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Intrinsic defects in optomechanical devices are generally viewed to be detrimental for achieving coherent
amplification of phonons, and great care has thus been exercised in fabricating devices and materials with
no (or a minimal number of) defects. Contrary to this view, here we show that, by surpassing an exceptional
point (EP), both the mechanical gain and the phonon number can be enhanced despite increasing defect
losses. This counterintuitive effect, well described by an effective non-Hermitian phonon-defect model,
provides a mechanical analog of the loss-induced purely optical lasing. This opens the way to operating
random-defect phonon devices at EPs.
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I. INTRODUCTION

Advances in cavity optomechanics (COM) in the past
decade have led to many practical applications, such as
ultrasensitive motion sensors, quantum transducers, and
low-noise phonon devices [1,2]. The phonon analog of an
optical laser was also achieved in COM [3]. Compared to
phonon lasers in, e.g., cold ions, superlattices, or electro-
mechanical systems [4–6], COM-based devices feature a
continuously tunable gain spectrum to selectively amplify
phonon modes, from radio frequency to microwave rates,
with an ultralow threshold [3,7]. This system provides a
powerful tool to study quantum acoustic effects, e.g., two-
mode correlations [8], sub-Poissonian distributions [9], and
squeezing [10–12], which are useful in enhancing the
performance of phonon devices in acoustic sensing, imag-
ing, or switching [13–19].
Very recently, COM devices with balanced gain and loss

have also attracted growing interest [20–28]. The gain is
provided by doping active materials, e.g., rare-earth ions or
dyes, into the resonator [20]. Such systems exhibit non-
Hermitian degeneracies known as exceptional points (EPs),
where both the eigenvalues and the corresponding eigen-
frequencies of the system coalesce. Approaching an EP
drastically affects the dynamics of a physical system,
leading to many unconventional effects, e.g., loss-induced

coherence [29,30], invisible sensing [31–33], and chiral-
mode switch [34]. Alternative EP physics has also been
explored experimentally in acoustic [35], electronic [36],
and atomic systems [37], as well as in a COM device [38],
opening up the way to phononic engineering at EPs.
In this work, we study the emergence of an EP in COM.

The EP arises in the phonon-lasing regime by tuning the
loss of intrinsic two-level-system (TLS) defects naturally
existing in amorphous materials used in the fabrication of
COM devices [39–51]. In a COM system, the role of TLS
defects has already been studied in the phonon-cooling
regime [52], but it has been neglected thus far in the
phonon-lasing regime. Counterintuitively, we find that, in
the phonon-lasing regime, increasing the defect loss leads
to the enhancement of both the mechanical gain and the
emitted phonon number. Unlike similar optical loss-
induced effects [29,30,51], our work provides a route for
achieving an EP-enhanced phonon laser without any
optical gain. In view of rapid advances in phonon devices
[13], EP optics, and COM with defects [51–53], our
findings hold the promise of being observed in practical
phonon-laser systems with intrinsic defects.
TLS defects can couple to different modes of a system

via different mechanisms, e.g., to superconducting qubits
[47–50] via electric dipole moments and to phonons via
strain forces [40–42]. For many years, TLS defects were
considered a main source of loss and decoherence, and as
such, techniques have been developed to decrease the
number of defects [40–47]. However, recent studies have
shown that they can play useful roles in, e.g., TLS quantum

*jinghui73@gmail.com
†sko9@psu.edu
‡fnori@riken.jp

PHYSICAL REVIEW APPLIED 8, 044020 (2017)

2331-7019=17=8(4)=044020(9) 044020-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevApplied.8.044020
https://doi.org/10.1103/PhysRevApplied.8.044020
https://doi.org/10.1103/PhysRevApplied.8.044020
https://doi.org/10.1103/PhysRevApplied.8.044020


memory [48,49], circuit control [50], and optical lasing
[51]. In COM systems, a strong TLS-phonon coupling,
well described by a Jaynes-Cummings–like model, was
utilized to achieve phonon cooling [52,53]. Here, we show
that phonon lasing can be enhanced by steering lossy
defects [42,45], instead of using any additional loss-
compensation technique via gain materials. Our work
provides a scheme to realize loss-induced phonon lasing
in COM systems and to use it for steering phonon devices.
The critical point, observed for our full Hermitian system,
coincides well with an EP emerging in an effective non-
Hermitian TLS-phonon system. Despite its similarity to the
loss-induced revival of an optical laser [30], both the
underlying coupling and the critical condition for our
COM system, as shown here, are clearly different.

II. MODEL AND SOLUTIONS

We consider two whispering-gallery-mode resonators
(having the same resonance frequency ωc and loss rate γ;
see Fig. 1), one of which supports a radially symmetric
mechanical breathing mode with effective mass m, fre-
quency ωm, and damping rate γm. The resonators are made
of silica, silicon, or silicon nitride that has intrinsic or
artificially doped TLS defects, which can be coupled
to the phonon mode via mechanical strain [46,52,53].

The strength of the coupling between the TLS and the
mechanical mode, derived from linear elastic solid theory
[52], is given as

gd ≈
DT

ℏ
Δ0

ωq
Szpf ; Szpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏωm

2YVm

s
; ð1Þ

where ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 þ Δ2
a

p
is the tunable energy difference of

the excited and ground states of the TLS [42,46], Δ0 is the
tunnel splitting frequency, Δa is the asymmetry frequency,
Szpf is the zero-point strain-field fluctuation [43,52], Y is
the Young’s modulus, and Vm is the mechanical mode
volume determined by tensorial strain profiles [52]. Note
that the mechanical deformation potential DT can be
measured experimentally [43], and Δa—and thus ωq or
gd—can be tuned using external microwave or electric
fields [51]. δωq=2π ∼ 1 MHz is achievable with a moderate
field of about 103 V=m, allowing a TLS-phonon coupling
which is strong enough to exceed γ [43,45]. The TLS-
phonon coupling gd is strong enough to exceed γ [52]. In
addition, as shown in Ref. [52], the typical number NT of
TLSs that can couple resonantly to a phonon mode, i.e.,
those within the bandwidth gd around ωm, is estimated at
NT ≲ 1 or NT ≪ 1, which can be further tuned by, e.g.,
shifting an off-resonant TLS into resonance with the
considered phonon mode [52].
In the rotating frame at the pump frequency ωl, the

Hamiltonian of the defect-COM system can be written at
the simplest level as H ¼ H0 þHint þHdr, with

H0 ¼ −Δða†1a1 þ a†2a2Þ þ ωmb†bþ ωq

2
σz;

Hint ¼ Jða†1a2 þ a†2a1Þ − ξa†1a1xþ gdðb†σ− þ σþbÞ; ð2Þ

and

Hdr ¼ iðεla†1 − ε�l a1Þ;

where a1, a2, and b denote the annihilation operators of the
optical modes or the mechanical mode, x ¼ x0ðb† þ bÞ is
the mechanical displacement operator,

Δ≡ ωl − ωc

denotes the detuning between the pump laser and the cavity
resonance, ξ ¼ ωc=R is the COM coupling strength, R is
the resonator radius, x0 ¼ ð1=2mωmÞ1=2, while σz, σ−, and
σþ are the Pauli operators of the TLS defined as

σz ¼ jeihej − jgihgj; σ− ¼ jgihej; σþ ¼ jeihgj:

The pump field amplitude is given by

εl ¼ ð2Plγ=ℏωlÞ1=2;

g
dJ

active Jaynes-Cummings model
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-
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FIG. 1. Schematic illustrations of the random-defect phonon
laser. (a) The top resonator, coupled to a tapered fiber, supports a
mechanical mode b [3] and contains a defect-induced TLS.
(b) The optical mode a1, which is coupled to mode a2 with
strength J, interacts with b, which, in turn, is coupled to the TLS
with the strength gd. The TLS decay rate is denoted by γq, and
γ0m ¼ γm − G0 is the effective mechanical damping rate, while G0

is the mechanical gain.
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where Pl is the pump power. The Jaynes-Cummings–like
model describes the strain-induced TLS-COM coupling, all
details of theoretical derivations of which can be found in
previous works on the defect-assisted COM, based on a
linear elastic solid-state theory [46,52,53]. The parameter
values used in our numerical simulations satisfy the validity
condition

gd ≪ ωq ≈ ωm

of this effective model [52].

A. Supermode picture

To derive the Hamiltonian in the optical supermode
picture, we define the operator a� ¼ ða1 � a2Þ=

ffiffiffi
2

p
, which

transforms H0 and Hdr into

H0 ¼ ωþa
†
þaþ þ ω−a†−a− þ ωmb†bþ ωq

2
σz;

Hdr ¼
iffiffiffi
2

p ½εlða†þ þ a†−Þ − H:c:�; ð3Þ

with ω� ¼ −Δ� J. Similarly, Hint becomes

Hint ¼ −
ξx0
2

½ða†þaþ þ a†−a−Þ − ða†þa− þ H:c:Þðb† þ bÞ�
þ gdðb†σ− þ σþbÞ: ð4Þ

In the rotating frame with respect to H0, we have

Hint ¼ −
ξx0
2

ða†þa−beið2J−ωmÞt þ H:c:Þ

−
ξx0
2

ða†þa−b†eið2JþωmÞt þ H:c:Þ

þ ξx0
2

ða†þaþ þ a†−a−Þðb†eiωmt þ H:c:Þ
þ gdðb†σ−eiðωm−ωqÞt þ H:c:Þ: ð5Þ

Considering the rotating-wave approximation

2J þ ωm;ωm ≫ j2J − ωmj; jωq − ωmj;

we have

Hint ¼ −
ξx0
2

ða†þa−bþ b†aþa†−Þ þ gdðb†σ− þ σþbÞ: ð6Þ

The first term describes the phonon-mediated transition
between optical supermodes, and the second term describes
the coupling between the phonon and the TLS defect. Thus,
in the supermode picture, the optomechanical coupling is
transformed into an effective coupling describing defect-
assisted phonon lasing. The TLS can be excited by
absorbing a phonon generated from the transition between

the upper optical supermode and the lower one, and as such
it can strongly modify the behavior of the phonon lasing.
The Heisenberg equations of motion of the system can

then be written as

_aþ ¼ ð−iωþ − γÞaþ þ iξx0
2

a−bþ εlffiffiffi
2

p þ ffiffiffi
γ

p
ain;

_a− ¼ ð−iω− − γÞa− þ iξx0
2

aþb† þ
εlffiffiffi
2

p þ ffiffiffi
γ

p
ain;

_b ¼ ð−iωm − γmÞbþ iξx0
2

a†þa− − igdσ− þ
ffiffiffiffiffiffiffiffi
2γm

p
bin;

_σ− ¼ ð−iωq − γqÞσ− þ igdbσz þ
ffiffiffiffiffiffiffi
2γq

q
Γ−;

_σz ¼ −2γqðσz þ 1Þ − 2igdðσþb − b†σ−Þ þ
ffiffiffiffiffiffiffi
2γq

q
Γz: ð7Þ

Here, ain, bin, Γ−, and Γz denote environmental noises
corresponding to the operators a, b, σ−, and σz. We assume
that the mean values of these noise operators are zero, i.e.,

haini ¼ hbini ¼ hΓ−i ¼ hΓzi ¼ 0:

The fluctuations are small and we neglect the noise
operators in our numerical calculations. Then, the defect-
assisted mechanical gain and the threshold power of the
phonon lasing can be obtained.
In the supermode picture, a crucial term describing the

phonon-lasing process can be resonantly chosen from the
Hamiltonian, under the rotating-wave approximation [3,54]
(for J ∼ ωm=2, ωq ∼ ωm). The resonance ωm ¼ ωq can be
achieved by using a moderate field of about 103 V=m,
allowing a shift of δωq=2π ∼ 1 MHz [43,45,52]. With the

supermode operators p ¼ a†−aþ, a� ¼ ða1 � a2Þ=
ffiffiffi
2

p
, the

reduced interaction Hamiltonian is given by

Hint ¼ −
ξx0
2

ðp†bþ b†pÞ þ gdðb†σ− þ σþbÞ: ð8Þ

The resulting Heisenberg equations of motion are

_p ¼ ð−2iJ − 2γÞp −
iξx0
2

δnbþ 1ffiffiffi
2

p ðε�l aþ þ εla†−Þ;

_b ¼ ð−iωm − γmÞbþ iξx0
2

p − igdσ−;

_σ− ¼ ð−iωq − γqÞσ− þ igdbσz;

_σz ¼ −2γqðσz þ 1Þ − 2igdðσþb − b†σ−Þ; ð9Þ

where p ¼ a†−aþ, and δn ¼ a†þaþ − a†−a− denotes the
population inversion. The noise terms are negligible with
a strong driving field. The steady-state values of the system
can be obtained by setting ∂p=∂t ¼ 0; ∂σ−=∂t ¼ 0, and
∂a�=∂t ¼ 0, with γ; γq ≫ γm, which leads to
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p ¼ 1

ið2J − ωmÞ þ 2γ

�
1ffiffiffi
2

p ðε�l aþ þ εla†−Þ −
iξx0
2

δnb

�
;

σ− ¼ −
gdðωq − ωmÞ þ igdγq

γ2q þ ðωq − ωmÞ2 þ 2g2dnb
b;

aþ ¼ εlð2iω− þ 2γ þ iξx0bÞ
2

ffiffiffi
2

p
α − i4

ffiffiffi
2

p
γΔ

;

a− ¼ εlð2iωþ þ 2γ þ iξx0b†Þ
2

ffiffiffi
2

p
α − i4

ffiffiffi
2

p
γΔ

; ð10Þ

where nb denotes the expectation value of the phonon
number and

ω� ¼ −Δ� J; α ¼ J2 þ γ2 − Δ2 þ ξ2x20
4

nb:

Substituting these values into the equation of the mechani-
cal mode results in

_b ¼ ð−iωm þ iω0 þ G − γmÞbþ C; ð11Þ

where

ω0 ¼ g2dðωq − ωmÞ
γ2q þ ðωq − ωmÞ2 þ 2g2dnb

−
ξ2x20ð2J − ωmÞ

16γ2 þ 4ð2J − ωmÞ2

−
ξ2x20Δjεlj2

½2ð2J − ωmÞ2 þ 8γ2�ðα2 þ 4Δ2γ2Þ ;

C ¼ ijεlj2ξx0
2ið2J − ωmÞ þ 4γ

ðγ − iJÞαþ 2Δ2γ

α2 þ 4Δ2γ2
;

and

α ¼ J2 þ γ2 − Δ2 þ ξ2x20nb=4:

The mechanical gain is then G ¼ G0 þ Gd, with

G0 ¼
ξ2x20γ

2ð2J − ωmÞ2 þ 8γ2

�
δn −

Δð2J − ωmÞjεlj2
α2 þ 4Δ2γ2

�
;

Gd ¼ −
g2dγq

γ2q þ ðωq − ωmÞ2 þ 2g2dnb
: ð12Þ

The role of lossy defects in mechanical amplification,
described by Gd, has not been reported previously. From
the condition G ¼ γm and Pth ≈ ℏðωc þ JÞγδn [3], the
threshold power

Pth ¼ Pth;0 þ Pth;d

is found as

Pth;0 ¼
2ℏ½ð2J − ωmÞ2 þ 4γ2�ðωc þ JÞγm

ðξx0Þ2

þ ℏΔð2J − ωmÞðωc þ JÞjεlj2
λ2 þ 4Δ2γ2

;

Pth;d ¼
2ℏg2dγqðωc þ JÞ½ð2J − ωmÞ2 þ 4γ2�
ξ2x20½γ2q þ ðωm − ωqÞ2 þ 2g2dnb�

: ð13Þ

Clearly, the presence of defects strongly alters G and Pth,
even when Δ ¼ 0. In the following, we first present the full
numerical results and then, to understand the observed
counterintuitive effect, we introduce a reduced non-
Hermitian TLS-phonon model. A comparative analysis
of the full and reduced models then helps us to establish
the relation between the turning points of the former with
the EPs emerging in the latter.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. The full system: Numerical results

Figure 2(a) shows the mechanical gain, G0 and G, as a
function of the optical detuning Δ, using experimentally
accessible values [3,20], i.e., R ¼ 34.5 μm, m ¼ 50 ng,
ωc ¼ 193 THz, ωm ¼ 2π × 23.4 MHz, γ ¼ 6.43 MHz,
and γm ¼ 0.24 MHz. In the cooling regime (with
Δ < 0), G is negative and can be enhanced by defects
[52]. In the lasing regime (with Δ > 0), the positive G is
also strongly affected by defects. Note that the simplified
condition γq=γ ¼ 1 used in Fig. 2(a) is experimentally
accessible since γq is typically 0.1–5 MHz [55] and can be
further enhanced by using external fields (or amorphous
oxide layers) [46]. Clearly, the defect-induced reduction in
G is minimized at Δ=ωm ∼ 0.5, and, as Fig. 3(a) shows,
the maximum phonon lasing occurs at Δ=ωm ∼ 0.5,
J=ωm ∼ 0.5.
We stress that the TLS defects naturally and inevitably

exist in all solid-state materials and introduce detrimental
losses in optomechanical systems. Therefore, the ideal
mechanical gain (in the absence of any defect) G0 can
never be achieved in a practical device. In order to obtain
G → G0, the intuitive way is to minimize, if not eliminate,
the detrimental effects of TLS defects by preparing better
and purer materials with no or a minimal number of defects.
In contrast to this view, we find that this target can also be
achieved by increasing the losses induced by TLS defects
(e.g., by controlling the dissipation of existing defects or by
introducing more defects that are coupled to the mechanical
mode). As shown in Fig. 2(b), a turning point appears forG
as the TLS loss is increased: G first decreases with
increasing TLS loss, until a critical value of γq. When this
value is exceeded, more loss leads to an increasing
mechanical gain, tending to the limit value G0, as we
have numerically confirmed. Consequently, the phonon-
lasing threshold power Pth first increases and then
decreases again with more loss, as shown in Fig. 3(b).
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This counterintuitive effect, emerging only in the mechani-
cal-amplifying regime, has not been reported previously.
Despite the similarity to a loss-induced purely optical-
lasing revival [29,30], the underlying coupling and the
critical condition of our hybrid COM system are clearly
different.

B. Active Jaynes-Cummings model

To intuitively understand the turning-point feature, as
numerically revealed above, we resort to a reduced model
with only the active phonon mode and the lossy defects,
i.e.,

Heff ¼ ðωm − iγ0mÞb†bþ ðωq − iγqÞσþσ−
þ gdðb†σþ þ σ−bÞ;

with the effective damping

γ0m ¼ γm −G0:

We note that, in a recent experiment [37], a similar route
was adopted for achieving a non-Hermitian atomic system,
where, by starting with a Hermitian Hamiltonian describing
full atom-light interactions, an effective non-Hermitian
model was deduced for atomic excitations (see also
Ref. [56]). Choosing two basis states, jnb; gi and
jnb − 1; ei, to diagonalize Heff leads us to the eigenvalues

E� ¼
�
nb −

1

2

�
ωm þ ωq

2
−
i
2
½ð2nb − 1Þγ0m þ γq�

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nbg2d þ ½ωq − ωm − iðγq − γ0mÞ�2

q
: ð14Þ

The supermode spectrum of these eigenvalues is shown in
Figs. 4(a) and 4(b), where an EP is seen at the position close
to the turning points in Figs. 2(b) and 3(b). This EP, labeled
with the critical value γEPq , characterizes the transition
between two distinct phases of the hybrid TLS-phonon
system [30,57–60].
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FIG. 2. (a) The mechanical gains G0 (without defect) and G
(with defect) as a function of the optical detuning Δ. (b) G as a
function of the defect loss γq. Here, for simplicity, we use
γq=γ ¼ 1, gd ¼ 1 MHz in (a), Δ ¼ 0.5ωm in (b), and J ¼ 0.5ωm

and Pl ¼ 10 μW in both (a) and (b).
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FIG. 3. (a) Mechanical gain G in a defect-assisted phonon laser
versus the pump-cavity detuning Δ. (b) The threshold power Pth
of the defect-assisted phonon laser versus the TLS decay rate γq.
The parameters used here are (a) γq ¼ γ, gd ¼ 1 MHz and
(b) J ¼ 0.5ωm, Δ ¼ 0.5ωm. We choose ωq ¼ ωm and Pl ¼
10 μW in both (a) and (b).
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(i) For γq ≤ γEPq , the supermodes are almost equally
distributed between the phonons and the defects, and
the active phonon mode partially or completely
compensates for the loss induced by the defects.
Consequently, as γq is increased, the system has less
net mechanical gain.

(ii) For γq > γEPq , the supermodes become increasingly
localized such that one dominantly resides in the
phonon mode, and the other in the defects. Hence,
with an increasing γq, the supermode which is
dominant in the defects experiences more loss, while
the supermode which is dominant in the phonon
mode experiences less loss (i.e., increased mechani-
cal gain).

For the special case ωq=ωm ¼ 1 [52], the EP emerges at

γEPq ¼ γ0m þ 2
ffiffiffiffiffi
nb

p
gd;

while, when ∂G=∂γq ¼ 0, the turning point of G is
obtained at

γmin
q ¼

ffiffiffiffiffiffiffiffi
2nb

p
gd: ð15Þ

The slight shift of the turning point from the exact EP
position is due to the fact that γmin

q depends on Δ, while the
EP does not. A comparison of the turning points and the
EPs for different values of the optical detuning is given in
Fig. 5. We note that the slight shift of the turning point from
the exact EP position was also observed in a purely optical
system (see Ref. [30]). We also note that the EP of this
TLS-phonon system is reminiscent of that observed
recently in a Jaynes-Cummings system with a single atom
trapped in a high-Q cavity (by using, however, a different
method of tuning the atom-cavity coupling) [61].
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Finally, Fig. 6 shows the phonon number

Nb ¼ exp ½2ðG − γmÞ=γm�

as a function of the defect loss and the pump power.
Features similar to those observed for the mechanical gain
also appear for Nb, i.e., more loss leads to the suppression
of Nb for γq ≤ γmin

q , but Nb is enhanced with more loss for
γq > γmin

q . The turning point of Nb corresponds exactly to
that of the mechanical gain, as shown in Fig. 2(b), or the
threshold power in Fig. 3(b). Figure 6(b) shows that Nb is
strongly dependent on Δ, and the optimized condition
Δ=ωm ¼ 0.5, as in the case without defects, still holds in
the presence of TLS defects.

IV. CONCLUSION

In this work, we study the counterintuitive role of defects
in the phonon-lasing process. We find that the exact
evolutions of the mechanical gain and the threshold power
exhibit a turning point as the loss is increased. This effect is
closely related to the emergence of an EP in an effective
non-Hermitian TLS-phonon system. When exceeding the
EP, more TLS loss leads to an enhanced mechanical gain,
along with a lowered threshold for the phonon laser. This
fact indicates that the detrimental effects of intrinsic lossy
defects (naturally existing in solid-state materials) in
phonon lasing can be minimized. This effect sheds a
different light not only on EP physics and optomechanics
but also on the practical control of random-defect phonon
devices.
We note that the COM-based phonon laser has already

been experimentally realized [3,7], and the effect of
inevitably existing defects in the COM device was also
studied in the phonon-cooling regime [52]. Our work
extends the COM-TLS structures to the mechanical-ampli-
fying regime and reveals the emergence of a loss-induced
EP. We establish the relation between EP, TLS loss, and
mechanical amplification, which has not been studied
before. We also note that, besides material strain
[50,52,62], the TLS energy splitting and damping rate
can be controlled by external electric fields [51]. This fact
opens the way for electrically tuned phonon lasing. Finally,
we remark that the optical effect of defects can be
incorporated into the optical decay rate, and the mechanical
strain induces only the phonon-TLS coupling (not any
additional optical effects; see also Ref. [52]). In our future
works, we will consider placing a nanotip near the optical
resonator [30] to study the interplay of the loss-induced
optical EP [30] and the TLS-phonon EP, or placing an atom
in the system [63] to study the interplay of the atom-photon
coupling and the TLS-phonon coupling. It will also be
interesting to study COM squeezing [64,65] or sensing
[17,66] in the presence of TLS-phonon EPs.
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