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Superradiance with an ensemble of superconducting flux qubits
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Superconducting flux qubits are a promising candidate for realizing quantum information processing and
quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune
the “atoms” internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the
inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition,
as an example of many-body physics in such an ensemble, we show how to observe superradiance, and its
quadratic scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the
inhomogeneous broadening itself to excite only a subensemble of the qubits. Our scheme opens up an approach
to using superconducting circuits to explore the properties of quantum many-body systems.
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I. INTRODUCTION

Superconducting flux qubits (FQ) are a unique quantum
technology which allow for a high degree of controllability
[1–3]. With such devices high-fidelity gate operations have
already been implemented [4] and quantum nondemolition
measurements have been realized using Josephson bifurcation
amplifiers. Moreover, since superconducting FQs behave as
controllable artificial atoms, it is possible to design circuits to
reach regimes typically inaccessible with real atoms [5–7].

As well as featuring high-controllability, flux qubits are
attractive because it is possible to fabricate an array of FQs
on the same chip [8]. Coupling such an array of many
superconducting FQs to a common cavity (see Fig. 1 for
a schematic) is important both for a range of quantum
information processing tasks and for the study of quantum
many-body physics [9,10], like quantum phase transitions
[11–15]. In addition, an array of superconducting FQs could
be used as a quantum metamaterial to control the propagation
of microwaves [16–19]. Such a device also allows for the
possibility of generating multiparticle entanglement between
the FQs via the cavity, with the potential to employ this
entanglement to improve the sensitivity of measurements
[20–23].

One obstacle to such applications with an ensemble of FQs
is the inhomogeneity of the FQ energies. In the context of
strong coupling to a cavity, this can be overcome to some
degree by using the superradiance principle [19,24,25]; if N

qubits are collectively coupled with a microwave cavity, the
coupling strength is enhanced by

√
N , as long as the collective

coupling strength is larger than the inhomogeneous width
[26–41]. Recently, by using this principle, coupling between
4300 superconducting flux qubits and a microwave resonator
has been demonstrated [8]. In this experiment, spectroscopic
measurements were performed by detecting the transmitted
photon intensity of the resonator, and a large dispersive shift of
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250 MHz has been observed. This already indicates a collective
behavior involving thousands of FQs.

In this paper, we discuss how the intrinsic inhomogeneity
can be reduced by a globally applied external field, an effect
which we will show to be a direct consequence of the
correlation between the tunneling energy and persistent current
in FQs. In addition, we show how, as one of the potential
applications of this device, one can observe superradiant
emission from such an ensemble via the microwave cavity.
Superradiance is the fascinating phenomena whereby an
ensemble of atoms interacting with a common cavity or
environment emits photons in a fast, collective, superradiant
burst, due to correlations between atomic decay events. For
this type of superradiance, the loss rate of the cavity needs to
be larger than the collective coupling of the ensemble with the
cavity mode, while the collective coupling strength should
be much larger than the inhomogeneous width of the FQ
ensemble. The observation of superradiance provides a direct
signal of the collective coupling between the ensemble and the
common field.

To date superradiance has been observed in various
many-particle systems [42–46]. In addition, there are some
experimental demonstrations of superradiance with only small
ensembles of engineered quantum systems [47–51]. Typically
the observation of this superradiant burst requires the careful
preparation of all the atoms in their excited states, and
the subsequent observation of the time-dependent photonic
intensity (though steady-state driven superradiance can also
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FIG. 1. Schematic of a potential flux qubit ensemble system. We
estimate up to 4300 FQs can be coupled with a microwave cavity. One
may characterize this system by measuring the transmission through
the cavity.
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occur under the right conditions [52]). In the latter half of this
article we show theoretically that we can prepare the ensemble
of FQs with a common drive, and see not only the typical large
intensity superradiance emission pulse, but also the N2 scaling
of that pulse, without local control of each qubit.

This paper is organized as follows. First, we review the
recent experimental spectroscopic measurements to explain
the standard properties of the system. Secondly, we introduce a
scheme to suppress the inhomogeneous broadening of the FQs,
which is crucial to observe superradiance and other many-body
properties of such a system. Finally, we present numerical
results showing how collective driving of the ensemble can
selectively excite the ensemble, allowing us to directly observe
the N2 superradiant emission.

II. SPECTROSCOPIC MEASUREMENTS

The first experimental test one could make to validate a
coupling between the ensemble and the cavity is to look for
vacuum Rabi splitting or frequency shifts in spectroscopic
measurements. In a recent experiment, spectroscopic mea-
surements of the microwave resonator coupled with 4300
FQs [8] showed a large dispersive frequency shift, in the
spectrum of the cavity, of the order of 250 MHz. Although
similar signals of collective behavior have been observed in
many other systems [46,53,54], for a system composed of a
large FQ ensemble and a microwave resonator, this is the first
strong signature of a large collective coupling [8]. There, the
coupling strength between a single FQ and the resonator was
estimated to be around 15 MHz, and the inhomogeneous width
of the FQ frequency was between 2 and 3 GHz. Interestingly,
even if there is an inhomogeneous width of a few GHz, a
clear dispersive frequency shift can be observed, because the
collective coupling strength (

√
Ng � 1 GHz) is comparable

with the inhomogeneous width. It is worth mentioning that, in
principle, one can increase this coupling strength by using a
Josephson junction as a coupler [5], and so one could achieve
the ultrastrong coupling regime [6,7] with this system where√

Ng is both much larger than the inhomogeneous width and
of the order of the flux qubit and cavity energies themselves.

III. SUPPRESSION OF THE INHOMOGENEOUS
BROADENING

To observe superradiance in such an ensemble, the collec-
tive coupling strength

√
Ng should be larger than the variance

of the frequency distribution of the FQs. Moreover, to invert the
FQs using a global microwave control, the Rabi frequency of
the FQs should also be larger than the inhomogeneous width,
as we will describe later. However, from the direct parameters
estimated in [8], it is difficult to satisfy such conditions.

To solve these problems, we propose here an approach
to suppress the inhomogeneous broadening of the FQs by
applying an external magnetic flux. The inhomogeneous
broadening of the FQ energies comes from the nonuniform
size of the Josephson junctions, which are very sensitive to
small changes in fabrication conditions. We have investigated
how the nonuniform Josephson junctions affect the relevant
parameters of the FQs, and have found that the variation
of the size of the Josephson junctions induces a correlated

distribution between the persistent current and tunneling
energy of the FQs in the ensemble. Interestingly, due to this
correlation, the inhomogeneous width of the frequencies of the
FQs has a strong dependence on the applied magnetic flux, and
so there exists the possibility of choosing an optimal applied
magnetic flux to suppress this broadening. We predict this
property could be useful to design more uniform ensembles
of quantum devices, thus allowing us to observe interesting
quantum many-body phenomena, such as superradiance.

To investigate how the nonuniform Josephson junctions
affect the frequency distributions of a FQ, we consider the
Lagrangian of a FQ with three Josephson junctions,

L = T − U, (1)

U =
3∑

j=1

�0

2π
I

j

C[1 − cos(φj ]), (2)

T =
3∑

j=1

1

2
Cj

(
�0

2π

)2

φ̇j
2
, (3)

where U is the potential energy, T is the kinetic energy, φj (j =
1,2,3) is the phase difference between the junctions, Cj is the
Josephson junction capacitance, I

j

C is the critical current, �ext

is the external magnetic flux, and �0 = �/2e is the magnetic
flux quantum. The phases φj (j = 1,2,3) are bounded by a
condition of φ1 − φ2 + φ3 = 2πf with f = � ext/�0. Cj and
I

j

C have a linear dependence on the size of the junction. Here,
the potential is given by U/EJ = 2 + α − cos(φp + φm) −
cos(φp − φm) − α cos(2πf − 2φm), where we set I 1

C = I 2
C =

IC, I 3
C = αIC, φp = (φ1 + φ2)/2, and φm = (φ1 − φ2)/2. If

we set φp = 0 and f = 0.5, we have dU
df

= 2EJ sin φm(1 −
2α cos φm), and so the potential shows minima for ±φ∗

m,
where cos φ∗

m = 1/(2α). We plot this potential in Fig. 2.
By solving the Lagrangian, we can calculate the tunneling
energy and persistent current [55]. We set EJ /Ec = 75 for
our simulations, where E

(j )
J = �0

2π
I

j

C (Ec = e2/2Cj ) is the
characteristic scale of the Josephson (electric) energy.

Usually, the size of one of the three junctions is designed to
be α times smaller than the other two junctions [55]. However,
with current technology it is difficult to fabricate homogenous
junctions, and this results in a random distribution of the
tunneling energy and the persistent current. We assume a
Gaussian distribution for the normalized areas of the smaller

U/EJ
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FIG. 2. Potential of the flux qubit. We set α = 0.7 and f = 0.5.
There are two minima separated by an energy barrier. (a) The density
plot of the potential. (b) A plot of the potential against φm for φp = 0.
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FIG. 3. Probability density of the tunneling energies of the flux
qubits when the size of the Josephson junctions are nonuniform. There
are three Josephson junctions in the superconducting circuit, and the
size of one Josephson junction is designed to be smaller than the
size of the other two junctions. We assume a Gaussian distribution
for normalized areas of the smaller junction (two larger junctions)
where we have the mean value of ᾱ = 0.7 (β̄k = 1 for k = 1,2) and
the standard deviation of σS (σ (k)

L for k = 1,2). We set the parameters
as σS/ᾱ = σ

(1)
L /β̄ = σ

(2)
L /β̄ = 0.5%,1%,2% respectively, and obtain

the values of �j (j = 1,2, . . . ,N ) from numerical simulations. To
plot the density of the tunneling energy, we use a kernel density
estimator

∑N

j=1 K(
�−�j

h
), where we set K(x) = 1√

2π
exp (− 1

2 x2),
N = 10000, and h = 0.1 GHz.

junction (two larger junctions), where we have the mean value
of ᾱ (β̄k for k = 1,2) and the standard deviation of σS (σ (k)

L for
k = 1,2).

First, in Fig. 3 we plot the distribution of the tunneling
energies of the FQ. This confirms that the nonuniform
Josephson junctions affect the random distribution of the
tunneling energy. As expected, as we increase the width of
the distribution of the Josephson junction size, the width of
the tunneling energy distribution also increases.

Secondly, we plot the distribution of the persistent current
and tunneling energy given by the nonuniform Josephson
junctions in Fig. 4. We randomly generate the values of the

FIG. 4. Persistent currents and tunneling energies of FQs with
random-size Josephson junctions. We set the same parameters as in
Fig. 3. There is a clear correlation between the tunneling energy �

and persistent current Ip .
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FIG. 5. Standard deviation of the distribution of the flux qubit
frequencies versus the applied magnetic flux. We set the same
parameters as in Fig. 3. The standard deviation strongly depends
on the applied magnetic flux.

Josephson junction size, and calculate the resulting tunneling
energy and persistent current. This result clearly show a
correlation between the tunneling energy and persistent current
where a FQ with a higher tunneling energy tends to have
a lower persistent current. We can qualitatively explain this
correlation as follows. As we increase the value of α, the
potential gradient dU

df
� 2πEJ [1 − 1

(2α)2 ]
1/2

becomes larger
for φp � 0, φm � φ∗

m, and f � 0.5. A larger potential gradient
makes the energy of the FQ more sensitive to the change
in the applied magnetic flux, which corresponds to a higher
persistent current. On the other hand, as we increase the value
of α, the tunneling barrier Et = U (φm = 0) − U (φm = φ∗

m) =
EJ (−2 + 2α + 1

2α
) becomes larger for φp � 0, φm � φ∗

m,
α � 0.7, and f � 0.5. The larger tunneling barrier suppresses
the tunneling energy of the FQ. Therefore, if the persistent
current becomes larger, the tunneling energy is expected to be
smaller, which is consistent with our numerical simulations.
Moreover, it is worth mentioning that a similar model was
used to reproduce the experimental results in [8] where
spectroscopy of a microwave resonator coupled to 4300 FQs
was performed and good agreement between numerical and
experimental results was observed [8]. In that experiment, the
standard deviation of the Josephson junction size is around a
few percent, which corresponds to the yellow region in Fig. 4.

Thirdly, in Fig. 5 we plot the standard deviation of the
FQ frequency distribution against an applied magnetic field.
Interestingly, these results show that the standard deviation
of the frequency distribution strongly depends on the applied
magnetic flux; there exists an optimal point where the standard
deviation of the flux qubit frequency becomes minimum. The
width of the distribution becomes one or two orders of mag-
nitude smaller at the optimal point than elsewhere. This can
be understood as a consequence of the correlation between the
tunneling energy and the persistent current, as shown in Fig. 6.

To illustrate this idea, let us consider a pair of flux qubits
with different junction sizes. The FQ energy is given by ωj =√

|εj |2 + |�(t)
j |2, for εj = 2Ij (�ext − 1

2�0) (j = 1,2), and we

can assume �
(t)
1 > �

(t)
2 without loss of generality.
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FIG. 6. Energies of two flux qubits (A and B), with different size
junctions, as a function of an applied magnetic field. The flux qubit
energy is represented by ωj =

√
|εj |2 + |�(t)

j |2 for εj = 2Ij (�ext −
1
2 �0), where �ext denotes the applied magnetic flux. Flux qubit A has
a smaller (larger) tunneling energy (persistent current) than B. In this
case, we can make the frequency of the qubits the same by applying
an appropriate amount of the applied magnetic flux.

Interestingly, when I1 < I2, which is the expected statistical
relationship given �1 > �2, we can show that there exists
an optimal flux such that ω1 = ω2 is satisfied. So we can
balance the two flux qubit energies just by applying a global
magnetic flux. This means that, even if we have several qubits
with different-size Josephson junctions, if there is a correlation
such that a smaller persistent current Ij tends to increase the
tunneling energy �

(t)
j , we can make the frequency of these

qubits similar by tuning an external magnetic flux, as shown
in Fig. 4.

IV. SUPERRADIANCE

To illustrate how such an ensemble with a reduced inho-
mogeneous width can lead to observable collective effects, we
numerically simulate [56,57] a small ensemble with an explicit
inhomogeneity. We also show how this residual inhomogeneity
can be used as a tool to aid initial-state preparation. We
explicitly model N = 10 FQs, with inhomogeneous normally
distributed energies ωj with mean value ω̄j and variance δωj .
These qubits are coupled to a single common microwave
cavity of frequency ωc with a common homogenous coupling
strength g. The general Hamiltonian for such a system reads

H =
N∑

j=1

ωj

2
σ (j )

z + ωca
†a + g(J−a† + J+a), (4)

where J+ = ∑
j σ

(j )
+ , J− = ∑

j σ
(j )
− , and we have set � = 1 for

simplicity. In general, we assume that the cavity decay, with
rate κ , is given by a Lindblad superoperator κD[a], where
D[a] = 2aρa† − a†aρ − ρa†a.

To begin with, we eliminate the cavity [58,59], assuming
the bad-cavity limit: κ � δωj ,g

2N/κ (superradiance is also
possible in the dispersive good-cavity limit; see the Appendix).
In this bad-cavity case the equation of motion is reduced to the
following form:

HAE =
N∑

j=1

(ωj − ω̄j )

2
σ (j )

z + (ωc − ω̄j )
g2

�2
J+J−, (5)

where � = κ + i(ωc − ω̄j ). There also arises a new loss

term, S[ρ] = κ
g2

�2 D[J−]ρ. It is this term that induces the
superradiance phenomena, and we expect to observe such
superradiance when δωj � g2N/κ .

Even though the cavity is eliminated, one can estimate the
intensity of the radiation emitted from the qubits from the
squared atomic polarization [58],

I (t) = 2g2

κ
ωc〈J+(t)J−(t)〉. (6)

Typically the intensity grows with time, reaches a maximum
at the peak superradiance time τsr = κ/g2N and then decays.
The successful observation of this pulse requires that the
coherence time of the qubits is longer than the expected peak
superradiance time. Assuming dephasing is dominated by the
inhomogeneity of the energies of the FQs, we can assess the
visibility of superradiance via the parameter α̃ = T ∗

2 /τsr =
Ng2/κδωj , where T ∗

2 is the inhomogeneous dephasing time.
In addition to the qubits being inhomogeneous, the direct

control of individual qubits is challenging. However, we can
consider collective ways in which to prepare spin-polarized
states, which we can be used to observe superradiance. In
particular, by strongly driving the cavity, or using another
common control line, as per Fig. 1, we can induce a time-
dependent collective control term, such that the dynamics of
the qubits can be written as

Hdrive =
N∑

j=1

ωj

2
σ (j )

z + λ(t) cos(ωdt)
∑

j

σ (j )
x , (7)

H ′
drive ≈

N∑
j=1

�′
j

2
σ (j )

z + λ(t)

2

∑
j

σ (j )
x , (8)

where in the second equation we moved to a frame rotating
at the drive frequency, such that �′

j = ωj − ωd , and made a
rotating-wave approximation. Later we will choose the drive
to be resonant with the average value of the qubit energies
ωd = ω̄j . If we consider just a single qubit, initially in its
ground state, we know that if we apply a drive of strength λ for
a period Tπ = π/λ we will find that the spin has a probability
of being in its excited state:

Pexc = λ2

�′2
j + λ2

. (9)

Extending this notion to N spins we expect that we will have
an effective excited number of spins Meff = ∑

j
λ2

�′2
j +λ2 . Thus

simply changing the magnitude of λ enables us to effectively
control the number of spins contributing to the superradiance
emission (up to the limit of validity of the rotating wave
approximation). In addition, one can also control the shape of
the envelope of the drive, λ(t). While Pexc and Meff only apply
for a step-function envelope, they provide a useful estimate. In
practice we found that a Gaussian function for λ(t) worked best
in preparing the desired initial state, and thus only show that
example here. In principle one can also use more sophisticated
techniques from quantum control theory to prepare the desired
state [60–62].

Importantly, when we need to excite most of the qubit
ensemble, the drive, or Rabi frequency, λ should be as large or
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larger than the inhomogeneous width. Although it is possible to
achieve a Rabi frequency of a few GHz [63] for a single FQ, it
is not straightforward to realize such a strong driving condition
for a large ensemble. For this reason, it is crucial to decrease
the width of the inhomogeneous broadening of the FQs by,
for example, applying a magnetic flux, as described earlier.
This will allow us to both excite the ensemble with moderate
values of λ, and observe superradiance with accessible values
of g.

To obtain numerical results we solve the master equation
for all N qubits explicitly by generating a random ensemble
of energies, preparing the qubit ensemble in the common
ground state (without interaction with the cavity) ψ(0) =
|0〉1

⊗ |0〉2
⊗

. . .
⊗ |0〉N , and then “switch on” the driving

term H ′
drive(t) for a period τ such that

∫ τ

0 λ(t) ≈ π . We assume
that during this driving period the cavity and qubit ensemble
are far off-resonance. In other words, the ensemble evolves
under the free evolution of the ensemble Hamiltonian and the
drive, given by H ′

drive(t) in Eq. (8), without influence from the
cavity. In principle, this implies we also require that the period
τ is shorter than the relaxation time of the qubits.

After this evolution, we record the effective number of
excited qubits M = 〈∑j σ

(j )
z 〉, switch off the drive, and allow

the system to evolve under both HAE and the superradiant
loss term S[ρ] = κ

g2

�2 D[J−]ρ, as determined by the master
equation

ρ̇ = − i

�
[HAE,ρ] + S[ρ] (10)

for a time interval much longer than τsr (recalling τsr =
κ/g2M , where M are the number of qubits excited by the
drive). For this period of evolution we record the cavity emis-
sion intensity by calculating I (t), and from this measurement
record the maximum (over time) acquired value Max[〈J+J−〉].
Under perfect superradiance Max[〈J+J−〉] should scale as M2.

We repeat this procedure as a function of the driv-
ing strength λ, and plot the recorded maximum intensity
Max[〈J+J−〉] as a function of M , the effective number of
qubits initially excited by the drive. Figure 7 shows this
for a Gaussian drive shape λ(t) = λmax exp [−( t−b

σ
)
2
] with

σ = √
π/λmax and b = 4σ

√
2 ln 2. This is compared to the

test case where the actual number of initially excited qubits is
enforced “by hand,” which we refer to as the “discrete M” case.
We now see that the drive prepares a subset of the qubits in their
excited states, thus altering the resultant photonic emission
intensity. This allows us to directly observe the quadratic
scaling of that intensity as a function of the number of qubits
contributing to the collective decay. For the parameters chosen
here, we see the onset of superradiance when M becomes
greater than about four (see caption of Fig. 7).

In practice, as the number of FQs increases, one can still see
superradiance for much larger values of the inhomogeneity, or
smaller couplings, than we show here. For example, from the
simulations described above, we can extrapolate the behavior
of a device composed of 4300 FQs coupled with the microwave
cavity. Due to the form of the loss term S[ρ] = g2

κ
D[J−]ρ, for

ωc = ωj , we should have a similar behavior for the emitted
intensity from the cavity, as long as the value of Mg2/κ is
the same. Thus, if we fabricate a device with g = 5 MHz,

FIG. 7. (a) Maximum (over time) emitted intensity versus number
of initially excited qubits M . For discrete M (green solid curve) we
artificially prepare a subset M of the total ensemble of N qubits in
their excited states. In the other case (purple dashed line), at t = 0
we prepare all qubits in their ground state and then evolve with the
Hamiltonian Hdrive(t) switched on, with a Gaussian function envelope
λ(t), as described in the main text. We then switch off the driving
and allow the system to evolve under the influence of Eq. (10), and
record the maximum emitted intensity over a time period exceeding
the expected superradiant pulse duration. We do this for a range
of λmax, which induce an effective number M of qubits to become
excited. For the other parameters we set ω̄j = ωc, δωj = 25 MHz,
g = 50 MHz, κ = 400 MHz, and N = 10, so as to give a value for
α̃ > 1 as M becomes greater than 4. Panel (b) shows the logarithmic
intensity, which changes from linear to quadratic behavior as M

passes this M = 4 threshold (the gray dotted line is an artificial
linear comparison curve, while the orange dotted line is an artificial
quadratic comparison curve, to show this change clearly). Panel (c)
shows the explicit λmax values used in the Gaussian drive, and the
associated number of excited spins M in the ensemble after the drive
has been applied. Panel (d) shows the explicit time-dependent curves
of intensity for different values of M , increasing from the bottom up,
starting with M = 1 to 10, from which the green dotted-dashed line
in figure (a) is extracted. The change from normal to superradiant
emission around M = 4 is clear. Similarly, panel (e) shows the
same curves for the driven state preparation example. Note that all
curves are averaged over a large set of randomly generated ensemble
energies.

δωj = 25 MHz, κ = 1.72 GHz, and N = 4300, and excite the
full ensemble, so that M = N , the value of Mg2/κ coincides
with that used in our numerical simulation with 10 excited
qubits; and so we should be able to observe the quadratic
scaling of the intensity for this case as well. This means that
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one can see superradiance from 4300 FQs even for coupling
strengths as small as 5 MHz.

V. CONCLUSIONS

We have shown that, even though large ensembles of FQs
suffer from intrinsic fabrication-induced inhomogeneities, this
can be minimized by tuning the ensemble FQs properties with
an external flux. This opens up the possibility of observing
collective many-body effects, a simple example of which
we give in terms of superradiant emission into a microwave
cavity. We expect that such large ensembles will enable the
investigation of a range of interesting physics in the future,
including criticality [11–15], macroscopic coherence [64,65],
and spin squeezing [20–23].
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APPENDIX: DISPERSIVE SUPERRADIANCE MODEL

One can also obtain collective superradiant decay due to
interaction with a common cavity by moving to a dispersive
coupling regime [22], where the cavity and qubits are off-
resonance, without necessarily demanding that the cavity
losses be large. Starting again with Eq. (4) one can apply
the transformation eRHDe−R , where R = g

χ
(J−a† − J+a),

χ = ωc − ω̄j , and keeping terms to order (g/χ )2 find that

Hdisp =
N∑

j=1

(
1

2
ωj + βa†a

)
σ (j )

z + β

2
J+J−, (A1)

where β = 2g2/χ and again a new loss term arises,

Sdisp = κ
g2

χ2
D[J−]ρ. (A2)

One expects in this case that superradiance will occur when
g2Nκ/χ2 � δωj , giving an equivalent parameter to assess the
visibility αD = g2Nκ/(χ2δωj ). However, this regime is valid
for (g/χ )2 � 1, which implies Nκ/δωj � (g/χ )2. As with
the adiabatic elimination case, the spin squeezing term J+J−
does not affect the superradiance dynamics significantly.
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