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Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering
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Einstein-Podolsky-Rosen (EPR) steering is the explicit demonstration of the fact that the measurements of
one party can influence the quantum state held by another distant party and do so even if the measurements
themselves are untrusted. This has been shown to allow one-sided device-independent quantum information
tasks between two remote parties. However, in general, advanced multiparty protocols for generic quantum
technologies, such as quantum secret sharing and blind quantum computing for quantum networks, demand
multipartite quantum correlations of graph states shared between more than two parties. Here, we show that
when one part of a quantum multidimensional system composed of a two-colorable graph state (e.g., cluster and
Greenberger-Horne-Zeilinger states) is attacked by an eavesdropper using a universal cloning machine, only one
of the copy subsystems can exhibit multipartite EPR steering but not both. Such a no-sharing restriction secures
both state sources and channels against cloning-based attacks for generic quantum networking tasks, such as
distributed quantum information processing, in the presence of uncharacterized measurement apparatuses.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering [1] is a unique
part of EPR nonlocality [2]. It determines which states can be
remotely prepared at one location by performing a measure-
ment at another. Since its operational definition introduced
by [3], this “spooky action at a distance” appears to be a subtle
form of quantum correlation intermediate between entangle-
ment and Bell nonlocality. Recently, this operational formu-
lation has been utilized to exploit EPR steering to perform
quantum key distribution [4], even if one party’s measure-
ment devices are untrusted. Quantum information, however,
involves many other types of applications. Indeed, in general,
many quantum information tasks inevitably require transmit-
ting, sharing, or processing quantum information between
more than two spatially separated quantum nodes, represent-
ing separated quantum systems, via quantum channels [5–8],
which together form distributed quantum networks.

The multipartite quantum correlations present in graph
states [9,10] are thought to act as an important resource: a
type of fuel that powers a wide range of quantum strate-
gies and protocols for networking tasks, including distributed
quantum information processing, such as quantum secret
sharing (QSS) [11–14], universal measurement-based quan-
tum computation (MBQC) [15–19], quantum error correc-
tion codes (QECC) [20–22], and blind quantum computing
(BQC) [23,24]. Quantum metrology takes advantage of this
fuel as well, to offer higher precision than classical meth-
ods [25], such as a quantum network of clocks [26]. Graph
states are even used to establish the basic building blocks
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for general modular architectures of quantum networks [27].
An N -qudit (quantum d-dimensional systems) graph state can
be represented by a graph G(V,E) [9,10,16,28]. In general,
the graph G comprises the vertex set V with a cardinality
|V | = N , representing the qudits, and the edge set E, each
of which joins two vertices, representing interacting pairs of
qudits, see Fig. 1. If the vertices of the graph G can be divided
into q sets and the vertices of each set are given a color such
that adjacent vertices have different colors, then the graph is
called a q-colorable graph [9,10]. See Appendix A 1 for a
detailed illustration of graph states for q = 2.

Compared with the many broad formulations and potential
applications of quantum technologies, there is, so far, only
a very preliminary conceptual understanding of multipar-
tite EPR steering [29]. While detecting the steerability of
multipartite systems [30–32] and genuine multipartite EPR
steering [29,33] is possible, the fundamental issue of the
role of such high-order EPR steering in securing quantum
information processing involving multiple participants re-
mains unclear. Very recently, for relatively small numbers of
participants, genuine tripartite steering for pure three-mode
Gaussian states [34] was shown to empower a partially device-
independent QSS protocol [35]. Moreover, many entangled
systems in graph states have been created and manipulated
coherently in various experimental implementations [36–40].
The technological challenges facing the eventual realization
of quantum technology suggests that they will inevitably rely
on uncharacterized facilities and involve partially untrusted
participants. While verification protocols of multipartite en-
tanglement in the presence of untrusted parties, based on
entanglement witness, have been proposed, these protocols
are task-oriented and currently limited to Greenberger-Horne-
Zeilinger (GHZ) states [41,42]. On the other hand, according
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to the operational definition of EPR steering [3], verifying
steerability not only assures that the particles shared with
the trusted parties are truly entangled but also excludes the
presence of untrusted participants in the tasks. Therefore,
such a physical model of steering can be utilized in the
context of the trusted-untrusted-participant scenario of various
distributed quantum information tasks. However, does the
higher-order EPR steerability of graph states preserve the
security of quantum information processing in such imperfect
circumstances?

Here, in order to tackle the issue of security of quan-
tum networks, we reveal the no-sharing of multipartite EPR
steering for any two-colorable graph states [9,10,43], which
includes cluster states and GHZ states (i.e., star-graph states)
as prominent illustrations of this class of graph states for quan-
tum technologies [10–27,44–46]. Our scenario for identifying
such no-sharing characteristics requires only the minimum
of two local measurement settings for each quantum node
and can be applied to general quantum information protocols
based on normal local operations and classical communica-
tion, for instance, QSS, MBQC, and BQC, mentioned earlier.

We start with a definition of graph states in Schmidt form.
Details of ideal graph states and the Schmidt decomposi-
tion are provided in Appendix A. In Sec. II we then define
multipartite steering and introduce a measurable criterion
for the presence of steering in such states based on mutual
information. In Appendix B we provide a concrete example,
a complete derivation of the criterion in the Schmidt bases,
and its tolerance to noise. In Sec. III we use this criterion
to show that multipartite steering cannot be shared by a
cloning machine, and thus its observation can be used to
verify the security of a network, which is explicitly derived
in Appendix C. Concrete examples based on QSS, MBQC,
and BQC are illustrated in Sec. IV. Moreover, the steering is
shown to set a lower bound on the key rate in the problem
of QSS with a complete derivation provided in Appendix D.
In Sec. V we finish with the implications of our results for
general quantum networking tasks that demand two-colorable
graph states [10–27]. Insights and the outlook of our work
have been summarized in Sec. VI.

We assume that, after being created from a graph-state
source (Fig. 1), N qudits (with dimension d) of the two-
colorable graph state |G2〉 are individually sent to N parties of
quantum nodes. In the trusted-untrusted-participant scenario,
the N parties are divided into two groups, say As and Bs .
With respect to this given bipartition, As and Bs can perceive
that the state |G2〉 connects them together through correlations
between qudits, as described by the Schmidt form [43]

|G2〉 = 1√
d

d−1∑
v=0

|v〉Asm ⊗ |v〉Bsm, (1)

where A(S)
sm = {|vAm〉Asm

|vAm ∈ v} and B(S)
sm =

{|vBm〉Bsm
|vBm ∈ v} are the orthonormal bases for As’s

and Bs’s qudits with m = 1, 2 for two different Schmidt
bases, respectively, and v = {0, 1, . . . , d − 1}. Since there
are d nonvanishing terms in the Schmidt form, the Schmidt
rank [47] of the graph state is d. See Appendix A 2 for the
derivation of the Schmidt decomposition (1).

Quantum channel

Quantum node

Graph-state 
source

vertex

edge

FIG. 1. Graph states for quantum networks. Graph states are
created from a graph-state source, such as the star-graph states shown
here, with the goal of using them for quantum information tasks.
Each qudit is sent from the source to the corresponding quantum
node through a quantum channel to implement said task, such as
QSS [11–14] or MBQC [15–19], whereas for BQC [23,24], a specific
initial state is sent from quantum nodes to the source for creating
blind graph states. This construction is the essence of the modular
and plug-and-play quantum network architecture [27].

II. EPR STEERING BETWEEN MULTI-QUANTUM NODES

In order to concretely represent the multipartite EPR
steering of the state |G2〉 (1), we consider a general
model to describe states in the presence of uncharacterized
measurement apparatuses. In our scenario, two possible
measurements can be performed on each particle (mk = 1, 2
for the kth particle), and each local measurement has
d possible outcomes, v

(mk )
k ∈ v. That is, each party can

implement quantum measurements of observables with
the nondegenerate eigenvectors {|0〉k,1 = |0〉k, |1〉k,1 =
|1〉k, . . . , |d − 1〉k,1 = |d − 1〉k} for mk = 1 and {|0〉k,2 =
F̂k|0〉k, |1〉k,2 = F̂k|1〉k, . . . , |d − 1〉k,2 = F̂k|d − 1〉k} for
mk = 2, where F̂k is the quantum Fourier transformation
(see detailed definition in Appendix A 1). We assume that
the measurement devices used by the parties in As are
uncharacterized, i.e., untrustworthy. In the worst case, As’s
measurement outcomes may be randomly generated from
the measurement apparatuses themselves. In general, an
unqualified source of the graph state, or noisy channels,
may also lead to the same effect. Classical simulations,
under the assumption of realism, can then describe the
measurement results of As , which empowers As’s ability to
mimic the target state according to classical realism. Such
an ability makes EPR steerability a strictly stronger quantum
correlation than entanglement, which corresponds to the
trusted-trusted-participant scenario in terms of operational
definitions. In this case, with respect to a given bipartite
splitting of the N parties, say α, the final state of the N

particles can be specified by classical realistic theories, which
predict that the particles are in a state belonging to a fixed set

{
v

(1)
k , v

(2)
k , λα

∣∣∀k ∈ as

}
, (2)

where the random variable λα corresponds to an unknown
quantum state ρλα

shared by the parties in Bs , and as denotes
the indexing set for the parties in As .
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The final states of the N -particle system may depend
on unknown sources of randomness from the measurement
apparatuses, graph-state source or channels, such that the
above deterministic scenario becomes a probabilistic one. For
a given bipartition α, they can then be characterized by the
state probabilities, Pα (v(1)

k , v
(2)
k , λα|∀k ∈ as ), to be

ρBs
=

∑

v
(1)
k ,v

(2)
k

∑
λα

Pα

(
v

(1)
k , v

(2)
k , λα

∣∣∀k ∈ as

)
ρλα

. (3)

If a state can offer stronger correlations between As and Bs

than any strategies involving ρBs
for all possible λα , which

can be explained by classical realistic theories in the presence
of uncharacterized measurement apparatuses, we say that it
possesses multipartite EPR steerability. Typically, intricate
optimization processes are needed to characterize multipartite
EPR steerability in (3), and thus a practical way to efficiently
detect EPR steering for large-scale quantum systems is still an
open problem. Here, in order to circumvent this difficulty, we
utilize the Schmidt decomposition [43] introduced above and
the entropic uncertain relation [48,49] to propose an efficient
criterion to verify multipartite EPR steerability.

For all two-colorable graph states, |G2〉, there are steering
correlations between As and Bs which cannot be mimicked
by the states ρBs

, Eq. (3). We first use the definition of
information shared between As and Bs to certify that the
nonclassical mutual dependence between the results of As’s
and Bs’s measurements on |G2〉 is larger than the dependence
of Bs’s measurement outcomes on the state ρBs

. Hence the
ability for As to steer Bs’s state is confirmed if the mutual
dependence between the measurement results of As and Bs is
stronger than the dependence of Bs’s measurement outcomes
on the state ρBs

. This steering condition can be concretely
represented in terms of the mutual information as follows:

IAsBs
≡

2∑
m=1

IAsmBsm
>

2∑
m=1

IλαBsm
, (4)

where

IAsmBsm
= Hm(Bs ) − Hm(Bs |As )

and

IλαBsm
= Hm(Bs ) − Hm(Bs |λα ).

Such a steering criterion generalizes the existing steering
condition for two qudits [50,51] to multipartite systems. We
assume that each particle is locally measured by its holder,
and the parties, who implement quantum measurements, can
perform positive operator valued measurements (POVMs)
with sets of measurement operators composed of locally
measurable operators, Asm and Bsm, that are extracted from
and commutative with the elements of the Schmidt bases
A(S)

sm and B(S)
sm [43]. See Appendix B 1 for a detailed example.

The measurement outcomes of As and Bs , {as,1, bs,1} and
{as,2, bs,2}, are then obtained from the measurements, which
corresponds to (As1, Bs1) and (As2, Bs2), respectively. They
are used to determine the entropy of Bs’s outcomes:

Hm(Bs ) = −
∑
bs,m

P (bs,m) log2 P (bs,m),

and the entropy conditioned on As’s results:

Hm(Bs |As ) =
∑
as,m

P (as,m)Hm(Bs |as,m).

For the two-colorable graph states, |G2〉, here we derive the
overall correlation between As and Bs in terms of mutual in-
formation using corresponding quantum measurements, Asm

and Bsm. The entropy of Bs’s outcomes is

H1(Bs ) = H2(Bs ) = log2 d,

and the entropy conditioned on As’s results is

H1(Bs |As ) = H2(Bs |As ) = 0.

Therefore, the mutual information of As’s and Bs’s measure-
ments becomes

IAs1Bs1 = IAs2Bs2 = log2 d.

We can thus obtain

IAsBs
= 2 log2 d. (5)

This result can be easily seen from the example of the three-
qubit star-graph state given in Appendix B 1. These two-
colorable graph states held by trusted parties with perfect
conditions are useful resources for a variety of quantum
information tasks, such as QSS [11–14], MBQC [15–19], and
BQC [23,24].

In addition, since the unknown quantum state ρλα
satisfies

the entropic uncertainty relation under the two POVMs, Bs1

and Bs2, which are complementary to each other [48,49],

H1(Bs |λα ) + H2(Bs |λα ) � log2 d, (6)

the steering criterion (4) then puts a bound on IAsBs
as

IAsBs
> log2 d. (7)

It is clear that from the above derivation the trusted and un-
trusted roles of As and Bs can be exchanged. Hence, given the
knowledge of which group is trusted, the criterion (7) negates
the possibility that either As’s or Bs’s measurement results
can be classically simulated. As shown in Appendix B 2, the
steering condition can also be described in the Schmidt bases
(A(S)

sm , B(S)
sm ). Moreover, the criterion (7) is robust against white

noise, independent of the number of participants, N . See the
detailed discussions in Appendix B 3.

III. NO-SHARING OF MULTIPARTITE EPR STEERING

A universal cloning machine can produce a clone of an
unknown state with high fidelity [52]. This result of quantum
mechanics has significant implications in understanding quan-
tum systems and profound applications in quantum informa-
tion. Here we use it as an eavesdropping attack as used on the
protocols of quantum cryptography [53].

Suppose As’s and Bs’s qudits are in a state |G2〉 and,
before receipt, Bs’s qudits are sent to a universal cloning
machine [52,53]. A third party, Cs , with an ancilla C ′

s , receives
some of the output qudits of the cloning machine (see Fig. 2).
We examine the mutual information between the results of
measurements of Bs and Cs with those of As , where As , Bs ,
and Cs implement the complementary measurements A(S)

sm ,
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FIG. 2. Sharing multipartite EPR steering with a quantum cloner.
The party Cs with an ancilla C ′

s (not shown) wants to share the
multipartite EPR steerability of |G2〉, between the groups As and Bs ,
by using a quantum cloning machine. See Appendix C for detailed
discussions.

B(S)
sm , and C(S)

sm , respectively, on their qudits in the Schmidt
bases (see Appendixes B 1 and B 2). Hence we derive the
following relationship between the mutual information of Bs

and Cs with As ,

2∑
m=1

IAsmCsm
+

2∑
m=1

IAsmBsm
� 2 log2 d, (8)

for any multipartite graph states |G2〉, including the simplest
two-qudit graph state [51]. See Appendix C for details of the
derivation.

The criterion (8) reveals that when the correlation between
the qudits shared by As and one of the two groups, say Bs , is
identified as steering by Eq. (7), the steering effect provides
stronger correlations than the mutual dependence between
As and Cs that cannot be replicated by a quantum cloning
machine. To explain intuitively, criterion (8) concretely de-
scribes the total correlation that As can share with Bs and
Cs individually under cloning attacks. The importance of
criterion (8) is further supported by criterion (7) to confirm the
steerability. In other words, multipartite EPR steering powers
this type of nonclassical mutual information between As and
Bs that cannot be shared with the third party Cs by a universal
quantum cloner. Hence the criteria (7) and (8) can be used to
rule out both untrusted participants and cloning-based attacks
for quantum networks and thus can be exploited to secure a
variety of quantum networking tasks (see Fig. 3).

IV. SECURING DISTRIBUTED QUANTUM
INFORMATION PROCESSING

The no-sharing of multipartite steering has direct appli-
cations to quantum information protocols involving multiple
participants. For example, for quantum computation, follow-
ing the MBQC protocol [15–19], we assume that As and
Bs share a state |G2〉 and that the inputs for a computation
task are prepared by measurements on the qudits held by
As . The outputs of the computation can then be obtained
by performing local operations on Bs’s qudits according to
As’s measurement results. The criterion (7) can quantitatively
describe how the statistical dependence between As’s inputs
and Bs’s outputs in terms of the mutual information IAsBs

go beyond the “cheating scenario” using the states ρBs
. In

FIG. 3. Quantum networks under both a quantum cloner attack
and with untrusted measurements for quantum nodes. In addition
to the cloning attack, the quantum-node holders may lose control
over their measurement devices such that the system state may be
in ρBs

(3) in the worst case. For concreteness, it may happen in
QSS where the untrusted parties in the group Bs attempt to use their
own measurements and the cloner to obtain knowledge of As’s key
without collaboration with the rest of the trusted parties in Bs . The
no-sharing of multipartite EPR steering can be used to secure QSS
by excluding such a possibility with criteria (7) and (8).

particular, the criteria (7) and (8) together imply that such de-
pendence between inputs and outputs cannot be copied by the
eavesdropper to deduce the computation result, which secures
the quantum computation task. This concept and method can
be extended and applied to BQC as well to enable a client,
who delegates a computation to a quantum server [23,24], to
evaluate the uncharacterized facilities of the server and the
security of the underlying quantum networks.

In addition to quantum computation, the no-sharing re-
striction plays an important role in securing QSS [11–14]
and related applications, such as third-man quantum cryptog-
raphy [12,54] in the presence of untrusted participants. For
example, As is a dealer who sends a key to Bs . All the parties
in Bs are required by As to collaborate to decode the key. If
we assume that the dealer is trusted and Cs is the eavesdropper
who uses a quantum cloner to attack the quantum network
between As and Bs , the lower bound of the secret key rate
for As and Bs can be determined by the Devetak-Winter
formula [55]:

R � IAsmBsm
− χAsmCsm

, (9)

where the Holevo quantity is defined by

χAsmCsm
≡ S(ρCsC ′

s
) −

d−1∑
vAm=0

P (vAm)S(ρCsC ′
s |vAm

).

Here S(ρCsC ′
s
) is the von Neumann entropy of the reduced

state ρCsC ′
s
, and ρCsC ′

s |vAm
is the state conditioned on As’s

result vAm. Note that the role of Cs can also be played by
the untrusted parties in Bs , who lie about their measurements
and use the quantum cloner to obtain maximal knowledge of
the dealer’s key without collaboration with the trusted parties,
as described in the unconditional security proof for partially
device-independent QSS protocols [35] (see Fig. 3).

Using a similar method as employed in Eq. (8) (see
Appendix D for a complete derivation), we can arrive at the
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following lower bound for the secret key rate:

R � IAsBs
− log2 d. (10)

The multipartite steerability for systems with arbitrary party
number identified by the criteria (7) and (8) guarantees that
Bs is trustworthy, and As and Bs can establish a secret key
with a nonzero rate by which the importance of multipartite
steering to QSS for tripartite systems [34] and even arbitrarily
large systems can be appreciated.

Note that the magnitude of the mutual information IAsBs
,

beyond the steering threshold log2 d, determines the lower
bound of the key rate:

RL = IAsBs
− log2 d.

As shown by Eq. (8), the attack of the quantum cloner can
decrease the mutual information IAsBs

and then reduce the
lower bound of the key rate RL. For the worst case, the
error due to the quantum cloner even causes a zero key rate,
RL = 0. Such an error can be quantitively described by a
value called the critical disturbance of the quantum
cloner [53], Dc, and can be numerically determined as shown
in Appendix D. For example, we have Dc ≈ 11% for d = 2.
This exactly coincides with the existing result based on the
best eavesdropping with a coherent attack for bipartite quan-
tum key distribution [56]. Therefore, the attack with a cloning
machine is optimal for this case. While it is not clear whether
a quantum cloner is optimal for attacks on quantum networks
with more than two participants, N > 2, the optimal result for
N = 2 illustrates that there exists a deep relationship between
the security of quantum communication and the no-cloning
theorem. The criterion on the key rate (10) based on the attack
with a quantum cloner and the no-sharing of multipartite
EPR steering could play a crucial role in ultimately securing
generic quantum networking tasks.

In addition to the errors from the quantum cloner, any
destructive influence on the steering reduces the lower bound
of the key rate. See Fig. 4 for concrete illustrations with
noisy graph states. When transmitting graph states without
suffering from any loss or interference, the key rate achieves
the maximum: R = log2 d, independent of the qudit number.

It is worth noting that testing the criterion (7) requires
only two local measurement settings for each quantum node,
which is naturally suitable for generic quantum information
protocols using graph states. For instance, the measurements
As and Bs can be chosen to coincide with those required in a
MBQC task [15–19].

V. GENERAL QUANTUM NETWORKING TASKS

In addition to distributed quantum information, all the
graph-state-based networking tasks require the distribution of
graph states. The criteria (7) and (8) enable a task verifier or
trusted participants to actively examine whether the received
states are capable of preventing eavesdroppers from learning
any task information with a quantum cloner, as demonstrated
by the examples of MBQC, BQC, and QSS. This secures both
state sources and channels against cloning-based attacks.
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FIG. 4. The lower bound of the secret key rate RL derived from
noisy graph states. As demonstrated, the reduction in RL by white
noise (with intensity p) on |G2〉 is independent of N . RL can be
increased by increasing d . This trend is comparable to the increase
in the certified multipartite steering with d , i.e., the noise tolerance
of the criterion (7) (Appendix B 3). Here the measurements used for
creating secret keys, Asm and Bsm, are extracted from Schmidt bases
A(S )

sm and B(S )
sm [43] and satisfy the uncertainty relation under the two

POVMs [48,49] as introduced above, and each POVM is composed
of two operator elements, respectively. See Appendix B 1 for details.
Note that for any cases where IAsBs

− log2 d < 0, the corresponding
key rates are set as zero.

VI. CONCLUSION AND OUTLOOK

We have developed a formalism to explore the role of
multipartite EPR steerability of two-colorable graph states in
securing distributed quantum information tasks and showed
that such high-order EPR steering cannot be shared by an
eavesdropper using a universal quantum cloning machine,
even in circumstances where a set of untrusted participants
are involved. With a series of examples we illustrated how
multipartite steering powers distributed quantum information
processing in a secure manner. We expect that our criteria
secure the initialization of network nodes in the joint graph
states for generic quantum networking tasks.

This conclusion motivates several questions for future
work: Apart from the two-colorable graph states shown here,
does this quantum characteristic exist in any graph state? If
this is the case, how do we confirm its existence in an exper-
imentally efficient way? Moreover, in addition to multipartite
steering, are the entropy-based criteria (7) and (8) useful
for verifying genuine multipartite EPR steerability of graph
states? Finally, because the assumption of a trusted group is
made for the steering criterion (7), how a verifier, such as the
dealer in QSS, can perform a reliable and objective evaluation
of which node can be identified as trusted or untrusted be-
comes critical for large-scale networking tasks. The error and
imperfections in the creation and manipulation of graph states
grow with the system size, which increases the participants’
uncertainty about the created states and the total quantum
network. This question poses an interesting and significant
challenge for partially device-independent applications.
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APPENDIX A: TWO-COLORABLE GRAPH STATES

1. State vectors

A two-colorable graph has vertices that can be divided
into two sets, where each set corresponds to a color such that
adjacent vertices relate two different colors, such as star and
chain graphs, see Figs. 1 and 5. For a given two-colorable
graph G(V,E) [9,10] used for networking tasks, an edge,
(i, j ) ∈ E, corresponds to a unitary two-qudit transformation
among the two qudits (vertices) i and j ,

U(i,j ) =
d−1∑
v=0

|v〉ii〈v| ⊗ (Zj )v, (A1)

where {|v〉i |v ∈ v} with v = {0, 1, . . . , d − 1} is an orthonor-
mal basis of the ith qudit and

Zj =
d−1∑
v=0

ωv|v〉jj 〈v|, (A2)

with ω = exp(i2π/d ). The state vector of the target two-
colorable colorable graph state can be obtained by applying
U(i,j ) to an initial state |F0〉 = ⊗N

k=1 F̂k|0〉k [28] according to
the edge set E:

|G2〉 =
∏

(i,j )∈E

U(i,j )|F0〉, (A3)

where F̂k is the quantum Fourier transformation defined by
F̂k|v′〉k = ∑d−1

v=0 ωv′v|v〉k/
√

d.
Regarding the topology of two-colorable graphs, it has

been shown that genuine multipartite entanglement [43] and
genuine multipartite Einstein-Podolsky-Rosen (EPR) steer-
ing [33] for states close to all two-colorable graph states
|G2〉 can be efficiently identified with two local measurement
settings. This feature has also been used in deriving the
entropic criterion for multipartite EPR steering (7) and the
relationship (8).

2. The Schmidt form of |G2〉
For a bipartite splitting of N quantum nodes of a N -qudit

two-colorable graph state, one always can find a vertex in the
As subsystem, let us say the ith qudit (i ∈ VAs

), with vertices
in the Bs subsystem forming edges (i, j ) ∈ E, where j ∈ VBs

.
VAs

and VBs
denote the set of vertices of the subsystems

As and Bs , respectively, where |VAs
| + |VBs

| = |V | = N , see
Fig. 5(e). When the ith qudit is represented in the basis
{|v〉if = F̂i |v〉i |v ∈ v}, the state vector of the graph state
reads [43]

|G2〉 = d− |N (i)|
2

∑
v1,...,vN ;sik

.=0

⎡
⎣|vi〉if

⊗
k∈VAs

(|vk〉a|vk〉k )

⎤
⎦

⊗
⎡
⎣ ⊗

k∈VBs

(|vk〉b|vk〉k )

⎤
⎦, (A4)

where sik = −vi + ∑
k∈N (i) vk . The state vectors |vk〉a and

|vk〉b are composed of qudits in VAs
and VBs

, respectively, and
are accompanied by |vk〉k for k ∈ N (i), where N (i) is the set
of vertices that forms edges with the ith vertex. For instance,
we have N (i) = 4 in Fig. 5(e).

Since the connection between vi , vj , and vk for k ∈
N (i) is constrained by sik = −vi + ∑

k∈VA
vk + ∑

k∈VB
vk

.=
0, where

.= denotes equality modulo d, the state vector (A4)
can be explicitly represented as

|G2〉 = 1√
d

d−1∑
v=0

|v〉Asm
⊗ |v〉Bsm

, (A5)

where

|v〉Asm = d− |VAs
|−1

2

∑
v1,...,vN ;sikv

.=0

|vi〉if
⊗
k∈VAs

(|vk〉a|vk〉k ),

|v〉Bsm = d− |VBs
|−1

2

∑
v1,...,vN ;sk

.=v

⊗
k∈VBs

(|vk〉b|vk〉k ), (A6)

sikv = −vi + ∑
k∈VAs

vk + v, and sk = ∑
k∈VBs

vk . The state
vectors |v〉Asm

and |v〉Bsm
constitute two orthonormal bases

A(S)
sm = {|v〉Asm

} and B(S)
sm = {|v〉Bsm

}. Hence the above repre-
sentation is the Schmidt form of |G2〉, as shown in Eq. (1)
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in the main text. Note that the subscript m = 1, 2 reminds us
that the state |G2〉 can be represented in two different Schmidt
bases (A(S)

sm , B(S)
sm ), which are complementary to each other.

APPENDIX B: STEERING CRITERION

1. Measurements in the steering criterion

The design of the measurements required to implement the
steering criterion (7) is based on the characteristics of the two-
colorable graph states represented in the Schmidt bases (A5).
For all two-colorable graph states, only the minimum two
local measurement settings (As1, Bs1) and (As2, Bs2) are suf-
ficient to verify multipartite EPR steering.

The measurement outcomes {as,1, bs,1} and {as,2, bs,2} ob-
tained from the measurements (As1, Bs1) and (As2, Bs2), re-
spectively, are used to determine the mutual information IAsBs

for the steering criterion. Here Asm and Bsm are general
as POVMs. The POVM operator elements for each POVM
depend on the type of bipartite splitting and the characteristics
of the target graph state, and each POVM operator element
can be locally measured on individual quantum nodes. These
operators are extracted from the basis vectors (A6) of the
Schmidt bases A(S)

sm and B(S)
sm such that they are commutative

with the measurement operators in the Schmidt bases. More-
over, when measuring with the two POVMs, Bs1 and Bs2,
which are complementary bases, the entropic uncertainty rela-
tion (6) always holds for the quantum states ρλα

[see Eq. (3)].
To elaborate, here we give a concrete example of a three-

qubit star-graph state, where qubit 1 in As is connected with
qubit 2 and qubit 3 in Bs . According to (A5) and (A6), its state
vector can be expressed as

|Gstar〉 = 1√
2

1∑
v=0

|v〉Asm ⊗ |v〉Bsm,

where

A(S)
s1 = {|0〉As1 = |0〉1, |1〉As1 = |1〉1},

B(S)
s1 = {|0〉Bs1 = |++〉23, |1〉Bs1 = |−−〉23},

A(S)
s2 = {|0〉As2 = |+〉1, |1〉As2 = |−〉1},

B(S)
s2 = {|0〉Bs2 = 1√

2
(|00〉23 + |11〉23),

|1〉Bs2 = 1√
2

(|01〉23 + |10〉23)},

and |±〉 = (|0〉 ± |1〉)/
√

2. By examining the Schmidt bases,
A(S)

s1 , B(S)
s1 , A(S)

s2 , and B(S)
s2 , we then obtain the following

POVMs in the locally measurable bases:

As1 = {|0〉11〈0|, |1〉11〈1|},
Bs1 = {|++〉2323〈++| + |+−〉2323〈+ − |,

|−+〉2323〈−+| + |−−〉2323〈−−|},
As2 = {|+〉11〈+|, |−〉11〈−|},
Bs2 = {|00〉2323〈00| + |11〉2323〈11|,

|01〉2323〈01| + |10〉2323〈10|}.

It is clear that these POVM operator elements are commuta-
tive with the Schmidt bases such that Eq. (5) holds, and the
trusted and untrusted roles of As and Bs can be exchanged.
Following the same procedure, our method can be easily
extended to the graph states with arbitrary N and d.

2. Criterion in the Schmidt bases

In addition to the steering criterion in the form of (7) under
the measurement settings (Asm, Bsm), the steering condition
can also be concretely represented in terms of the mutual
information under the Schmidt bases (A(S)

sm , B(S)
sm ) as follows:

I
(S)
AsBs

≡
2∑

m=1

I
(S)
AsmBsm

>

2∑
m=1

I
(S)
λαBsm

, (B1)

where I
(S)
AsmBsm

and I
(S)
λαBsm

are the mutual information be-
tween their results derived from the measurements A(S)

sm and
B(S)

sm in the Schmidt bases. The measurement outcomes of
A(S)

s and B (S)
s , {a(S)

s,1 , b
(S)
s,1 } and {a(S)

s,2 , b
(S)
s,2 }, are then obtained

from the measurements, which corresponds to (A(S)
s1 , B(S)

s1 )
and (A(S)

s2 , B(S)
s2 ), respectively. The entropy of Bs’s outcomes

and the entropy conditioned on As’s results are therefore
derived from these measurement results. In addition, since
the unknown quantum state ρλα

satisfies the entropic uncer-
tainty relation under the two complementary bases, B(S)

s1 and
B(S)

s2 [48,49], the steering criterion (B1) in the Schmidt bases
becomes

I
(S)
AsBs

> log2 d. (B2)

For any two-colorable graph states, as illustrated in Eq. (5),
quantum measurements on the qudits can show that

I
(S)
AsBs

= 2 log2 d.

Therefore their dependence is stronger than the correlation
between Bs and ρBs

.

3. Noise tolerance

To examine the steering criterion from the viewpoint of
robustness against noise, we consider the minimum amount of
uncolored noise added to |G2〉 such that the noisy state cannot
be identified by the steering criterion (7), i.e.,

IAsBs
= log2 d.

Suppose that in the presence of white noise the pure state |G2〉
becomes

ρG2 (p) = p

dN
Î + (1 − p)|G2〉〈G2|,

where p is the intensity of uncolored noise. The noise toler-
ance of criterion (7) is quantified by the noise threshold pnoise

such that if p < pnoise then

IAsBs
(ρG2 (p)) > log2 d,

see Fig. 6. Here the Asm and Bsm are extracted from Schmidt
bases (A6) and satisfy the uncertainty relation under the two
POVMs [48,49] as introduced above, and each POVM is
composed of two operator elements. It is worth noting that
this certification is independent of the node number N and
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FIG. 6. Noise tolerance of the steering criterion, IAsBs
> log2 d ,

for arbitrarily two-colorable graph states.

becomes more robust against noise as the dimension of the
quantum nodes (qudits) increases.

APPENDIX C: NO-SHARING OF MULTIPARTITE
EINSTEIN-PODOLSKY-ROSEN STEERING

In what follows, we will prove Eq. (8) introduced in the
main text for no-sharing of multipartite EPR steering. This
criterion describes the relationship between the mutual infor-
mation of Bs and Cs with As . First, we consider |G2〉 to be an
input of a quantum cloner, see Fig. 2. After cloning [52,53],
the output state of the total system becomes

|�〉AsBsCsC ′
s
=

d−1∑
j,k=0

√
γjk|�jk〉AsBs

|�j,d−k〉CsC ′
s
, (C1)

where

|�jk〉n′n = 1√
d

d−1∑
v=0

ωvk|v〉n′1|v +d j 〉n1, (C2)

with |�00〉n′n = |G2〉 for (n′, n) = (As, Bs ), (Cs, C
′
s ), and +d

denotes addition modulo d. The qudits of As and Bs are in the
reduced state

ρAsBs
=

d−1∑
j,k=0

γjk|�jk〉AsBsAsBs
〈�jk|, (C3)

and Cs’s qudits with the ancilla C ′
s have the reduced state

ρCsC ′
s
=

d−1∑
j,k=0

γjk|�j,d−k+1〉CsC ′
sCsC ′

s
〈�j,d−k+1|. (C4)

The mutual information between As and Bs of the reduced
state ρAsBs

is

I
(S)
AsmBsm

= log2 d +
d−1∑
t=0

qt
m log2 qt

m, (C5)

where qt
1 = ∑d−1

k=0 γtk and qt
2 = ∑d−1

j=0 γj,d−t+1. The variables
qt

m denote the probabilities of observing vBm − vAm = t or
vBm − vAm = t − d for t ∈ v [56]. Their sum is then

2∑
m=1

I
(S)
AsmBsm

= 2 log2 d −
2∑

m=1

H
(
qt

m

)
. (C6)

To determine the mutual information I
(S)
AsmCsm

between the
results of measurements A(S)

sm and C(S)
sm , we first consider the

mutual dependence between vAm and the results derived from
measurements on Cs’s qudits and ancilla C ′

s by their mutual
information I

(S)
Asm(CsmC ′

sm ). It is clear that

I
(S)
AsmCsm

� I
(S)
Am(CsmC ′

sm ). (C7)

In addition, I (S)
Asm(CsmC ′

sm ) is constrained by the Holevo bound by

I
(S)
Asm(CsmC ′

sm ) � χAsmCsm
, (C8)

where the Holevo quantity is

χAsmCsm
= S

(
ρCsC ′

s

) −
d−1∑

vAm=0

P (vAm)S
(
ρ

CsC ′
s

∣∣vAm

)
.

Here, the von Neumann entropy of the reduced state ρCsC ′
s

is
defined by

S
(
ρCsC ′

s

) = −
d−1∑

j,k=0

γjk log2 γjk ≡ H (γ ). (C9)

ρCsC ′
s |vAm

is the state conditioned on As’s result vAm, the von
Neumann entropy of which is

S
(
ρ

CsC ′
s

∣∣vAm

) = −
d−1∑
t=0

qt
m log2 qt

m ≡ H
(
qt

m

)
. (C10)

In order to derive the upper bound of I
(S)
Asm(CsmC ′

sm ),
by examining the difference between S(ρCsC ′

s
) and∑d−1

vAm=0 P (vAm)S(ρCsC ′
s |vAm

), we substitute γj,d−k = g(j, k)qj

1

into qt
2 = ∑d−1

j=0 γj,d−t , where
∑d−1

k=0 g(j, k) = 1, and then

obtain qt
2 = ∑d−1

k=0 g(t, k)qk
1 . For each t all g(t, k) = qt

2 shows
the maximum of the difference. Then we have

H (γ ) = H
(
qt

1

) +
∑

t

qt
1H (f (t )) = H

(
qt

1

) + H
(
qt

2

)
.

(C11)

With Eqs. (C7)–(C11), the upper bound of the mutual infor-
mation I

(S)
AsmCsm

is then shown as

I
(S)
AsmCsm

� H
(
qt

1

) + H
(
qt

2

) − H
(
qt

m

)
,

which implies that

2∑
m=1

I
(S)
AsmCsm

�
2∑

m=1

H
(
qt

m

)
. (C12)

Combining Eq. (C6) with Eq. (C12), we obtain

2∑
m=1

I
(S)
AsmCsm

+
2∑

m=1

I
(S)
AsmBsm

� 2 log2 d. (C13)

For the simple bipartite case N = 2, the above relation recov-
ers the criterion used by Chiu et al. [51] to show no-cloning
of EPR steering. For general N � 3, since the measurement
operators in the Schmidt bases and those in the locally mea-
surable bases Asm, Bsm, and Csm commute with each other,
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we have the relations

2∑
m=1

I
(S)
AsmCsm

=
2∑

m=1

IAsmCsm
(C14)

and

2∑
m=1

I
(S)
AsmBsm

=
2∑

m=1

IAsmBsm
. (C15)

Thus, through Eqs. (C13)–(C15) we arrive at Eq. (8):

2∑
m=1

IAsmCsm
+

2∑
m=1

IAsmBsm
� 2 log2 d.

As the correlation between the qudits shared by As and Bs

is identified as multipartite steering by Eq. (7), the mutual
dependence between As and Cs then cannot show the steering
effect.

APPENDIX D: LOWER BOUND OF THE SECRET KEY
RATE FOR QUANTUM SECRET SHARING BLUE AND THE
CRITICAL DISTURBANCE OF THE QUANTUM CLONER

To determine the lower bond of the secret key rate for
QSS, as described by Eq. (9) [55], we consider the following
quantity:

IAsmBsm
− max χAsmCsm

.

From Eqs. (C9)–(C11), (C15), (C14), and

IAsmBsm
= log2 d − H

(
qt

m

)
, (D1)

we get max χAsmCsm
= 2 log2 d − IAsBs

− H (qt
m). Therefore

we obtain the following lower bound of the secret rate:

RL = IAsBs
− log2 d, (D2)

as shown in Eq. (10). The multipartite steerability identified
by the criterion (7) then enables As and Bs to collaboratively
generate a secret key with a nonzero rate. Combined with the
noise tolerance obtained above, we can thus find the lower
bound of the secret key rate RL derived from noisy graph
states, as illustrated in Fig. 4 in the main text.

Equation (D2) can be used to evaluate the critical distur-
bance of the quantum cloner that makes RL = 0. We first
note that the variables qt

m for t �= 0 quantitatively describe the
errors introduced by the cloner. See the explanation for qt

m

in Eq. (C5). Then suppose that the quantum cloner is phase
covariant [53], which copies equally well the states of both
bases, we have H (qt

1) = H (qt
2) = H (D), where

H (D) = −(1 − D) log2(1 − D) − D log2
D

d − 1
, (D3)

and D = 1 − q0
m is the disturbance due to the attack of a

quantum cloner. With H (D), the critical disturbance Dc for
RL = 0 can be derived by solving the equation

(1 − Dc ) log2(1 − Dc ) + D log2
Dc

d − 1
= −1

2
log2 d. (D4)

For example, the critical disturbance is Dc ≈ 11.00% for d =
2 and Dc ≈ 15.95% for d = 3.
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