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Many-body effects in twisted bilayer graphene at low twist angles
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We study the zero-temperature many-body properties of twisted bilayer graphene with a twist angle equal
to the so-called “first magic angle.” The system low-energy single-electron spectrum consists of four (eight,
if spin label is accounted) weakly dispersing partially degenerate bands, each band accommodating one
electron per Moiré cell per spin projection. This weak dispersion makes electrons particularly susceptible to the
effects of interactions. Introducing several excitonic order parameters with spin-density-wave-like structure, we
demonstrate that (i) the band degeneracy is partially lifted by the interaction and (ii) the details of the low-energy
spectrum become doping dependent. For example, at or near the undoped state, interactions separate the eight
bands into two quartets (one quartet is almost filled; the other is almost empty), while for two electrons per
Moiré cell, the quartets are pulled apart, and doublets emerge. When the doping is equal to one or three electrons
per cell, the doublets split into singlets. Hole doping produces similar effects. As a result, electronic properties
(e.g., the density of states at the Fermi energy) demonstrate oscillating dependence on the doping concentration.
This allows us to reproduce qualitatively the behavior of the conductance observed recently in experiments [Cao
et al., Nature (London) 556, 80 (2018)]. Near half-filling, the electronic spectrum loses hexagonal symmetry
indicating the appearance of a many-body nematic state.
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I. INTRODUCTION

The search for broken-symmetry phases in graphene bi-
layer systems remains an active research area [1]. Theorists
have studied a variety of possibilities, such as antiferro-
magnetism [2–10], superconductivity [11–15], and excitons
[3,16–18], as well as more exotic states [5,19]. Unfortu-
nately, experimentally, the broken symmetry phases are rare
celebrities in graphene systems, except, perhaps, AB bilayer
graphene, for which numerous experiments [20–25] provide
evidence of low-temperature nonsuperconducting order. It
appears, however, that the situation in this field has changed:
in recent experiments [26,27] both superconductivity and
many-body insulating states were detected in doped samples
of twisted bilayer graphene (TBLG) whose twist angles θ

are close to the so-called “first magic angle” θc ≈ 1.1◦. The
dependence of the conductance σ , as a function of doping
n, showed several pronounced minima: at n = 0 (undoped
state), at n = ±ns/2, and at n = ±ns (the doping level n =
ns corresponds to one electron per spin projection per layer
per supercell, or, equivalently, four electrons per supercell).
In some samples, additional minima were observed at [28]
n = ±3ns/4 and at [29] n = ns/4. The purpose of this pa-
per is to offer a theoretical explanation to these remarkable
findings.

Our reasoning relies on the peculiar band structure of
TBLG at small twist angles: for θ � θc, the low-energy single-
electron spectrum is dominated by four (eight, if spin degen-

eracy is accounted) bands with almost no dispersion [30], and
the Fermi surface is present even at zero doping [31] (provided
that the interaction effects are neglected). The single-electron
density of states (DOS) of these bands offers a simple expla-
nation [26] for the conductance minima at n = ±ns. As for
the minima in the interval −ns < n < ns, such single-body
reasoning fails to explain them, and a many-body formal-
ism is necessary. Indeed, the flatness and degeneracy of the
low-energy bands make them particularly susceptible to the
interaction effects. To account for the latter, we use a mean-
field approach. A simple single-site spin-density wave (SDW)
order parameter is sufficient to reproduce the minimum at
n = 0: in energy space, such an order parameter splits the
eight bands into two quartets: one quartet is almost filled;
the other is almost empty, with drastically reduced DOS at
the Fermi level. To explain the behavior of σ (n) at other n’s,
the quartets must be split further (into doublets and singlets),
which requires more complex SDW order parameters. The
resultant formalism captures qualitatively the dependence of
σ versus doping reported in Ref. [26]. In addition, our cal-
culations demonstrate that for sufficiently large doping the
so-called electronic nematicity may be stabilized.

The paper is organized as follows. The basic facts about the
TBLG geometry are outlined in Sec. II. The studied model
is formulated in Sec. III. The mean-field approximation is
applied to the model in Sec. IV. Section V is dedicated to the
discussions of the presented results, while the conclusions are
formulated in Sec. VI.
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II. GEOMETRY OF TWISTED BILAYER GRAPHENE

To introduce the notation, let us start with a brief review
of basic TBLG geometrical facts. More details can be found
in Refs. [1,32,33]. A graphene monolayer has a hexagonal
crystal structure consisting of two triangular sublattices A and
B. The coordinates of atoms in layer 1 on sublattice A are

r1A
n = r1

n ≡ na1 + ma2, (1)

where n = (n, m) is an integer-valued vector,

a1,2 = a(
√

3,∓1)/2 (2)

are the primitive vectors, and a = 2.46 Å is the lattice constant
of graphene. The coordinates of atoms on sublattice B are

r1B
n = r1

n + δ, (3)

where

δ = a(1/
√

3, 0). (4)

Atoms in layer 2 are located at

r2B
n = r2

n ≡ dez + na′
1 + ma′

2, r2A
n = r2

n − δ′, (5)

where a′
1,2 and δ′ are the vectors a1,2 and δ, rotated by an angle

θ . The unit vector along the z axis is ez; the interlayer distance
is d = 3.35 Å. The limiting case θ = 0 corresponds to the AB
stacking.

If the twist angle satisfies

cos θ = 3m2
0 + 3m0r + r2/2

3m2
0 + 3m0r + r2

, (6)

where m0 and r are coprime positive integers, a superstructure
emerges, and a TBLG sample splits into a periodic lattice of
finite supercells. The number of graphene unit cells inside a
supercell is

Nsc = (
3m2

0 + 3m0r + r2)/g (7)

per layer, where g = 1 if r �= 3n, or g = 3 otherwise.
The reciprocal lattice primitive vectors for the layer 1 are

denoted by b1,2; for layer 2 they are b′
1,2. In layer 1 we have

b1,2 = (2π/
√

3,∓2π )/a, (8)

while b′
1,2 are connected to b1,2 by rotating on angle θ .

When the superlattice is present, the primitive reciprocal
vectors for the superlattice can be defined. We denote them
as G1,2. For these vectors, the following identities in the
reciprocal space are valid:

b′
1 = b1 + r(G1 + G2), b′

2 = b2 − rG1, (9)

if r �= 3n, or

b′
1 = b1 + r(G1 + 2G2)/3, (10)

b′
2 = b2 − r(2G1 + G2)/3, (11)

otherwise. The Brillouin zone of the superlattice is hexag-
onal shaped. It can be obtained by Nsc-times folding of the
Brillouin zone of the layer 1 or 2. Two nonequivalent corners
of the reduced Brillouin zone, K1 and K2, can be expressed
via vectors G1,2 as

K1 = (G1 + 2G2)/3, K2 = (2G1 + G2)/3. (12)

III. MODEL HAMILTONIAN

A. Single-electron term

We investigate the tight-binding model for pz electrons in
the commensurate TBLG at small doping n. The Hamiltonian
is

Ĥ = Ĥ0 + Ĥint, (13)

where Ĥint is the electron-electron interaction, and a single-
electron term equals

Ĥ0 =
∑
in jm
ss′σ

t
(
ris

n ; r js′
m

)
d̂†

nisσ d̂m js′σ . (14)

In this expression d̂†
nisσ (d̂nisσ ) are the creation (annihilation)

operators of the electron with spin σ at the unit cell n in the
layer i (= 1, 2) in the sublattice s (= A,B). For intralayer
hopping, only the nearest-neighbor term is included. Its value
is t = −2.57 eV. The interlayer hoppings are parametrized as
described in Refs. [34,35], with the largest interlayer hopping
amplitude being equal to t0 = 0.4 eV.

Switching to the momentum representation, one can intro-
duce new single-particle operators

d̂pGisσ = N−1/2
∑

n

e−i(p+G)ri
n d̂nisσ . (15)

Here N is the number of graphene unit cells in the sample
in one layer, the momentum p lies in the first Brillouin zone
of the superlattice, while G = m1G1 + m2G2 is the reciprocal
vector of the superlattice lying in the first Brillouin zone of
the ith layer. The number of such vectors G is equal to Nsc for
each graphene layer. Thus Ĥ0 becomes

Ĥ0 =
∑
pG1,2

∑
i jss′σ

t̃ ss′
i j (p + G1; G1 − G2)d̂†

pG1isσ d̂pG2 js′σ , (16)

where the hopping amplitudes in momentum space are

t̃ ss′
i j (k; G) = 1

Nsc

∑′

nm

e−ik(ri
n−r j

m )e−iGr j
mt

(
ris

n ; r js′
m

)
. (17)

The summation symbol with prime
∑′

nm implies that m runs
over sites inside the zeroth supercell, while n runs over all
sites in the sample.

Single-electron energies ES
p and corresponding eigenvec-

tors �S
pGis (here S = 1, 2, . . . , 4Nsc enumerates all 4Nsc spin-

degenerate bands of the TBLG) are found by numerical diag-
onalization of Eq. (16). The spectrum of (16) is well studied.
Its properties at small and large θ differ qualitatively. When
θ > θc (for the hopping parameters used here θc ≈ 1.08◦),
the low-energy spectrum is Dirac-like. If θ � θc, the system
acquires a Fermi surface, which is formed by four (eight, if
spin degeneracy is accounted) almost-flat partially degenerate
bands at low energy [30]. In Fig. 1(a) the spectrum of this
type is plotted for “the first magic angle” θ = θc. We see
that higher-energy electron and hole bands with pronounced
dispersion are separated from each other by sheets of almost-
flat bands. This peculiar spectrum structure is the origin of the
many-body physics discussed below.

To characterize this noninteracting spectrum more thor-
oughly, it is instructive to calculate the low-energy DOS

ρ(E ) = 2
∑

S

∫
d2p
vSBZ

δ
(
ES

p − E
)
, (18)
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FIG. 1. (a) Single-particle low-energy band structure (interaction
effects are neglected here) inside the superlattice Brillouin zone
calculated for the first magic angle θ = θc. (b) Low-energy DOS
ρ(E ) corresponding to the band structure shown above (solid curve)
and for the band structure modified by interaction (dashed curve);
see Fig. 2 (a) and text below.

where the integral is taken over the superlattice Brillouin
zone, whose area is denoted by vSBZ. The DOS is plotted
in Fig. 1(b). It has a double peak structure, with the total
spectral weight corresponding to eight electrons per a Moiré
cell. The DOS remains nonzero for any doping in the interval
|n| < ns, as expected for a system with a Fermi surface [31].
The Fermi energy for the undoped state n = 0 corresponds to
the minimum on the DOS plot. The overall structure of the
DOS plot and its width

W ∼ 2 meV (19)

are consistent with Fig. 1(d) of Ref. [27].
Numerical calculations demonstrate that the flat bands are

separated from the rest of the spectrum by two gaps, both
of the order of 15 meV, in qualitative agreement with other
computational and experimental results [27,36].

B. Interactions term

To model experimental conditions [26,27], we study the
many-body effects for θ = θc. As a starting point of our
analysis, we model Ĥint using the Hubbard interaction

Ĥint = U

2

∑
nisσ

d̂†
nisσ d̂nisσ d̂†

nisσ̄ d̂nisσ̄ , (20)

U = 2t < U MF
c . (21)

Here the notation σ̄ means “not σ ,” and

U MF
c ≈ 2.23t (22)

is the critical strength for a single-layer graphene transition
into a mean-field antiferromagnetic state [37]. The choice (21)
implies that the interaction in our model is strong, yet not
strong enough to cause a single-layer many-body instability,
at least in the mean-field framework. In other words, the
presence of the second layer is a necessary prerequisite for
a mean-field transition.

IV. MEAN-FIELD CALCULATIONS

A. Single-site order parameter

To account for the interaction (20) at the mean-field level,
we must choose a suitable order parameter. First, let us
define [3,7,8,10,38] the single-site magnetization

ηmisσ = 〈d̂†
misσ d̂misσ̄ 〉, (23)

where 〈. . .〉 denotes the averaging with respect to the mean-
field ground state. We will assume that the anomalous average
ηmisσ , as a function of position m, has the same period as
the superlattice. That is, only the spin-rotational symmetry
is broken, while the superlattice translation symmetry is
preserved (the spin texture has the same periodicity as the
superlattice). Using the η’s we decouple Hint to obtain the
mean-field interaction

ĤMF
int =

∑
nisσ

[
−	nisσ d̂†

nisσ̄ d̂nisσ + |	nisσ |2
2U

]
. (24)

Here

	nisσ = Uηnisσ (25)

is the order parameter. Finding the self-consistent value of
	nisσ , we can determine the low-energy band structure of our
model, modified by the interaction (20). Figure 2(a) presents
the results of such calculations for n = 0. The order parameter
	nisσ lifts the degeneracy of the low-energy spectrum, split-
ting the eight energy bands into two quartets: four bands are
pushed above the Fermi level εF and four other bands sink
below εF. Each quartet appears as a peak in the DOS plot in
Fig. 1(b). The peaks are separated by

Eg ≈ 4.5 × 10−3t ≈ 12 meV. (26)

Although most of the electronic states are pushed away from
the Fermi energy εF, near the � point the quartets cross the
Fermi energy level, forming a Fermi surface, and generating a
small but finite ρ(εF). Thus, consistent with experiments [26],
the undoped state is metallic.

B. Two-site order parameter

However, our mean-field calculations show that the or-
der parameter (24) is sufficient to describe the conductivity
suppression near the charge neutrality point only. Yet, in the
range 0 < |n| < ns, the mean-field theory based on purely
single-site order parameter, Eq. (23), predicts quite featureless
evolution of the system properties. For our goals, the most im-
portant shortcoming of the purely single-site order parameter
is its inability to split the quartets of the bands further, into
doublets and single bands.

To appreciate the importance of the latter prerequisite, con-
sider the following reasoning. Experimentally, doping levels
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FIG. 2. (a) Charge neutrality band structure modified by the interaction (20). The eight bands are split into two quartets (individual bands
are indiscernible due to small energy separations between the bands of the same quartet). (b) When n = ns/2, the order parameters A split the
two-quartet structure [panel (a)] into the doublet-quartet-doublet structure. (c) Fine structure of the low-energy bands shown in panel (b). The
energy bands are labeled by E (α), α = 1 . . . 8.

n = ±ns/2 are special for the system demonstrates drastic
depletion of the conductivity. On the theory side, doping
n = ns/2 (doping n = −ns/2) corresponds to two additional
electrons (two additional holes) per supercell, or, equivalently,
it requires complete filling (complete draining) of exactly two
bands of the upper (lower) quartet. Therefore, an insulating or
poorly conducting state at n = ±ns/2 requires the separation
of the quartet of bands into two doublets, one of which is
filled; the other is empty.

Our numerical study shows that, to generate the desired
splitting, the interaction Hamiltonian, besides the Hubbard
term (20), must include the term describing the (Coulomb)
interaction of electrons on neighboring sites:

HC
int = 1

2

∑
nmi j

ss′σσ ′

V
(
ris

n − r js′
m

)
d̂†

nisσ d̂nisσ d̂†
m js′σ ′ d̂m js′σ ′ . (27)

This interaction can be decoupled by the following excitonic
order parameter:

Anis
m js′;σ = V

(
ris

n − r js′
m

)〈d̂†
nisσ d̂m js′σ̄ 〉. (28)

The mean-field version of the interaction (27) is

ĤC,MF
int = −1

2

∑
nmi j
ss′σ

[
Anis

m js′;σ d̂†
m js′σ̄ d̂nisσ + H.c.

]

+ 1

2

∑
nmi j
ss′σ

∣∣Anis
m js′;σ

∣∣2

V
(
ris

n − r js′
m

) . (29)

For calculations we assume that order parameter Anis
m js′;σ is

nonzero only when sites ris
n and r js′

m are sufficiently close.
Namely, if the hopping amplitude connecting ris

n and r js′
m

vanishes, parameter Anis
m js′;σ is zero:

t
(
ris

n ; r js′
m

) = 0 ⇒ Anis
m js′;σ = 0. (30)

The latter condition implies that for a given site three in-
tralayer order parameters Anis

mis′;σ , each associated with a single
nearest neighbor, enter the formalism. For a site on sublattice

B within a unit cell n = (n, m) they are

AniA
niB;σ = Vnn〈d̂†

niAσ
d̂niBσ̄

〉, (31)

An1iA
niB;σ = Vnn〈d̂†

n1iAσ
d̂niBσ̄

〉, (32)

An2iA
niB;σ = Vnn〈d̂†

n2iAσ
d̂niBσ̄

〉. (33)

Here n1 = (n + 1, m) and n2 = (n, m + 1). The nearest-
neighbor interaction strength Vnn is equal to Vnn = V (|δ|),
where we take V (|δ|)/U = 0.59, according to Ref. [39]. The
quantities defined by Eqs. (31), (32), and (33) satisfy the
following relations:

(
AniA

niB;σ

)∗ = AniB
niA;σ̄ , (34)

(
An1iA

niB;σ

)∗ = AniB
n1iA;σ̄ , (35)

(
An2iA

niB;σ

)∗ = AniB
n2iA;σ̄ , (36)

which can be verified with the help of Eq. (28).
When i �= j, quantities Anis

m js′;σ represent interlayer order
parameters. Unlike intralayer order parameters, condition (30)
does not allow for simple description of nonzero Anis

m js′;σ if
i �= j. Depending on the location of ris

n within a supercell,
Eq. (30) may allow for as many as nine nonvanishing Anis

m js′;σ .
Our numerical calculations demonstrate that the interlayer
order parameters are small and we will not discuss them in
much detail.

The resultant mean-field Hamiltonian equals

HMF = H0 + HMF
int + HC,MF

int . (37)

It depends on 	 and A. Diagonalizing HMF, one finds mean-
field eigenenergies Ẽ S

p and total mean-field energy

EMF[A,	] =
∑
Sp


(
εF − Ẽ S

p

)
Ẽ S

p +
∑
nisσ

∣∣	nisσ

∣∣2

2U

+ 1

Vnn

∑
niσ

(∣∣AniA
niB;σ

∣∣2 + ∣∣An1iA
niB;σ

∣∣2 + ∣∣An2iA
niB;σ

∣∣2)
,

(38)
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where the chemical potential εF is chosen such that
4n

ns
= Nsc

N
∑
Sp


(
εF − Ẽ S

p

) − 4Nsc. (39)

In principle, both 	’s and A’s can be found executing numer-
ical minimization of EMF[A,	] at fixed n. Yet, due to a large
number of sites in a single supercell (4Nsc = 11 164), straight-
forward minimization incurs prohibitively high computational
costs and we have to resort to a simplification. As we will
see below, the order parameter is more than two orders of
magnitude smaller than the graphene bandwidth. Therefore,
of all the electronic states of the TBLG, only a fraction affects
significantly the ordering transition: the relevant states are
those whose eigenenergies are close to the Fermi level. All
other states may be accounted perturbatively. To implement
this approach, we project our mean-field Hamiltonian on the
subspace spanned by the eigenvectors �S

pGis satisfying the
relation

−0.25t < Ẽ S
p < 0.25t . (40)

We then assume that

EMF[A,	] ≈ EMF
proj[A,	] + δE [A,	] + const, (41)

where the constant term is independent of A and 	. The
mean-field energy of the projected Hamiltonian EMF

proj[A,	] is
evaluated using the expression identical to Eq. (38) in which
the summation over index S is restricted by Eq. (40). The
contribution from the bands outside window (40) is accounted
for by the term

δE [A,	] = −χs

2

∑
nisσ

|	nisσ |2

−χis

∑
niσ

(∣∣AniA
niB;σ

∣∣2 + ∣∣An1iA
niB;σ

∣∣2 + ∣∣An2iA
niB;σ

∣∣2)
.

(42)

In this equation χs is the susceptibility of a single-layer
graphene to the single-site order parameter 	. The suscepti-
bility to the two-site order parameter A is χis. In the limit of the
spatially homogeneous antiferromagnetic 	, it is known [37]
that χs = 1/U MF

c ; see Eq. (22). While χis is not known exactly,
we approximate χis ≈ 1/U MF

c . Since the value of A is very
small, the precise value of χis is not crucial.

Applying the described numerical approach, we deter-
mined both A and 	 for doping in the range −ns < n < ns. To
characterize the dependence of the single-site order parameter
as a function of doping, we define

	̄ = max(|	nisσ |), (43)

where maximum is taken over a supercell. Similar to Eq. (43),
the evolution of the two-site order parameters with doping n
can be characterized by the three quantities defined as follows:

A(1) = max
(∣∣AniA

niB;σ

∣∣), (44)

A(2) = max
(∣∣An1iA

niB;σ

∣∣), (45)

A(3) = max
(∣∣An2iA

niB;σ

∣∣). (46)

Each A(�), � = 1, 2, 3, represents the strength of the order pa-
rameter on a specific set of C-C bonds. Namely, A(1) describes

FIG. 3. (a) DOS at Fermi energy ρ(εF ), shown by solid curve,
and the conductance σ , shown by dashed curve, as functions of
doping. (b) Dependence of 	̄ and A(�), defined by Eqs. (43)–(46),
on doping n. For |n| � ns/8, we find A(1) = A(2) = A(3). When |n| >

ns/8, the latter identity is violated, indicating the emergence of
the so-called electronic nematicity. (c) The dependence of band
separation parameters as functions of n. The curves for 	E e

d and 	E h
d

coincide. The same is true for 	E h1
s and 	E e1

s , as well as for 	E h2
s

and 	E e2
s .

the order parameters on the bonds which are parallel (or
almost parallel) to δ. The bonds parallel (or almost parallel)
to direction (1,±√

3) are characterized by A(2,3).
The plots of 	̄ and A(�) are shown in Fig. 3(b). They

demonstrate that the order parameters weaken for larger n.
Yet, the doping dependence is not necessarily monotonic. In
addition, we notice that, for sufficiently large |n|, parameters
A(�) are no longer equal to each other. In other words, away
from the n = 0 state the low-energy spectrum spontaneously
loses hexagonal symmetry, indicating the emergence of elec-
tronic nematicity. This theoretical conclusion is consistent
with recent experimental claims [40].

C. Mean-field spectrum structure

Once the order parameters are known, we determine the
low-energy spectrum and calculate the DOS at the Fermi
level ρ(εF) versus n; see Fig. 3(a). All minima of the DOS
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occur when |n| is a multiple of ns/4, that is, when the doping
corresponds to the integer number of electrons per Moiré cell.
The spectrum itself, as function of n, experiences pronounced
transformations: depending on n, the eight single-particle
bands demonstrate various degeneracy patterns which affect
experimentally measurable quantities, such as ρ(εF).

To discuss the specifics of the low-energy spectrum
structure, we introduce index α = 1 . . . 8, which, for every
momentum p, labels the mean-field low-energy eigenstates
�

(α)
pGis according to their mean-field eigenenergies E (α)

p as
follows: E (1)

p < E (2)
p < · · · < E (8)

p . The detailed structure of
this eigenenergy sequence is different for different n. Namely,
when n = 0, one has

E (1)
p ≈ E (2)

p ≈ E (3)
p ≈ E (4)

p < E (5)
p ≈ E (6)

p ≈ E (7)
p ≈ E (8)

p .

(47)

In other words, the mean-field spectrum can be described in
terms of two quartets of the single-particle bands: the upper
quartet is composed of the bands α = 5, . . . , 8 and the bands
α = 1, . . . , 4 belong to the lower quartet; see Fig. 2(a). The
degeneracy within a given quartet is not perfect, yet the energy
difference between the bands in different quartets is much
larger than the intraquartet energy separations. The emergence
of the quartets is mainly controlled by the single-site SDW
order parameter, as discussed in Sec. IV A.

To quantify the separation between two quartets, we intro-
duce the following doping-dependent parameter:

	Eq =
∫

d2p
vSBZ

[
E (5)

p − E (4)
p

]
. (48)

Nonzero 	Eq must not be confused with the gap. Indeed, it
is easy to check that, if finite gap δE = minp [E (5)

p − E (4)
p ]

separating the quartets does exist, then it satisfies δE < 	Eq;
however, finite 	Eq coexisting with vanishing δE = 0 (as in
our case) is also possible.

The dependence of 	Eq versus n is plotted in Fig. 3(c). We
see that the quartet separation is the largest near the charge
neutrality and virtually zero for |n| > ns/2. Near the charge
neutrality, the lower quartet is almost entirely filled, the upper
quartet is almost entirely empty. The DOS at the Fermi energy
is finite, but severely depressed; see Figs. 1(b) and 3(a).

The nullification of 	Eq for |n| > ns/2 implies that, when
n ≈ ±ns/2, the spectrum cannot be described, even approx-
imately, in terms of the upper and lower quartets. Our nu-
merical calculations demonstrate that for such doping values
each quartet separates into two doublets. The splitting into the
doublets is controlled by the two-site order parameter.

To characterize the splitting between the doublets, we
define

	E e
d =

∫
d2p
vSBZ

[
E (7)

p − E (6)
p

]
, (49)

	Eh
d =

∫
d2p
vSBZ

[
E (3)

p − E (2)
p

]
. (50)

Parameter 	E e
d represents the separation of the upper quartet

into two doublets, while 	Eh
d plays the same role for the lower

quartet. The splittings 	E e,h
d are nearly identical for all n’s:

	E e
d ≈ 	Eh

d . (51)

This feature is sensitive to the specific choice of interlayer
tunneling: we will demonstrate in another publication that
Eq. (51) is violated, at least at some values of n, for different
parametrization of the interlayer hopping amplitudes.

At n = ±ns/2, the quantities 	E e,h
d reach their maximum

value:

	E e,h
d ≈ 5 meV, (52)

while the splitting 	Eq becomes small. Therefore, two dou-
blets [E (3,4) and E (5,6)] merge into a single quartet and
the whole low-energy band structure can be characterized
schematically as a doublet-quartet-doublet [see Figs. 2(b)
and 2(c)]. For n = ns/2, the Fermi energy lies between the
quartet and the upper doublet. When n = −ns/2, the Fermi
energy is between the lower doublet and the quartet. Al-
though there is no well-defined gap between the quartet and
either doublets, the energy separation between the bands is
sufficiently strong to induce pronounced DOS minima at n =
±ns/2; see Fig. 3(a).

Finally, we want to discuss the DOS minima at n = ±ns/4
and n = ±3ns/4. Since a band quartet accommodates ns

electrons, while a doublet holds ns/2 electrons, a feature at
n = ±ns/4 or at n = ±3ns/4 cannot be explained in terms of
filling or draining of an integer number of doublets or quartets.
As one might guess, such a feature must be associated with
filling or draining of an odd number of nondegenerate bands.
To enable the filling or draining of an odd number of bands,
at least one doublet or quartet must split into individual
bands. To demonstrate the emergence of nondegenerate sin-
glets in our mean-field formalism, we introduce, similar to
Eqs. (48), (49), and (50), the following quantities:

	Eh1,h2
s =

∫
d2p
vSBZ

[
E (4,2)

p − E (3,1)
p

]
, (53)

	E e1,e2
s =

∫
d2p
vSBZ

[
E (6,8)

p − E (5,7)
p

]
. (54)

This set of parameters characterizes a separation of a specific
band from the rest of the spectrum.

The dependence of 	Eh1,h2
s and 	E e1,e2

s on doping is
shown in Fig. 3(c). We see from these plots that 	Eh1,h2

s and
	E e1,e2

s satisfy approximate equalities

	Eh1
s ≈ 	E e1

s , 	Eh2
s ≈ 	E e2

s . (55)

These relations are analogous to Eq. (51). As we explained
above, the validity of Eq. (51) depends on particulars of the
interlayer hopping amplitude parametrization. The same is
true for Eq. (55) as well.

The plots in Fig. 3(c) reveal that 	Eh1
s and 	E e1

s have
maxima at n = ±ns/4, while 	Eh2

s and 	E e2
s have maxima

at n = ±3ns/4. This indicates the emergence of single non-
degenerate almost filled and almost empty electron bands in
the TBLG spectrum for these doping values. However, the
details of the low-energy spectrum structure at |n| = ns/4
and at |n| = 3ns/4 are nonidentical: for |n| = ns/4, parameter
	Eq is finite, while at |n| = 3ns/4, it is zero. Therefore, the
properties of states at |n| = ns/4 differ from the properties of
|n| = 3ns/4 states.
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V. DISCUSSION

We demonstrated above that the electron-electron interac-
tions modify the low-energy spectrum of the TBLG, affecting
such an important property as the DOS. In this section, we
present an informal review of our results and discuss their
connection to the experiment.

A. Heuristic discussion of the doping-induced
spectrum transformation

Using numerical optimization of the mean-field energy, we
calculated the low-energy spectrum of the TBLG for various
n’s. Despite complexity of the numerical procedure, the re-
sultant doping-induced evolution of the band structure can be
explained qualitatively using simple heuristic argumentation.
Straightforward and intuitive interpretation of the presented
results boosts our confidence in their reliability.

Let us start with the spectrum at the charge neutrality point
n = 0. In the absence of interaction, the eigenenergies of the
eight bands satisfy the relation

E (1)
p ≈ E (2)

p ≈ · · · ≈ E (8)
p . (56)

Once the interaction is accounted for, the latter relation is
replaced by Eq. (47), which describe mathematically the
splitting of the spectrum into two band quartets caused by
the nonzero 	nisσ . The emergence of two separate quartets
minimizes the mean-field energy. Indeed, the single-electron
energies E (1), E (2), E (3), and E (4) of the filled quartet sink,
reducing the total energy of the system. Simultaneous growth
of E (5), E (6), E (7), and E (8) does not affect the total energy,
since this quartet is empty. Upon doping, the gain in energy
due to 	nisσ gradually decreases as the extra charges must
go to the states in the upper quartet. Consequently, 	nisσ

decreases when n grows. The same it true for hole doping
n < 0.

A similar reasoning suggests that for n ≈ ns/2 energy
separation between filled doublet E (5), E (6) and empty doublet
E (7), E (8) becomes favorable. This argument can be trivially
extended to the n ≈ −ns/2 case. Likewise, at n ≈ ±ns/4 and
n ≈ ±3ns/4, the splitting of single nondegenerate bands from
the rest of the spectrum also acts to reduce the total mean-field
energy.

B. Comparison with experiment

1. Conductance

Reference [26] presents the experimental measurement of
conductance for different doping values. To establish a con-
nection between our theory and the experiment, we evaluated
the direction-averaged conductance σ in the relaxation-time
approximation:

σ = e2

4π2

∑
S

∫
d2p

∣∣∣∣∣
∂Ẽ S

p

∂p

∣∣∣∣∣
2

δ
(
εF − Ẽ S

p

)
τ (p). (57)

For calculations, a momentum-independent transport scatter-
ing time τ (p) = const is assumed. This simplification is very
crude and disregards important effects (e.g., modifications
to τ due to changes in the DOS or the anisotropy). More

comprehensive discussion of σ (n) will be presented in a
different publication.

Keeping these reservations in mind, let us examine
Fig. 3(a), where σ (n), estimated with the help of Eq. (57),
is plotted. The conductance demonstrates oscillating depen-
dence on n. Minima of σ (n) coincide mostly with the minima
of the DOS. The only exceptions to this rule are (a) the
emergence of a shallow minimum at n ≈ −ns/8 and (b) the
displacement of minima from n = ±3ns/4 to n ≈ ±0.8ns.

How do these findings compare against the experiment?
Reference [26] presented the conductance measurements in
the interval |n| < ns for two TBLG samples (sample D1,
θ (1) ≈ 1.08◦, and sample D4, θ (4) ≈ 1.16◦). The conduc-
tances of both samples demonstrated minima at n = 0 and n =
±ns/2. Beside these, there were sample-specific minima: for
sample D1, there is a minimum [29] at n = ns/4; for sample
D4, there are two minima [28] at n = ±3ns/4. In addition,
D4 showed a weaker feature at n = ns/4. The available data
suggests that (i) a conductance minimum emerges only when
the value of doping is a multiple of ns/4, (ii) in a given
sample, not every value of n consistent with condition (i)
necessarily hosts a minimum (the minima at n ≈ ±3ns/4 are
present for D4, but are absent for D1; when n ≈ ns/4, only D1
demonstrates the minimum), and (iii) depending on a sample,
conductance at a given minimum may be metallic (all minima
of D4 and the n = 0 minimum of D1) or insulating (D1 at
n = ±ns/2). Our Fig. 3(a) is consistent with (i): disregarding
a weak minimum at n ≈ ns/8, all conductance minima can be
associated with multiples of ns/4. Our preliminary numerical
calculations with a different model [41] for the interlayer hop-
ping show that minima at ±ns/4 and ±3ns/4 are susceptible
to delicate variations of microscopic details, and may disap-
pear for some model parameters, in agreement with (ii). The
value of the conductance at a given minimum demonstrates
a similar sensitivity, which makes our theoretical conclusions
compatible with (iii).

2. Nematicity

Our numerical calculations demonstrate that, for suffi-
ciently strong doping |n| � 0.25ns, the underlying lattice C6

symmetry is broken down to C2; see Sec. IV B and Fig. 3(b).
This signals the emergence of a metallic phase with sponta-
neously broken rotational symmetry. Such a phase is called
electron nematic [42]. Experimental claims of the electronic
nematicity observation in a TBLG sample were recently pub-
lished in Ref. [40].

3. Energy scales

It is known that the mean-field calculations routinely over-
estimate the energy scales. For graphene systems with sponta-
neous symmetry breaking this circumstance was pointed out
in Ref. [43]; see also Ref. [44].

When we compare our results against the energy scales
extracted from the data of Ref. [26], we observe that our
findings suffer from a similar problem. For example, let
us analyze the effect of the in-plane magnetic field on the
many-body state at |n| = ns/2. For the in-plane field, the
orbital contribution to the Hamiltonian is absent and only
Zeeman energy is relevant. Theoretically, it is expected that
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the Zeeman contribution weakens the many-body phase: the
SDW order parameters hybridize electronic states with the
opposite spin projections, while the magnetic field polarizes
spins effectively removing one of the projections participating
in the ordering. To evaluate the magnetic field B required to
destroy the many-body state at n = ±ns/2, one can write the
following: gμBB ∼ 	E e,h

d , where 	E e,h
d is used as a measure

for the interaction-induced energy scale in vanishing field.
Employing Eq. (52) for 	E e,h

d , one obtains B ∼ 40 T. This
estimate is about five times higher than the experimental value
of 8 T.

Similar relation between the experimental and theoretical
scales can be established for the charge neutrality point.
Figure 3(c) of Ref. [26] plots the dependence σ = σ (n) for
different temperatures. The data shows that the minimum of
σ (n) at n = 0 disappears above 40 K. If the latter value is
interpreted as the experimental estimate for the energy scale
Eg (the scale responsible for the single-site ordering at the
charge neutrality point), we see that the experimental result is
about three times smaller than the corresponding theoretical
value (26).

VI. CONCLUSIONS

Using a mean-field approximation, we demonstrated that
the low-energy flat bands of TBLG in the low-θ regime are

very sensitive to interactions. Interactions destroy the partial
degeneracy between these bands, inducing nontrivial many-
body states, with magnetism and nematicity. The degeneracy
is lifted in a different manner depending on the doping value.
This microscopic feature is manifested macroscopically as a
doping-controlled sequence of the DOS minima, which can
be connected to the conductance minima recently observed
experimentally [26].
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