 1/

√
2, the size of the vortex core is nearly the

same as its magnetic core. This provides a gentle balance
between the repulsive and attractive contributions and results
in a weak repulsion near the dual point (but still in the type-II/1
region) and, at the same time, makes this state unstable with
respect to the phase transition to the type-I state. It is clear that
fluctuations of any nature, e.g., due to the motion of vortices
or due to a sudden trapping of two neighboring vortices by
a pinning site, may locally induce the transition to the type-I
state. This occurs due to partial overlapping of the vortex cores
(the source of vortex attraction in type-I superconductors)
[51]. The vortex-core overlapping may also result from sudden
deformations or anisotropy of vortex cores when two vortices
are in close vicinity. This results in the appearance of an
attractive component in the intervortex interaction in low-κ
superconductors even for single-band materials characterized
by a repulsive intervortex interaction far from the type-II/1 to
type-I phase transition. Above, in Sec. I, we mentioned that
vortex anisotropy and intervortex attraction may also result
from magnetic field tilting in layered superconductors [16–18].
However, this mechanism leads to the global anisotropy (i.e.,
all the vortices become elongated and acquire the attractive
interaction) in the direction of the field tilting. This situation
can hardly result in frustration of the intervortex interaction and
thus is not considered in the present work. Instead, we focus on
systems where core deformations may occur locally and thus
lead to frustration in the intervortex interaction. These systems
include, but are not limited to, multiband superconductors or
low-κ superconductors where core deformations at certain
conditions, as described above, may lead to or enhance the
intervortex attraction.

One more interesting recent example of a physical system,
which can be treated within our model, is a superconducting
device that allows for the observation of the transition from
type-II and type-I behavior, in one sample [52]. The sample
has a shape of a superconducting wedge with a varying
thickness that provides a smooth transition from the effective
type-II superconductor (i.e., with κeff > 1/

√
2) to the material

with effective type-I parameters (κeff < 1/
√

2). Using the
time-dependent GL equations, the authors showed that current-
driven flux patterns in this device undergo the transition from
the Abrikosov vortex lattice to the mixed state in the type-I
superconductor via a series of transient vortex-molecule or/and
giant-vortex states.
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(a)

(c)

(e)

(b)

(d)

(f)

FIG. 2. Vortex patterns for β = 0.6 in the absence of pinning and
for varying number of vortices per simulation cell: Nv = 1600 (a),
Nv = 2500 (b), Nv = 3025 (c), Nv = 3600 (d), Nv = 4225 (e), and
Nv = 5625 (f).

A. Zero-pinning case

In our model, the attractive component is characterized by
a nonzero parameter β [Eq. (3)]. Here the pinning strength is
set to zero, and we first focus on the effects related to nonzero
β and changing vortex density. The results of simulations for
β = 0.6 and varying vortex density, or number of vortices per
simulation region Nv , are presented in Fig. 2.

For low vortex densities, when the average intervortex
distance is larger than the characteristic distance at which
the attractive component in the vortex-vortex interaction
comes into play, vortices arrange themselves in a hexagonal
(Abrikosov) lattice [see Fig. 2(a) for Nv = 1600]. Increasing
the vortex density above this limit (e.g., Nv = 2500) is
characterized by the appearance of dimers [Fig. 2(b)], due to
the symmetry breaking induced by the attractive interaction.
The hexagonal lattice is completely destroyed. Instead, there
is a disordered mixture (liquid phase) of single vortices
and dimers showing an onset of stripe formation. Next, for
Nv = 3025, the dimers develop to short stripes, as shown in
[Fig. 2(c)], which further evolve to long branching stripes
[see Fig. 2(d) for Nv = 3600]. The stripes become denser
with further increasing the vortex density forming labyrinths
with some closed chains as shown in Fig. 2(e) for Nv = 4225.
Even higher vortex densities, e.g., Nv = 5625 [Fig. 2(f)], do

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 3. Vortex patterns for β = 1.2 in the absence of pinning and
for varying number of vortices per simulation cell: Nv = 900 (a),
Nv = 2025 (b), Nv = 3600 (c), Nv = 4225 (d), Nv = 5625 (e), and
Nv = 6400 (f).

not support one-dimensional (1D) stripes any longer, and the
system undergoes a transition to a kagome lattice.

A set of vortex patterns for a larger value of β = 1.2 and
varying vortex density is presented in Fig. 3. As for the above
case of smaller value of β, vortices form a hexagonal lattice
for low vortex densities [see Fig. 3(a) for Nv = 900]. When
increasing the vortex density (e.g., Nv = 2025) the symmetry
of the system becomes broken, and the vortex pattern is
represented by a disordered mixture (liquid) of dimers, 1D
straight trimers, and 2D trimers as shown in Fig. 3(b). Thus,
unlike in case of a weaker attraction (β = 0.6), the strong
attraction characterized by β = 1.2 facilitates the formation
of not only 1D but also 2D vortex clusters or chains. This
can be further seen in Figs. 3(c) and 3(d) for Nv = 3600
and Nv = 4225, correspondingly, when the vortices form first
small 2D clusters consisting of three or four vortices which
first interconnect by 1D chains (c) and then form 1D-2D
chains (d). At high enough vortex density, Nv = 5625, the
chains becomes long and purely 2D [Fig. 3(e)]. For even
higher vortex density, Nv = 6400, the 2D chains break apart
and interconnect forming a mixed state of interconnected 2D
chains and 2D kagome lattices [Fig. 3(f)].
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B. Effect of pinning

As one can see from the above results, when the attractive
term related to the core deformation is taken into account, a
vortex system undergoes a series of phase transitions driven by
the attractive component in the vortex-vortex interaction and
increasing vortex density. In particular, the following phases
(or “morphologies”) and their sequence were revealed with
increasing vortex density: (i) a hexagonal vortex lattice, (ii) a
liquid of vortex dimers, (iii) short stripes, (iv) long stripes,
(v) interconnected stripes and labyrinths, and (vi) kagome
lattices. All the revealed patterns are rather “perfect” for
commensurate vortex densities. However, with the exception
of the hexagonal vortex lattice, which is the most commonly
observed and robust vortex structure in superconductors
and Bose-Einstein condensates, none of the perfect patterns
typical for nonmonotonic repulsive attractive interactions have
been observed experimentally. The main reason is, as we
demonstrate below, that all these vortex patterns (except of
the hexagonal lattice) are rather sensitive to imperfections in
the system. We analyze the role of imperfections on vortex
patterns by introducing a random pinning and by varying the
pinning strength fp.

The effect of pinning is demonstrated in Fig. 4 for β = 0.6.
As shown in Fig. 4(a), even a weak pinning, fp = 0.3, strongly
influences vortex patterns other than a hexagonal lattice (a
hexagonal lattice is rather robust to random pinning, as follows
from our simulations (not shown) and from previous studies
[49,53]. Thus, the initially well-ordered long stripes [see
Fig. 2(e) for Nv = 4225] turn to rather irregular labyrinths
when a weak pinning, fp = 0.3, is added to the system
[Fig. 4(a)]. Note that the morphology of the pattern is not
changed. These are still interconnected stripes (labyrinths)
but they become less ordered and shorter in the presence of
pinning. This indicates that the vortex-pin interaction is rather
weak as compared to the vortex-vortex interaction, and the
vortex stripes are pinned collectively [49,53].

What happens next is that with increasing pinning strength,
the junctions between stripes break, as shown in Fig. 4(b) for
the same vortex density Nv = 4225 and fp = 0.6. This can
be understood if we compare Figs. 2(c) and 2(d) above. The
formation of junctions between stripes requires stronger inter-
vortex attraction [which is achieved in Fig. 2(d) by decreasing,
as compared to (c), the average intervortex distance with
increasing vortex density]. Correspondingly, these interstripe
junctions appear to be easier to destroy by disorder. For even
stronger pinning, fp = 0.9 [Fig. 4(c)], we observe a change in
the morphology of the vortex pattern: not only vortex stripes
become shorter and more disordered but we also observe a
mixture of collective vortex pinning events (pinning of stripes)
and individual vortex pinning [49,53]. Finally, for a very strong
pinning force, fp = 1.2 [Fig. 4(d)], practically all the vortices
appear to be pinned by the pinning sites either individually or
collectively, in the form of short stripes that fit into the pinning
landscape.

A comparison to typical experimental vortex images
[shown in panels (e) and (f)] obtained using scanning Hall
probe microscopy in a superconducting MgB2 film at T =
1.7 K and magnetic fields of 1.7 Oe (e) and 5 Oe (f) [38]
clearly indicates that the experimental patterns represent a

(a)

(c)

(b)

(d)

(e) (f)

FIG. 4. Vortex patterns for β = 0.6 and for varying pinning
strength and number of vortices per simulation cell: fp = 0.3,
Nv = 4225 (a), fp = 0.6, Nv = 4225 (b), fp = 0.9, Nv = 4225 (c),
and fp = 1.2, Nv = 4900 (d). Panels (e) and (f) show scanning Hall
probe images (≈50 × 50 μm2) of the vortex distribution in a 160 nm
thick superconducting MgB2 film at T = 1.7 K and magnetic fields
of 1.7 Oe (e), 5 Oe (f) [38].

mixture of individual disordered vortices and short stripes
(e) or some longer stripes and individual vortices (f). This
comparison allows us to identify the experimental images as
the result of the interplay of two factors, the nonmonotonic
repulsive-attractive vortex-vortex interaction (which is due to
vortex-core deformations or the multiband nature of MgB2)
and pinning in MgB2 films.

The effect of pinning is further analyzed in Fig. 5 for
β = 0.6 and β = 1.2. As unperturbed reference vortex patterns
we consider long 1D stripes and long 2D stripes shown in
Figs. 5(a) and 5(b), respectively. The same amount of disorder
added to the system, fp = 0.6, is shown to either break up the
junctions of the long 1D stripes and shorten them [Fig. 5(c)]
or shorten and partially disorder long 2D stripes (which,
however, remain predominantly 2D stripes, with inclusion of
1D elements, Fig. 5(d).

Panels (e) and (f) of Fig. 5 show field-cooled images of
vortex patterns in MgB2 at 1 Oe (e) and 5 Oe (f) [15]. The
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FIG. 5. Vortex patterns for β = 0.6 and β = 1.2, and for varying
pinning strength and number of vortices per simulation cell: β = 0.6,
fp = 0, Nv = 3600 (a), β = 1.2, fp = 0, Nv = 5625 (b), β = 0.6,
fp = 0.6, Nv = 3600 (c), and β = 1.2, fp = 0.6, Nv = 5625 (d).
Panels (e) and (f) show field-cooled images of vortex patterns in
MgB2 at 1 Oe (e) and 5 Oe (f) [15].

morphologies of the experimental images can be referred to as
either 1D stripes, branching 1D to 2D stripes, and disordered
individual vortices (e), or 2D stripes, branching 1D to 2D
stripes and disordered individual vortices (f). This analysis of
morphologies allows us to identify the experimental images
as the result of the interplay of the repulsive-attractive vortex-
vortex interaction and pinning in MgB2 films. (Note that the
experimental images show somewhat elongated and curved 1D
or 2D vortex stripes, which is a result of a particular pinning
landscape in the measured samples [15].)

The calculated phases (or morphologies) of vortex patterns
as a function of the vortex density (i.e., the number of vortices
per simulation cell, Nv) revealed for varying parameters, the
attraction strength β and the pinning strength fp, are shown
in Fig. 6.

IV. FRUSTRATION IN THE VORTEX-VORTEX
INTERACTION

Core deformations may lead to a nonmonotonic interaction,
but this nonmonotonicity may have other sources such as the
multiband nature of the underlying superconductor [11–14].
However, core deformations can also alter the potential in
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FIG. 6. These diagrams show the various morphologies of the
vortex patterns that are encountered when varying the intervortex
attraction force strength and the vortex density Nv (upper panel),
and when varying the random pinning strength fp versus the vortex
density Nv (lower panel).

a more fundamental way: Since the deformation can be
anisotropic, they can introduce orientational frustration in
the system. Here we modify our model by introducing an
orientational order in the vortex-vortex interaction. We assume
that a vortex core elongates only in the direction of the closest-
neighbor vortex, and therefore only this closest-neighbor
vortex experiences the effective attraction to the chosen vortex
as well as any vortex situated on the opposite side along
the line connecting the interacting vortex pair. Other vortices
experience pure repulsive interaction from the chosen vortex.
In this situation (see the inset in Fig. 1), it is possible that
two neighbor vortices approach the chosen vortex at the same
short distance when the chosen vortex should “decide” in
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FIG. 7. Vortex patterns in the case of frustrated vortex-vortex
interaction for β = 0.6 and for varying pinning strength and number
of vortices per simulation cell: fp = 0, Nv = 3600 (a), fp = 0, Nv =
4225 (b), and fp = 0.3, Nv = 3600 (c). Panel (d) shows scanning Hall
probe image (≈ 50 × 50 μm2) of the vortex distribution in a 160 nm
thick superconducting MgB2 film at T = 1.7 K and magnetic field of
2.8 Oe [38].

which direction to elongate: either to the first or to the second
neighbor vortex. This can lead to geometric frustration in
the vortex-vortex interaction (although, in practice, there is
always some small difference between the two short distances
in numerical simulations that would eliminate frustration at
the annealing stage). However, a more important expected
consequence of the orientational deformation of the vortex
core in the direction to the closest neighbor is a trapping of this
neighbor vortex by the attractive potential and the formation
of vortex dimers (and vortex stripes at higher densities). As we
demonstrate in our simulations, frustration in the vortex-vortex
interaction manifests itself in the appearance of instability of
vortex stripes with respect to their fragmentation into vortex
dimers. Indeed, fluctuations in the intervortex distance in a
vortex stripe due to elastic deformations of the stripe will
result in breaking the stripe apart in favor of vortex dimers.

In Fig. 7 examples of vortex patterns are shown for β = 0.6
and varying vortex density and the pinning strength. As
described above, frustration for high enough densities (for low
densities, vortices form a hexagonal lattice which is not shown)
leads to the formation of vortex dimers and four-vortex stripes
[Fig. 7(a)], the morphology that appears to be robust with re-
spect to increasing the vortex density [Fig. 7(b)]. These vortex
patterns are a disordered mixture (liquid) of predominantly
vortex dimers and four-vortex chains, with a small fraction of
single vortices and three-vortex chains. Disorder, as expected,
induces irregular elastic deformations (i.e., local stretching or
squeezing) of vortex chains or eventually plastic deformations
(i.e., breaking the chains apart). Therefore, regular chains
(four-vortex or longer with equidistant vortex distribution

inside) either melt to disordered vortex dimers or turn to
nonequidistant vortex chains consisting of vortex dimers rather
than individual vortices [Fig. 7(c)]. The revealed features are
similar to those seen in a scanning Hall probe image of the
vortex distribution in a 160 nm thick superconducting MgB2
film measured at T = 1.7 K and magnetic field of 2.8 Oe
[38]. This analysis allows us to suggest that the experimental
distributions can be understood in terms of the interplay
of frustrated nonmonotonic repulsive-attractive vortex-vortex
interaction and pinning in MgB2 films.

V. CONCLUSIONS

We analyzed effects related to vortex-core deformations
in the vicinity of other vortices. These deformations result
[50] in the appearance of an additional attractive term in the
overall repulsive vortex-vortex interaction that leads to the
formation of various vortex patterns, such as vortex stripes,
labyrinths, and deformed lattices, typical for systems with
nonmonotonic repulsive-attractive interaction. However, real
physical systems, such as vortex matter in superconductors
or in Bose-Einstein condensates, show more complex patterns
which are due to the interplay of nonmonotonic interaction
(like in two-band or low-κ superconductors) and other factors
among which are disorder (e.g., due to random pinning
which is inevitably present in superconductors) and eventually
frustration in the vortex-vortex interaction which arises from
the elongation of vortex cores in the direction of the closest
neighbor.

Using molecular-dynamics simulations, the effects related
to the presence of random pinning and frustration in the vortex-
vortex interaction have been investigated in detail.

First, we analyzed the zero-pinning case, including non-
monotonic interactions but no orientational frustration. We
revealed the following phases (or “morphologies”) and their
sequence for increasing vortex density: (i) a hexagonal vortex
lattice, (ii) a liquid of vortex dimers, (iii) short stripes,
(iv) long stripes, (v) interconnected stripes and labyrinths, and
(vi) kagome lattices.

Next, we introduced a weak random pinning and increased
its strength. Our analysis showed that all the above patterns,
except for the hexagonal vortex lattice, appear to be rather
sensitive to imperfections in the system. In particular, we
demonstrated that random pinning in the system leads to
disordering and shortening of long vortex stripes (obtained
in an ideal pinning-free system) and breaking the junctions
between the stripes in the labyrinth-like configurations. As a
result, the obtained patterns are a mixture of short branching
stripes and individual vortices or vortex dimers. When the
effect of vortex-core deformations is strong (and, therefore,
the attractive component in the vortex-vortex interaction is
also strong) the formation of double stripes is observed,
and these double stripes are also deformed and fragmented
due to random pinning. We compared the simulated vortex
patterns with the experimental patterns observed in MgB2
films. This comparison of morphologies allows us to identify
the experimental images as the result of the interplay of the
nonmonotonic repulsive-attractive vortex-vortex interaction
and pinning.
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Further, we analyzed the effect of frustration in the vortex-
vortex interaction. We demonstrated that for high enough
vortex densities the formation of vortex dimers and four-
vortex stripes is favored. The resulting vortex patterns are
a disordered mixture (liquid) of predominantly vortex dimers
and four-vortex chains, with a small fraction of single vortices
and three-vortex chains. Additional disorder facilitates the
breaking apart of vortex chains, due to elastic deformations
of the stripes. As a result, regular chains (four-vortex or
longer with equidistant vortex distribution inside) either melt
to disordered vortex dimers or turn to nonequidistant vortex
chains consisting of vortex dimers rather than individual
vortices.

Our findings can also be applicable to other vortex systems
where the effects related to nonmonotonic vortex-vortex
interaction and frustration are applicable, such as multiband
and low-κ superconductors and Bose-Einstein condensates.
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