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Single-electron gap in the spectrum of twisted bilayer graphene
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We investigate the gap in the single-electron spectrum of twisted bilayer graphene. In a perfect infinite lattice
of a twisted bilayer, the gap varies exponentially in response to weak changes of the twist angle. Such a large
sensitivity makes theoretical predictions of the gap nearly impossible, since experimentally the twist angle
is always known with finite accuracy. To address this issue, we numerically study finite clusters of twisted
bilayer graphene. For finite systems, changing the twist angle causes a gradual crossover between gapless and
gapped regimes. The crossover occurs when the finite-size quantization energy becomes comparable to the
matrix elements responsible for the generation of the gap. We further argue that disorder scattering can induce
similar crossover, in which the mean-free path plays the same role as the system size for the finite clusters. It is
demonstrated that to observe the gap experimentally, it is necessary to have a sample of suitable purity and to
possess the ability to tune the twist angle accurately.
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I. INTRODUCTION

Recent experimental studies (scanning tunneling mi-
croscopy, STM [1–4]; Raman spectroscopy [5,6]; angular
resolved photoemission spectroscopy [7,8]) revealed that, in
many cases, the structure of bilayer graphene samples is far
from the ideal AB stacking. Instead, it is characterized by a
nonzero twist angle θ between graphene layers. The electronic
structure of twisted bilayer graphene (tBLG) is very rich,
demonstrating a Dirac spectrum with a θ -dependent Fermi
velocity [1,5], low-energy van Hove singularities [3,4], com-
plex Fermi surface [9,10], and other peculiar features [11,12].
An important characteristic of its electronic structure is the
single-electron gap. For twisted bilayer samples, the existence
of the gap was demonstrated in several experiments [8,13].
This paper theoretically studies the gap (previous efforts on
this issue are discussed in the recent review paper in Ref. [14]).

If one is interested in the theoretical description of the
tBLG, a useful starting point is to consider commensurate
values of θ for which the tBLG lattice forms commensurate su-
perstructures. When the size of the supercell is not too large, the
electronic properties can be studied numerically [9,10,15–24].
Besides computational approaches, several semianalytic the-
ories for low-energy electrons were developed [25–31]. By
studying the commensurate angles, it is possible to calculate,
for example, the dependence on θ of the Fermi velocity
[26–28] vF and the density of states [9]. Unfortunately, these
approaches cannot be directly applied for the calculation of the
gap. It was demonstrated in Ref. [9] that the gap � evaluated
at the commensurate angles is not a smooth function of θ .
Instead, it varies exponentially even for small changes of
the twist angle. Clearly, such a large sensitivity implies that
considering the commensurate angles is not sufficient for a
consistent theory of how the gap is generated.

A possible way to remedy this situation was proposed in
Ref. [9]. It was pointed out that the sharp jumps of � were
associated with the fact that the size of the supercell may
change drastically for very small variations of θ . Therefore,

the extreme sensitivity of � to the twist angle is possible only
in a perfect infinite lattice of tBLG, where a superstructure with
arbitrarily large supercell can exist. Of course, any real sample
has a finite linear size L. Furthermore, a realistic electron
propagation is characterized by a finite mean free path lm
due to electron scattering on defects, such as impurities, so-
called wrinkles (as an example, below we will evaluate lm for
a particular case of a disordered ensemble of one-dimensional
wrinkles), etc. The smallest among the length scales L and lm
would introduce a cutoff, which disallows the superstructures
with large supercells and makes the jumps of � impossible [9].

The latter reasoning motivates us to investigate the for-
mation of the gap in a tBLG sample of finite size. For tBLG
clusters of various twist angles and linear sizes, we numerically
determine the matrix elements, which couple different Dirac
cones. By construction, the calculated matrix elements are
smooth functions of θ . Since these matrix elements are small
in comparison to the graphene bandwidth, many publications
often dismiss them. Yet, they are important at low energies,
causing qualitative changes to the electron spectrum: In the
ideal infinite tBLG lattice they either open the gap or induce
so-called band splitting. In a finite-size sample, or in a sample
with finite quasiparticle scattering, these cone-coupling matrix
elements require a more subtle interpretation: A gap cannot be
observed unless the corresponding matrix element exceeds
both the dimensional quantization gap and quasiparticle
scattering frequency. We will demonstrate that this condition
is satisfied only when θ is close to a commensurate angle
with small supercell size. As the detuning from the good
angle increases, the gap-generating matrix elements quickly
(exponentially) decay, and the gap is washed away by the
external scattering.

The paper is organized as follows. Section II summarizes
the geometry of the tBLG lattice. In Sec. III we discuss the
general theoretical background of the problem considered. The
scattering on the linear defects (wrinkles), which is a very
effective mechanism limiting the coherent propagation of the
electrons in graphene, is studied in Sec. IV. The numerical
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results for the finite-size samples are presented in Sec. V. The
discussion and conclusions are given in Sec. VI. Additional
details of the calculation of the matrix elements are presented
in the appendix.

II. GEOMETRY OF TWISTED BILAYER LATTICE

In this section, for the reader’s convenience, we provide
basic information about the geometry of the twisted bilayer
lattice. This will allow us to introduce equations and notation
which will be used later throughout this paper. The presentation
here follows Refs. [9,14]. A more general and comprehensive
consideration of the slightly mismatched overlayers is done
in Ref. [32].

A bilayer consists of two layers, one lying over the other. We
will assume that the layers are perfectly flat and separated by
the distance d = 3.35 Å from each other. In a real tBLG sample
the layers are not purely two dimensional. The interlayer
distance varies [3] depending on the local arrangement of
the atoms. However, the interlayer corrugation is quite small
(∼0.1 Å), and our approximation is well justified.

Each graphene layer consists of two sublattices, A1 and B1
in the layer 1 [bottom layer, see Fig. 1(a)] and A2, B2 in the
layer 2 (top layer). In the layer 1 the positions of the carbon
atoms are given by the equations

r1A
n ≡ rn = na1 + ma2, r1B

n = rn + δ1, (1)

δ1 = 1
3 (a1 + a2) = a(1/

√
3, 0), (2)

where n = (n,m) is a vector with integer-valued components
n and m, the vector δ1 points to a nearest-neighbor site on the
honeycomb lattice, and a1,2 are primitive vectors of the lattice

a1 = a

2
(
√

3,−1), a2 = a

2
(
√

3, 1) (3)

with the lattice parameter a = 2.46 Å. We will also use
the length of the in-plane carbon-carbon bond a0 = a/

√
3 =

1.42 Å.
When θ = 0, the system is a perfect AB bilayer. Let us

consider the situation when the layer 2 is rotated with respect
to layer 1 by the angle θ around the axis connecting the atoms
A1 and B2 with n = 0 (see Fig. 1). The atoms of the rotated
layer, thus, have the positions

r2B
n ≡ r′

n = na′
1 + ma′

2, r2A
n = r′

n − δ′
1, (4)

where

a′
1,2 = a1,2

(
cos θ ∓ sin θ√

3

)
± a2,1

2 sin θ√
3

, (5)

δ′
1 = a√

3
(cos θ, sin θ ). (6)

The structure of the tBLG is commensurate if [18,25–27]

cos θ = 3m2
0 + 3m0r + r2/2

3m2
0 + 3m0r + r2

, (7)

FIG. 1. (a) Starting from a perfect AB-bilayer graphene, a twisted
graphene bilayer is obtained by rotating the top layer by the angle
θ (shown by the blue rotating arrow). The rotation is performed
around the axis connecting sites A1 and B2; the quantity t is the in-
plane nearest-neighbor hopping, and γ1,3,4 are out-of-plane hopping
amplitudes of the AB-stacked bilayer. These γ s are used to fix the
fitting parameters of the function t⊥(r; r′) (see the text). In this paper
we use γ1 = 0.4 eV, γ3 = 0.254 eV, and γ4 = 0.051 eV, which are all
substantially smaller than the in-plane hopping amplitude t = 2.8 eV.
(b) Reciprocal space structure for θ = 21.787◦ (m0 = 1, r = 1). The
large hexagons show the Brillouin zones of individual layers: The red
dashed (the blue dot-dashed) hexagon corresponds to the bottom (top)
layer. The green thick solid hexagon represents the first Brillouin zone
of the bilayer. The next several Brillouin zones of the tBLG are shown
by black thin solid hexagons. The Dirac point K′ (K′

θ ) is equivalent to
the point Kθ (K) if r 	= 3n. When r = 3n, Kθ ∼ K and K′

θ ∼ K′ (see
the text). The tBLG Dirac points K1,2 are doubly degenerate: Each of
them is equivalent to one of two Dirac points of each graphene layer.
For the particular case of the (1,1) superstructure, K1 ∼ K ∼ K′

θ , and
K2 ∼ K′ ∼ Kθ .

where m0 and r are coprime positive integers. For these angles
the superlattice vectors R1,2 are

{
R1 = m0a1 + (m0 + r)a2

R2 = −(m0 + r)a1 + (2m0 + r)a2

(r 	= 3n, n ∈ N) (8)
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or {
R1 = (m0 + n)a1 + na2

R2 = −na1 + (m0 + 2n)a2

(r = 3n, n ∈ N). (9)

An important property of the superlattice is the number of
sites in a supercell. It equals

N (m0,r) =
{

4
(
3m2

0 + 3m0r + r2
)
, if r 	= 3n,

4
(
m2

0 + m0r + r2/3
)
, if r = 3n.

(10)

The linear size of the superlattice cell is Lsc ≡ |R1,2| =
a
√

N/2.
The primitive vectors of the reciprocal superlattice can be

written as

G1 = (2m0 + r)b1 + (m0 + r)b2

3m2
0 + 3m0r + r2

,

G2 = −(m0 + r)b1 + m0b2

3m2
0 + 3m0r + r2

, if r 	= 3n, (11)

or

G1 = (m0 + 2n)b1 + nb2

m2
0 + m0r + r2/3

,

G2 = −nb1 + (m0 + n)b2

m2
0 + m0r + r2/3

, if r = 3n, (12)

where b1,2 are the reciprocal lattice vectors of the single-layer
graphene

b1 = 2π√
3a

(1,−
√

3), b2 = 2π√
3a

(1,
√

3). (13)

The first Brillouin zone of the superlattice has the shape of a
hexagon with side |G2 − G1|/3. In the particular case r = 1,
this side is equal to �K = |Kθ − K|, where

K = 4π

3a
(0, 1) and Kθ = 4π

3a
(− sin θ, cos θ ) (14)

are the Dirac points of the bottom and top layers, respectively.
The electron states near the points K and Kθ have identical
chiralities. The points of opposite chirality are located at
K′ = −K and K′

θ = −Kθ . In the Brillouin zone of the
superstructure, the Dirac points coordinates are given by the
following expressions:

K = −K′ = m0G2 + r

3
(G1 + 2G2),

Kθ = −K′
θ = m0G2 + r

3
(G2 − G1), (15)

if r 	= 3n, or

K = −K′ = r

3
G2 + m0

3
(G2 − G1),

Kθ = −K′
θ = − r

3
G1 + m0

3
(G2 − G1), (16)

if r = 3n.
One can check that, if r 	= 3n, point K′ is equivalent to Kθ ,

and K is equivalent to K′
θ :

K′ ∼ Kθ and K ∼ K′
θ for r 	= 3n. (17)

Indeed, for such a value of r , the difference K′ − Kθ is
a reciprocal vector of the superlattice. When r = 3n, the

equivalency relations are different:

K ∼ Kθ and K′ ∼ K′
θ for r = 3n. (18)

Thus, for any commensurate angle we have two doubly-
degenerate nonequivalent Dirac points of the tBLG. It follows
from Eqs. (15) and (16) that inside the reciprocal cell of the
superlattice, the two nonequivalent tBLG Dirac points are
located at

K1 = G1 + 2G2

3
, K2 = 2G1 + G2

3
. (19)

Double degeneracy of these Dirac cones affects the electronic
structure of the tBLG leading to the band splitting and band
gap formation.

Besides Lsc, the tBLG has another characteristic length
scale. The rotation of one graphene layer with respect to
another leads to the appearance of moiré patterns, manifesting
in STM experiments [1–4] as alternating bright and dark
regions. The moiré period LM is defined as the distance
between the centers of two neighboring bright (or dark)
regions. It is related to the twist angle as

LM = a

2 sin(θ/2)
. (20)

It is possible to establish that the superstructure coincides
with the moiré pattern when r = 1. For other superstructures,
Lsc is greater than LM. The supercells of these structures
contain r2 (if r 	= 3n) or r2/3 (if r = 3n) moiré cells, and
the arrangements of atoms inside these moiré cells are slightly
different from each other. This means, in particular, that the
structures with r > 1 can be considered as almost periodic
repetitions [27] of structures with r = 1. The moiré pattern
and the superstructure are two complementary concepts used
to describe the tBLG.

The moiré pattern depends smoothly on the twist angle,
as demonstrated by Eq. (20), and can be easily detected
experimentally. However, working with the moiré theoretically
may be challenging since the moiré structure is strictly periodic
for a very limited discrete set of angles. For a generic value of
θ , different moiré cells in the pattern may look alike, but they
are not exactly identical.

The superstructure, which is a periodic lattice of supercells,
does not suffer from this shortcoming. Unfortunately, it has its
own deficiencies. Namely, the superstructure is defined for
commensurate angles θ only. The period Lsc is not a smooth
function of θ : two commensurate angles, θ and θ ′, θ ≈ θ ′,
may correspond to two very dissimilar Lsc. The existence of
two length scales, LM and Lsc, in tBLG affects its electronic
properties [18]. While some physical quantities (for example,
renormalized Fermi velocity) are insensitive to sharp variations
of Lsc versus θ , others (for example, the gap) are not [9].
Consequently, Fermi velocity calculations at commensurate
angles are sufficient for adequate theoretical description; yet,
the situation with the gap is more delicate, as we will show
below.

III. LOW-ENERGY EFFECTIVE MODEL

The opening of the gap can be heuristically deduced from
the discussion of Sec. II. Indeed, the low-energy dispersion
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of the tBLG is characterized by four Dirac points, two from
each layer. At commensurate angles the four points can be
grouped into two equivalence classes; see Eqs. (17) and (18).
In other words, while in the original reciprocal space of
two sheets of the single-layer graphene all four Dirac points
have different coordinates, after folding to the first Brillouin
zone of the superlattice the equivalent Dirac points end up in
identical locations. The electron states near equivalent points
may be connected by nonzero matrix elements of the interlayer
tunneling operator t⊥: In the presence of the superlattice
such matrix elements are consistent with the quasimomentum
conservation law. Although the absolute values of these matrix
elements are small, the kinetic energy of electrons near the
Dirac points is small as well. As a result, the interlayer
tunneling qualitatively affects the low-energy spectrum.

To formalize this reasoning, a low-energy effective model
is very useful. In the case of commensurate structures, we
can write the low-energy Hamiltonian in a given corner of the
Brillouin zone in the form

H tBLG
k =

(
H D

γ k(0) M

M† H D
γ ′k(θ )

)
. (21)

In this expression the (quasi)momentum k is measured from
the superlattice Brillouin zone corner, while the single-layer
Dirac Hamiltonian H D

γ k(θ ) for the rotation angle θ and cone
chirality index γ = K,K′ equals

H D
γ k(θ ) = vF

(
kxσ

θ
y ∓ kyσ

θ
x

)
. (22)

Here vF is the Fermi velocity and σ θ
x,y = e

iθ
2 σzσx,ye

− iθ
2 σz are the

rotated Pauli matrices, and the sign in Eq. (22) depends on the
chirality index γ . For structures r 	= 3n, the chirality indices in
the Hamiltonian (21) are unequal γ 	= γ ′. Otherwise, γ = γ ′.
The matrix elements Mαβ of the 2 × 2 matrix M are given by
the equation

Mαβ =
∑
nm

[
ψ1α

γ

(
r1α

n

)]∗
ψ

2β

γ ′
(
r2β

m

)
t⊥

(
r1α

n ,r2β
m

)
. (23)

In this expression, the interlayer tunneling amplitude
t⊥(r1α

n ,r2β
m ) depends on the location r1α

n of an atom in layer 1,
sublattice α, and the location r2β

m of an atom in layer 2,
sublattice β; see Eqs. (1) and (4). The symbol ψiα

γ denotes
a spinor component of the wave function in layer i = 1,2, on
the sublattice α = A,B with chirality γ . The wave function
corresponds to the Dirac point: ψ1α

γ (r1β
n ) vanishes, if α 	= β,

and ψ1α
γ (r) ∝ exp(±iKr), where the sign depends on γ . For

layer 2 the wave function is derived from ψ1α
γ (r1β

n ) by suitable
rotation of the atoms positions.

Strictly speaking, the effective Hamiltonian (21) is ap-
plicable only for large twist angles, 15◦ � θ � 45◦. For
smaller angles (or for θ � 45◦), the interlayer matrix el-
ements connecting the electron states with the same chi-
rality γ but different momenta (constrained, of course, by
the superlattice quasimomentum conservation law) become
of importance [26,27]. Such coupling terms result in the
downward renormalization of the Fermi velocity. We can take
this renormalization into account by replacing vF in Eq. (22)
by the angle-dependent function v∗

F (θ ).

We calculate the matrix elements of M numerically, both
for infinite and finite samples, with different values of θ . For
the latter case, the twist angle can be arbitrary, not necessarily
commensurate. Calculating M we used the parametrization for
the hopping amplitudes t⊥(r1α

n ,r2β
m ) proposed in Ref. [33]. The

same parametrization was used in our previous work, Ref. [9].
Details of the computational procedure are presented in the
appendix. Our numerical analysis, as well as arguments of
Ref. [29], reveals that the matrix M is sensitive to whether
the parameter r is a multiple of 3 or not. More precisely, the
structure of the matrix M is the following:

M =
(

0 meiα

meiβ 0

)
, when r 	= 3n, (24)

or

M =
(

0 0
meiβ 0

)
, when r = 3n, (25)

where m, α, and β are real numbers.
The general structure of the Hamiltonian (21) coincides to

that proposed in Ref. [29]. The main difference lies in the
parametrization of the interlayer hopping amplitudes used to
calculate M . Our parametrization is able to correctly describe
the limiting case of the AB bilayer (θ = 0), as explained
in Ref. [9].

The low-energy spectrum is found by diagonalizing the
4×4 matrix Eq. (21). It consists of four bands with dispersions
E

(s)
k (s = 1,2,3,4) given by

E
(1,2,3,4)
k = ±

√
�2 + v2

F(|k| ∓ k0)2, if r 	= 3n, (26)

or, for r = 3n,

E
(1,4)
k = ∓

√
�2

s + v2
Fk2, (27)

E
(2,3)
k = ±(√

�2
s + v2

Fk2 − �s

)
, (28)

where

�s = |m|, � = |m cos[(α − β)/2]|, (29)

k0 = m sin[(α − β)/2]. (30)

The spectra (26) and (27) are schematically shown in Fig. 2.
For structures with r 	= 3n [see Fig. 2(a)], the tBLG is an
insulator with a well-defined gap �. If r = 3n, the density of
states ρ(ε) is finite even at ε = 0. However, ρ(ε) experiences
a depression when |ε| < �s = |m|; see Fig. 2(b).

The energy scale �s will be referred to as the band splitting.
We measure here the value of �s in units of the graphene’s
nearest-neighbor hopping amplitude t , which is related to the
Fermi velocity as [14,34] vF = 3ta0/2. Thus, according to the
low-energy model (21), the band splitting �s is simply a matrix
element, whose calculation does not require diagonalization of
any matrix. To check the validity of the model (21) itself we
compare �s with the results of the tight-binding calculations of
the same quantity, performed in Ref. [9]. The curves presented
in Fig. 3 show a very good correlation between results given
by two theoretical approaches even for small twist angles
where the effective model (21) is not formally applicable. For
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FIG. 2. Schematic structure of the low-energy dispersion of
twisted bilayer graphene for r 	= 3n [panel (a)] and r = 3n structures
[panel (b)]. Dotted lines represent two degenerate Dirac cones. When
the matrix M is nonzero, this degeneracy is lifted. The resultant
dispersion is shown by solid [green (a) and red (b)] lines. Vertical
dashed lines mark the energy scales � and �s . The r = 3n structures
have no gap; however, their density of states decreases below �s .
For r 	= 3n structures, the spectral gap � and the scale 2�s are not
identical. However, numerical evidence [9] suggests that the latter
scales are of the same order.

structures with r 	= 3n, the value of 2�s is larger than the band
gap by a factor of order unity [9]. Thus, the band splitting given
by the modulus of the nonzero matrix elements in M is a com-
putationally efficient quantity, which can be used to estimate
the possible size of the single-electron gap. In this paper we
will consider the band splitting as a measure of the low-energy
spectrum rearrangement, induced by the interlayer tunneling.

Working with �s instead of � reduces the computational
complexity. However, the main issue remains: The elements in
the matrix M , when calculated for an infinite superlattice, are

FIG. 3. Band splitting �s for ideal superlattices with supercell
sizes N < 2000. Circles (green) connected by the dashed (blue) line
present the results of calculations using Eq. (23), while solid (red)
line corresponds to the tight-binding calculations of Ref. [9]. The data
are shown for r 	= 3n structures only. The sharp exponential jumps
of �s , which we observe in this figure, can exist only in the idealized
infinite tBLG lattice.

not smooth functions of θ , as shown in Fig. 3. This problem
disappears for finite tBLG samples: By construction [see
Eq. (23)], the matrix elements become analytical functions
of the twist angle. Physically, the finite linear size of the
tBLG cluster may indeed correspond to finite dimensions of
a mesoscopic system, or it may mimic a finite mean free path
of an electron due to scattering by disorder, such as wrinkles
and impurities.

Yet, we must remember that a nonzero m in a finite-size
system does not immediately imply the existence of a nonzero
gap. The gap could be observed experimentally only when
m exceeds the dimensional quantization energy δε = vF/L,
or the disorder scattering rate  ∼ vF/lm in a sample with
disorder. The requirement

�s(θ ) > max(δε,) (31)

places significant restrictions on the values of θ , for which the
spectrum is gapped. As this condition is violated, the gap is
washed away by external scattering by disorder or edges. This
will be discussed in Sec. V.

IV. SCATTERING BY LINEAR DEFECTS

We argued in the previous section that disorder can destroy
the spectral gap. In a tBLG there are several possible sources
of electron scattering (electron-electron interaction, pointlike
neutral and charged impurities, wrinkles, and others). Studying
all of them is beyond the scope of this paper. In this section, we
show that the (inherent for graphene systems) linear defects
(wrinkles) are very effective scatterers in the tBLG, giving rise
to a finite mean-free path lm when ε → 0. Our calculations are
quite simple, but they allow us to demonstrate the emergence
of the finite energy-independent mean-free path in a disordered
system of Dirac electrons.

Let us now consider a wrinkle, a one-dimensional defect
stretching along the y axis. We model this defect by a potential
V (x,y) = vFV̄ δ(x), where the dimensionless parameter V̄

characterizes the strength of the defect. Neglecting interlayer
hopping, the propagation of the low-energy electron in the
graphene layer is described by the Hamiltonian, Eq. (22).
Within the Born approximation, the self-energy correction due
to the wrinkle equals to vFV̄ σ̂0/Lx , where Lx is the linear
dimension of the sample in the x direction. The quantity σ̂0

is proportional to the usual second-order impurity-scattering
loop diagram [see panel (a) of Fig. 4]

σ̂0 = vFV̄

2π

∫
dkx G0(ε,k), (32)

where the bare Green’s function G0 for the Hamiltonian
Eq. (22) is equal to

G0 = 1

(ε + i0)2 − v2
F|k|2

(
ε vF(kx − iky)

vF(kx + iky) ε

)
.

The integral in Eq. (32) is easy to calculate:

σ̂0 = − iV̄

2
√

ε2 − v2
Fk

2
y

(
ε −ivFky

ivFky ε

)
sgn ε. (33)

To obtain the full self-energy it is necessary to sum the self-
energy diagrams to all orders of V̄ . The three lowest-order
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FIG. 4. Self-energy diagrams for scattering on a single defect.
The defect is represented by a black circle, and dashed lines labeled
by V̄ correspond to the defect potential. Solid lines with arrows are the
electron propagator. Panel (a) shows the lowest-order contribution to
the self-energy. It equals V̄ σ̂0 = O(V̄ 2) and corresponds to the Born
approximation. The higher-order corrections are shown in panels (b)
and (c).

terms of this series are shown in Fig. 4. Since the nth order
diagram is proportional to σ̂ n

0 , the summation is performed
trivially, and one derives

�̂0 = vF

Lx

V̄ σ̂0

1 − σ̂0
. (34)

This self-energy conserves the energy ε and momentum ky .
As for kx , it is not conserved: Upon scattering off the wrinkle,
the momentum projection kx can change arbitrarily with finite
probability. For an ensemble of wrinkles we must average
over the location of the wrinkle. This procedure restores the
conservation of kx , and the resultant self-energy becomes

�̂ = nw
vFV̄ σ̂0

1 − σ̂0
, (35)

where nw is the concentration of the wrinkles (it has a
dimension of the inverse length). The self-energy �̂ is diagonal
both in ε and in k.

The averaging over the location of the wrinkle, which we
performed to derive Eq. (35), must be supplemented by the
averaging over the orientations of the wrinkles. After all, in a
generic situation, an ensemble of wrinkles is likely to be fairly
isotropic. To perform this averaging it is useful to notice that
the matrix σ̂0 has two eigenvalues:

σ± = − iV̄

2
√

ε2 − v2
Fk

2
y

(ε ± vFky) sgn ε, (36)

which correspond to the eigenvectors (1,±i)/
√

2. The matrix
�̂ will have the same eigenvectors. The eigenvalues of �̂ can
be found using Eqs. (35) and (36).

Since the eigenvectors of �̂ are independent of both ε

and ky , we need to average the eigenvalues only. Further
simplification can be obtained if we work on the mass surface.
There one can write vFky = ε sin φ, where φ denotes the angle
of incidence of the electron on the wrinkle. The eigenvalues
of �̂ on the mass surface are

�±
m.s. = −nw

iV̄ 2(1 ± sin φ)

2| cos φ| + iV̄ (1 ± sin φ)
. (37)

The required integration over φ is well defined for any nonzero
V̄ . It is clear that after such an integration both eigenvalues

become identical, and the averaged self-energy is proportional
to the scalar matrix. In the limit of small V̄ we obtain

�m.s. = −iV̄ 2nw

∫ π/2

−π/2

dφ

2π

cos φ

cos2 φ + V̄ 2
, (38)

which implies that the scattering rate is

 ∝ nwV̄ 2 ln V̄ . (39)

This relation for the scattering rate was derived under the
assumption that the multiple-wrinkle scattering effects may
be neglected. Thus, the localization cannot be described in
the framework of the above procedure. The expression for 

is energy independent, and is valid at low energies. Unlike
pointlike impurities, whose scattering in graphene becomes
weaker (for weak impurity potentials) as the quasiparticle
energy lowers [35], the linear defects scatter well even at the
Dirac point. Consequently, the electrons acquire a finite mean
free path lm ∼ vF/ < ∞. This limits the coherent propaga-
tion of the electron wave packet and destroys weak interference
effects due to superstructures with large supercell sizes.

V. GAP AND BAND SPLITTING FOR FINITE SAMPLES

Thus, the coherent propagation of an electron in a tBLG
sample is always limited to some finite length scale. In the
present study, to mimic this length we modeled a tBLG as a
cluster of finite size; see Fig. 5. The cluster has circular shape;
it consists of the sites of the tBLG lattice whose distance from
the origin is less than the cluster radius R. For example, the
cluster in Fig. 5 has R = 15a0 = 5

√
3a.

As shown in Sec. III in the framework of the low-energy
model (21), the band splitting �s is equal to the modulus
of the nonzero matrix element(s) of the matrix M; see
Eq. (29). Likewise, the band gap � is proportional to |m|. We
calculate these matrix elements numerically as prescribed by
Eqs. (23), (24), and (25), for a range of R’s and θ ’s (additional

FIG. 5. Cluster of tBLG. Radius R = 15a0 = 5
√

3a, with a
rotation angle θ = 16.7◦. The bottom layer is shown by open (red)
circles, while the top (rotated) layer by filled (green) circles.
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FIG. 6. The matrix element |m| as a function of the twist angle θ .
The radius of the cluster is R = 60a0. The (green) solid curve shows
the value of |m| which is responsible for the opening of the band gap
� in the structures with r 	= 3n, Fig. 2(a). The (blue) dashed curve
shows the matrix element inducing the band splitting in structures
with r = 3n, Fig. 2(b). The maxima of both curves are located at the
angles θ(m0,r) corresponding to the superstructures with small r and
m0. For example, the strongest maxima of the (green) solid curve are
at θ(1,1) ≈ 21.8◦ and θ(1,2) = 32.2◦. For the (blue) dashed curve these
are at θ(2,3) = 27.8◦ and θ(1,3) = 38.2◦. Note that θ(1,1) + θ(1,3) = 60◦

and θ(1,2) + θ(2,3) = 60◦, in agreement with Eq. (40).

technical details can be found in the appendix). The typical
behavior of |m| is shown in Fig. 6, where numerical data, in
the window 14◦ < θ < 46◦, is plotted for a cluster of radius

R/a0 = 60. Both r 	= 3n and r = 3n data are presented. The
pronounced peaks in Fig. 6 occur at good angles corresponding
to the superlattices with small supercells. Smaller peaks may be
associated with some finite-size effects: These peaks sharply
weaken when R is increased.

It is known [14] that for a r 	= 3n structure, characterized
by the twist angle θ , one can construct a conjugate r = 3n

structure with the angle

θ ′ = 60◦ − θ, (40)

such that both structures have the same supercell size. The
data in Fig. 6 illustrates this relation: Two strongest peaks are
located at angles 21.7◦ and 38.2◦, whose sum equals to 60◦.
The same is true for the pair of the second-strongest peaks at
27.8◦ and 32.2◦.

The matrix element |m|, responsible for the band gap in the
spectrum of r 	= 3n superstructures, is plotted for clusters of
different sizes in Fig. 7. We see that for a generic value of the
twist angle, the quantity |m| quickly decreases with increasing
R. At the same time, when θ corresponds to commensurate
superlattices with small supercell size, |m| remains constant
(θ ≈ 16.7◦, 21.8◦). For somewhat larger supercell sizes
(θ = 25.0◦, 26.0◦, 29.4◦) the band splitting initially decreases,
only to saturate at larger radii. The stabilization occurs when R

sufficiently exceeds the supercell size. As an example, consider
the θ = 26.0◦ and θ = 29.4◦ twist angles. In both cases, the
matrix element stops changing when R � 60a0. To weaken the
edge effects for a finite cluster, our numerical procedure (see
the appendix for details) confines the electron wave function
within the effective radius Reff < R, defined as

Reff ≈ R/2.2. (41)

FIG. 7. The matrix element |m| as a function of the twist angle for clusters of different radii. Four curves in this figure correspond to the
following values of the effective cluster radius (for details, see the appendix): R = 40a0 is shown by the solid (yellow) curve on top, R = 60a0

by the dashed (blue) curve, R = 90a0 by the dotted (red) curve, and R = 130a0 by the dash-dotted (green) curve at the bottom. The triangles
at the top edge of the figure mark the commensurate angles with relatively small supercell linear size (Lsc � 20a0). The numbers above these
triangles show the number of graphene’s unit cells inside the supercell (N/4). One can notice that, at sufficiently large values of R, a peak
forms at every marked angle.
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A physical cluster radius of 60a0 corresponds to the effective
radius Reff ≈ 27a0. The latter number is comparable to the
supercell size of 15a0 and 16a0 for such values of θ . If
θ = 25.0◦, the growth of |m| is stabilized at R = 90a0, or
Reff = 41a0. This is of the order of Lsc = 20a0 for the
θ = 25.0◦ superstructure. We see that for these three angles
the matrix element saturates when Reff � 2Lsc.

The curves shown in Fig. 7 demonstrate that for finite
clusters the matrix elements responsible for the gap are smooth
functions of θ , unlike the data for infinite systems shown in
Fig. 3. However, the results presented in Fig. 7 should not
be interpreted as the dependence of the band gap versus the
twist angle. As condition (31) implies, to decide if the tBLG
spectrum has a gap (more precisely, pseudogap), it is necessary
to compare |m| against the dimensional quantization energy

δε ∼ vF

R
. (42)

Equivalently, the scale vF/|m| should be smaller than R.
To describe the crossover between gapless and gapped

regimes, let us analyze Fig. 8, where we replotted the data
presented in Fig. 7 in a new manner: for a given curve, the
angle θ is fixed, while the cluster size varies. The range of the
twist angles in Fig. 8 is restricted to the vicinity of θ0 ≈ 21.8◦.
We consider here only the angles θ < θ0, since for θ > θ0 the
results are almost symmetric. The angle θ0 corresponds to the
smallest supercell possible for a tBLG. At θ = θ0, the value of
|m| is the largest; see Fig. 6.

Figure 8(a) shows |m(R)| as an implicit function of the
dimensional quantization energy δε(R). In Fig. 8(b) the length
scale vF/|m| is plotted as a function of R. In both panels of
Fig. 8 the dash-dotted straight lines are set by the equation
|m| = δε. These lines mark the crossover from the gapless
(|m| < δε) to the gapped (|m| > δε) regimes.

The crossover can occur when the size of the cluster
becomes sufficiently large. For example, if the twist angle
is exactly commensurate (solid orange curves on both panels),
the increase of R, and concomitant decrease of δε, pushes the
sample from a gapless state to a state with single-electron gap.
The data presented suggest that the crossover occurs when
R ≈ 50a0, or, equivalently, Reff ≈ 23a0.

If deviations from the commensurate angle are small (θ ≈
22.0◦, dashed blue curve) the situation remains qualitatively
the same: The gapless regime at small R is replaced by
a gapped regime at larger R. For stronger deviations (e.g.,
θ ≈ 22.4◦, dash-dotted green curve) the system never leaves
the gapless regime for any R. When θ = θ∗ ≈ 22.2◦, the
corresponding curve touches the crossover line. The angle
θ∗ separates two types of behavior. If θ > θ∗, the system is
gapless even when the cluster is large. When θ0 < θ < θ∗, the
crossover to the gapped regime can occur with increasing R.
This analysis demonstrates that, to observe the single-electron
gap caused by the interlayer tunneling near the commensurate
angle 21.8◦, the twist must be controlled with an accuracy
δθ ≈ |θ∗ − θ0| ≈ 0.4◦.

The same procedure can be performed near another good
angle, θ ≈ 32.2◦, corresponding to r = 2 and m0 = 1; see
Fig. 6. The matrix element for this superstructure is roughly
two times smaller than that for the structure with r = m0 = 1
(θ ≈ 21.8◦). Consequently, the radius of the clusters must be

FIG. 8. Crossover between the gapless and gapped regimes. Panel
(a) shows the parametric plots of the matrix element |m(R)| vs
the dimensional quantization energy δε(R) for several values of
θ . The twist angle θ is constrained to the vicinity of the good
commensurate angle θ0 ≈ 21.8◦. The thin dash-dotted (red) straight
line is determined by the equation |m| = δε, marking the crossover
between gapless (|m| < δε) and gapped (|m| > δε) spectra. Exactly at
the commensurate angle [solid (orange) curve] the system is gapless at
larger δε (smaller R). It enters into a gapped regime for larger cluster
size (smaller δε). The [dashed (blue)] curve for 22.0◦ demonstrates
similar behavior. When deviation from the good angle is higher [e.g.,
θ ≈ 22.4◦, dash-dotted (green) curve] the system never enters into the
gapped regime. The angle θ∗ ≈ 22.2◦ separates two types of behavior
[and the corresponding dotted (red) curve touches the line |m| = δε

when δε ≈ 0.015t]. In panel (b) the same data are plotted in a different
manner: Instead of comparing the dimensional quantization energy
and |m|, panel (b) allows us to compare the cluster radius R and the
length scale vF/|m|. The results for θ < 21.8◦ are almost symmetric.

doubled to have a chance to be in the gapped regime. The
increase in R translates into a more stringent requirement
on the fine-tuning of θ : To observe the gap, the deviation
from the commensurate angle must satisfy δθ ∼ 0.1◦. Such
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a decrease in the allowed deviation of δθ can be understood
as follows. A smaller |m| implies that a larger R is necessary
to enter the gapped regime. However, for larger clusters the
maxima in Fig. 7 become sharper; consequently, the matrix
element becomes very sensitive to the value of the twist angle.
Therefore, even a weak deviation from the good angle may
push |m| below δε.

Investigations of superstructures with larger supercells
place heavy requirements on computational resources. Indeed,
large supercells correspond to exponentially small matrix
elements, which means that exponentially large cluster sizes
must be studied to enter the regime δε > |m|. Such studies
are computationally impractical. Thus, we must rely on the
information collected above to draw conclusions.

VI. DISCUSSION AND CONCLUSIONS

The single-electron gap in the tBLG spectrum is a
particularly challenging and interesting property. This gap
demonstrates fractal oscillations when changing the twist
angle (shown in Fig. 3), unlike, for example, the Fermi velocity,
which varies smoothly. These oscillations are an artifact of the
assumption that an electron propagates inside a perfect infinite
tBLG lattice. In a realistic situation, the coherent propagation
of a wave packet through the lattice is limited by the finiteness
of the sample size L, and/or disorder scattering.

A particular example of disorder, one-dimensional wrin-
kles, was considered in Sec. IV. Defects of this kind are of
interest due to two main reasons. First, it is an inherent type
of disorder in graphene systems. Second, a linear defect is an
effective source of scattering for low-energy Dirac quasiparti-
cles, which is of importance for tBLG, with its flat bands and
low-energy Van Hove singularity. Let us also comment that,
since one-dimensional defects are very effective in destroying
coherence, the fragile phenomenology of the marginal Fermi
liquid, predicted for undoped graphene [36–38], may not
survive in a sample with a sufficient concentration of wrinkles.

When the coherent propagation length lcoh = min{lm,L} is
finite, the diffraction effects associated with the superstructures
with large supercells are destroyed. As a result, small gaps
corresponding to such superlattices disappear. The stronger
gaps can become observable, provided that (a) the length lcoh

is sufficiently large and (b) the deviation of the twist angle
from a good value is sufficiently small.

The condition (a) is very general. It is necessary to
remember that the band splitting �s and, consequently, the
gap is washed away by the disorder, or masked by finite-size
quantization, if �s < vF/lcoh. This implies that the gap, or
pseudogap, may be observed only when lcoh � vF/�s .

Regarding condition (b), we have seen that the matrix
element responsible for the opening of the gap is very sensitive
to the shift δθ of the twist angle away from the good value.
If θ coincides with a good angle (δθ = 0), the matrix element
becomes independent of lcoh for sufficiently large lcoh. Thus,
exactly at a good angle the pseudogap or gap can be measured
in a large sample of high purity. For small deviations from such
an angle, the value of �s decreases somewhat as lcoh grows,
but the same qualitative picture endures.

However, as δθ departs from zero, the stabilization of the
gap and the band splitting �s at larger lcoh does not occur;

see Fig. 8. Instead, the matrix element quickly collapses with
increasing lcoh. As a result, for large deviations of θ from the
good angle, the gapped regime never occurs.

Our analysis demonstrates that the experimental obser-
vation of the single-electron gap caused by the superlattice
scattering is extremely unlikely, unless a very precise tuning of
the twist angle to the good values is achieved. Such control may
be enforced externally [39]. Alternatively, one can speculate
that commensurate angles correspond to local minima of
the interlayer interaction potential. Consequently, the bilayer
might spontaneously lock the twist angle to these angle values.
However, such a possibility is, at this point, nothing but a hy-
pothesis, and further research is required to support or refute it.

To conclude, we studied the dependence of the single-
electron gap in finite clusters of tBLG. We demonstrated that
the variation of the twist angle causes a crossover between
gapless and gapped regimes, provided that the coherent
propagation of an electron is limited by some finite length
scale. Either the finiteness of the sample or the mean free path
due to the disorder scattering may generate the latter length
scale. To observe the gap experimentally it is necessary to have
a sample of sufficient purity and possess the ability to tune the
twist angle accurately.
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APPENDIX: DETAILS OF NUMERICAL PROCEDURE

Here we briefly outline additional details of our numerical
procedure which were too specialized to be included in the
main text.

To calculate the matrix elements in Eq. (23) we use the
following expression for the interlayer hopping amplitude:

t⊥(r; r′) = cos2α Vσ (r; r′) + sin2α Vπ (r; r′),

cos α = d√
d2 + (r − r′)2

, (A1)

where d = 3.32 Å is the interlayer distance, r and r′ are
two-dimensional (2D) coordinates of the carbon atoms in
the bottom and top layers, respectively, and Vσ and Vπ are
the Slater-Koster functions, which we choose in the form of
Eq. (1) of Ref. [33]. In that paper the tunneling amplitude of
an electron from one atom to another depends not only on
the relative positions of these atoms, but also on the positions
of other atoms in the crystal via the screening function S.
The latter one has several fitting parameters, which we choose
such that the function t⊥(r; r′) would correctly describe the
first several interlayer hopping amplitudes of the AB bilayer
(θ = 0) graphene. More details can be found in Ref. [9].

It is known [40–43] that various types of localized states
exist at the edges of graphene and graphene-based systems.
Since we are interested in the bulk behavior, the influence of
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FIG. 9. Effect of the exponential decay of the wave function.
The band splitting calculated for different values of ζ ; see Eq. (A2).
The ζ = 2.2 data (dotted red curve) shows a smoother behavior than
the ζ = 1.1 data (solid green curve). The radius of the cluster is 90a0

for both curves.

such states is to be reduced as much as possible. To decrease
the effects of edge phenomena we introduced an exponential
decay of the wave function from the cluster center toward the
edges. Specifically, the matrix element Eq. (23) is calculated
using the wave function for the layer 1

ψ1α
γ

(
r1β

n

) = N exp
( − iKγ r1α

n − ζ
∣∣r1α

n

∣∣/R)
δαβ, (A2)

where Kγ is the Dirac point corresponding to the chirality
γ , δαβ is the Kronecker symbol, and ζ = 2.2 is a numerical
coefficient. In layer 2 the wave function is constructed in a
similar manner. A wave function in layer 2 matches a wave
function in layer 1 after an appropriate rotation. For finite
samples, the wave functions are normalized to unity, with N
being the normalization constant. It is worth noting that for
infinite samples a different normalization condition should be
used:

∑
n |ψiα

γ (riα
n )|2 = 1, where the sum is taken over sites

inside one supercell.
The magnitude of the wave function decreases away from

the cluster center. The value of the numerical factor ζ = 2.2
was chosen empirically. If ζ is too large, the effective size of
the cluster

Reff ∼ R/ζ (A3)

shrinks significantly below its nominal radius R; thus, we are
forced to study computationally expensive cases of large R. If
ζ is too small, the edge effects make the data very noisy; see
Fig. 9.

When interpreting our numerical data one must keep in
mind that for finite R and arbitrary θ the absolute values of the
nonzero elements of the matrix M , Eq. (24), may be slightly
different from each other. However, we checked numerically
that this disparity is not significant, at least for commensurate
structures and larger clusters.

The data presented were collected for clusters in which
the rotation axis passes through the geometrical center of the
cluster. One can shift the rotation axis off the cluster center by
the vector T = na1 + ma2, where n,m are integers. As long
as |T| � R, it is expected that the matrix M is independent of
T. We verified that this is indeed the case.
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