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Hierarchy in temporal quantum correlations

Huan-Yu Ku,1,2 Shin-Liang Chen,1,3 Neill Lambert,2 Yueh-Nan Chen,1,2,4,* and Franco Nori2,5

1Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan
2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4Physics Division, National Center for Theoretical Sciences, 300 Hsinchu, Taiwan

5Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 2 November 2017; published 2 August 2018)

Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum correlation that lies in between entangle-
ment and Bell nonlocality. Its temporal analog, temporal steering, has recently been shown to have applications
in quantum information and open quantum systems. Here we show that there exists a hierarchy among the
three temporal quantum correlations: temporal inseparability, temporal steering, and macrorealism. Given that
the temporal inseparability can be used to define a measure of quantum causality, similarly the quantification of
temporal steering can be viewed as a weaker measure of direct cause and can be used to distinguish between
direct cause and common cause in a quantum network.
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I. INTRODUCTION

The concept of quantum steering was first articulated
by Schrödinger [1] in response to the apparently nonlocal
phenomenon of quantum correlations questioned by Einstein,
Podolsky, and Rosen (EPR) [2]. Thanks to the celebrated
inequality proposed by Bell [3], a great deal of theoretical
and experimental investigation has been focused on quantum
nonlocality in the past few decades. Empowered by practical
quantum information task requirements, spatial EPR steering
was recently able to be studied in a more quantitative way
[4–8]. Together with the concepts of Bell nonlocality and
entanglement, EPR steering forms a hierarchy, and as such acts
as an intermediate quantum correlation that lies in between the
others [4–6], i.e., EPR steering is, in general, weaker than Bell
nonlocality but stronger than quantum entanglement. Research
on EPR steering in the past few years has seen the development
of several interesting new avenues of study [9–23]. In addition
to these theoretical developments, EPR steering has also been
observed experimentally [8,24,25].

The notion of causality, cause and effect, is an intuitive
concept. In quantum mechanics, however, applying the concept
of causality is not always that straightforward. For example,
quantum mechanics allows the superposition principle to be
applied to causal relations, such that indefinite casual order
may occur with proper design [26,27]. A measurement of a
superposition of causal orders has been demonstrated very
recently [28]. Another driving force for the research on
quantum causality [29] comes from Bell’s theorem, and its
generalizations, that can be analyzed with a causal approach
[30–33]. Potential applications of quantum casual relations in
quantum information tasks have also been proposed [34–37].
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In contrast to creating an indefinite causal order, some other
experimental works related to quantum causal relations have
also attracted attention, e.g., distinguishing different causal
structures (common cause and direct cause) [38] and defining
a measure of quantum causal effects (direct cause) [39].

Our goal in this work is to relate temporal steering to the
notion of a quantum causal effect. To do so we first show that
there also exists a hierarchy among the three temporal quantum
correlations (temporal inseparability, temporal steering, and
nonmacrorealism), which are provided when the condition
of no-signaling in time (NSIT) [40–42] is obeyed. When
NSIT in temporal steering is violated, nonvanishing temporal
steering may occur under a dephasing process, which we prove
to be the same as the distinguishability between two purely
classical assemblages. Given that the temporal inseparability
can be used to define a measure of quantum causal effects,
we conclude that temporal steering can be viewed as a weaker
measure of quantum causal effect and can be used to distinguish
between direct cause and common cause in a quantum network.

II. MACROREALISM

Consider a system that evolves with time, and on which
one can measure a physical quantity Q at time t1, t2, or t3
to obtain the corresponding values Q(t1), Q(t2), and Q(t3),
respectively. In 1985, Leggett and Garg (LG) [43,44] proposed
an inequality:

K ≡ C ′
12 + C ′

23 − C ′
13 � 1, (1)

where Cij ≡ 〈Q(ti )Q(tj )〉 is the expectation value of the mea-
surement outcomes at times ti and tj [45,46]. This inequality
holds if the dynamics of the system is classical, in the realism
sense, and the measurements are noninvasive. Violation of
the inequality shows the incompatibility between quantum
mechanics and macrorealism.
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FIG. 1. Beginning with quantum state ρ0, one can construct three
different temporal quantum correlations: (a) the temporal correlations
scenario associated with nonmacrorealism, (b) the temporal steering
scenario, and (c) constructing the pseudodensity matrix of a single
system. Here the x and y denote two classical inputs at times t1 and t2
with classical outcomes a and b, respectively. The quantum channel
is denoted by �. Quantum state tomography is denoted as QST.

One can consider a more general scenario to investigate
temporal correlations. For instance, there can be two or
more quantities being measured at each moment of time. For
simplicity, we consider the scenario with two times t1 = 0 and
t2 = t , at which the quantity x ∈ {x}nx

x=1 and the quantity y ∈
{y}ny

y=1 are measured, respectively, during each round of the
experiment. Accordingly, one obtains the outcome a ∈ {a}na

a=1
and the outcome b ∈ {b}nb

b=1 (see Fig. 1). After many rounds
of the experiment, one can obtain a set of probability distribu-
tions {p(a, b|x, y)}a,b,x,y . Then, a macrorealistic (MS) theory
restricts the probability distributions to be of the following
form:

p(a, b|x, y)
MS=

∑
λ

p(a|x, λ)p(b|y, λ)p(λ) ∀a, b, x, y.

(2)

The physical interpretation of the above equation is the follow-
ing: The probability distribution p(a, b|x, y) between times
t1 and t2 does not depend on the history of the experiment.
Therefore, there exist hidden parameters λ, which can be deter-
ministic or stochastic [47], defining all physical properties and
forming the probability distributions p(a|x, λ) and p(b|y, λ).

In quantum theory, a measurement outcome is typically
not predetermined due to intrinsic uncertainty. The probability
distributions follow Born’s rule:

p(a, b|x, y)
Q= tr[Eb|yE (

√
Ea|xρ0

√
Ea|x )] ∀a, b, x, y, (3)

where ρ0 is the initially prepared quantum state, {Ea|x}a
denotes the positive-operator valued measurement (POVM),
Ea|x � 0,

∑
a Ea|x = 1of eachx, similarly {Eb|y}b is POVM of

each y, and E describes the dynamics of the system from t1 = 0
to t2 = t . In the following, the sets of probability distributions
which do not admit Eq. (2) will be called nonmacrorealistic.

Similar to the spatial case, one can also write down
the so-called temporal Bell inequalities [48] to be a set of

constraints for the macroscopical probability distributions. For
instance, setting nx = ny = na = nb = 2 and shifting a, b ∈
{1, 2} to a, b ∈ {±1}, the temporal Clauser-Horne-Shimony-
Holt (CHSH) kernel is written as

〈B〉T-CHSH ≡ Cxy + Cx ′y + Cxy ′ − Cx ′y ′ , (4)

where

Cxy ≡ p(a = b|x, y) − p(a �= b|x, y) (5)

is the expectation value of a · b. For a qubit system, 〈B〉T-CHSH

is upper bounded by 2 and 2
√

2 for the MS model and quantum
mechanics, respectively.

To give a proper quantification of the degree of nonmacro-
realistic dynamics, we follow the techniques used for standard
Bell inequalities, i.e., optimizing all possible combinations of
the measurement settings which give the maximal quantum
violation of 〈B〉T-CHSH:

〈B〉max
T-CHSH = max

x,x ′,y,y ′

{
0,

〈B〉T-CHSH − 2

2
√

2 − 2

}
. (6)

III. TEMPORAL STEERING

Now consider that one can perform quantum state to-
mography (QST) to obtain the quantum state at time t2 = t

instead of obtaining the probability distributions. After many
rounds of the experiment, one can obtain a set of quantum
states {σ̂a|x (t )} corresponding to those states found after the
measurement event a|x at time t1 = 0. It is rather conve-
nient to define the so-called temporal assemblage as a set
of subnormalized state {ρa|x (t ) ≡ p(a|x)σ̂a|x (t )}. Through
this, a temporal assemblage contains the information on both
p(a|x) = tr[ρa|x (t )] and σ̂a|x (t ) = ρa|x (t )/ tr[ρa|x (t )]. If one
believes the measurement at time t1 = 0 is noninvasive, i.e.,
knowing the outcome a in prior, without disturbing the system
and its subsequent dynamics, then the observed temporal
assemblage should satisfy the hidden-state model [17,18,49]

ρa|x (t )
noninvasive=

∑
λ

p(λ)p(a|x, λ)σλ ∀a, x. (7)

The physical interpretation of the temporal hidden-state model
is the following: During each experimental round, there exists
an ontic state λ, which predetermines the outcome a when per-
forming the measurementx at t1 = 0, as well as predetermining
the quantum state σλ at time t2 = t .

A temporal assemblage which admits a quantum mechani-
cal model can be written as

ρa|x (t )
Q= E (

√
Ea|xρ0

√
Ea|x ). (8)

Given a temporal assemblage, one can know if it admits the
hidden-state model Eq (7) by the feasibility problem of{

find σλ|ρa|x (t ) =
∑

λ

p(λ)p(a|x, λ)σλ

}
. (9)

We refer to those assemblages, which do not admit the
hidden-state model, as temporal steerable, and the degree of the
temporal steerability is quantified by the measure of temporal
steerable weight [18] and temporal steering robustness (TSR)
[20]. In the following, we will use TSR to quantify the degree
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of temporal steerability for a given temporal assemblage:

TSR = min α subject to

{
1

1 + α
ρa|x (t ) + α

1 + α
τa|x (t )

=
∑

λ

p(λ)p(a|x, λ)σλ

}
a,x

, (10)

where τa|x (t ) is a valid noisy temporal assemblage. This can
be formulated as a semidefinite programming problem (SDP)
[10,50–53] as follows:

TSR = min

(
tr

∑
λ

σλ − 1

)
, with σλ � 0 ∀λ

subject to
∑

λ

p(a|x, λ)σλ − ρa|x (t ) � 0 ∀a, x.

(11)

IV. PSEUDODENSITY MATRIX AND TEMPORAL
INSEPARABILITY

To complete the picture of a hierarchy of correlations,
we give a brief introduction to the so-called pseudodensity
matrix introduced by Fitzsimons et al. [39]. A pseudodensity
matrix is a way to define the state of one (or more) system
between two (or more) moments of time. By definition, the
pseudodensity matrix R of a qubit passing through a quantum
channel is obtained by performing the QST before and after the
evolution (see Fig. 1). Therefore, the pseudodensity matrix is
expressed as

R = 1

4

3∑
i,j=0

Cij · σi ⊗ σj , (12)

where {σi}i=0,1,2,3 = {1, X̂, Ŷ , Ẑ} is the set composed of the
identity operator and the Pauli matrices. Here Cij = tr(R ·
σi ⊗ σj ) are the expectation values of the result of these
quantum measurements. A pseudodensity matrix is Hermitian
and normalized, but not necessarily positive semidefinite. In
general, a pseudodensity matrix can also describe the state
between two systems at different times. One can see that R

becomes a standard density matrix, which is positive semidef-
inite, when the time-separation t2 − t1 = 0. Therefore, the
relation between two measurement events is called space-like
correlated when R is positive semidefinite.

Conversely, if R is not positive semidefinite, it is definitely
not constructed from a standard spatially separated system.
In this case, the relation between two measurement events is
called time-like correlated. In Ref. [39], the authors proposed a
measure, called the f function, to quantify the degree of such
a temporal relation:

f =
∑

i

|μi |, (13)

which is the summation over all the negative eigenvalues
{μi} of a given R. In the rest of the discussions, all the
pseudodensity matrices are obtained by considering a single
qubit at different times. Due to the mathematical similarity to
a separable quantum state, in the following we will refer to the

situation f �= 0 as temporally inseparable. It is worth noting
that the “separability” here does not denote the separability
with respect to two spatially separable systems, but indicates
the pseudodensity matrix can be written in the separable
form R = ∑

λ p(λ)ωA
λ ⊗ θ Ā

λ , where p(λ) is the probability
distribution, and ωA

λ and θ Ā
λ are some valid quantum states

acting on Hilbert spaces HA at t1 = 0 and HĀ at t2 = t ,
respectively [54]. Note that, in general, a temporal separable
model implies f = 0, but not vice versa.

V. HIERARCHY OF TEMPORAL QUANTUM
CORRELATIONS

Now we show a hierarchical relation between three temporal
relations: nonmacrorealism, temporal steerability, and tempo-
ral inseparability. To this end, we show one can obtain the tem-
poral assemblage {ρa|x (t )}a,x by performing a set of POVMs
{Ea|x}a,x on the pseudodensity matrix R, in which {Ea|x}a,x are
the POVMs producing {ρa|x (t )}a,x . More precisely, we show

ρa|x (t ) = trA(Ea|x ⊗ 1 · R), (14)

where

ρa|x (t ) = E (ρa|x (0)) = E (
√

Ea|xρ0

√
Ea|x ) (15)

and ρ0 = 1/2. The proof is given in Appendix A. Once Eq. (14)
holds, the following formulation of an assemblage can be
derived:

ρa|x (t ) = trA

(
Ea|x ⊗ 1 ·

∑
λ

p(λ)ωA
λ ⊗ θ Ā

λ

)

=
∑

λ

p(λ)pQ(a|x, λ)θ Ā
λ , (16)

where the set of probabilities pQ(a|x, λ) := Tr(Ea|xωA
λ ) is

constrained by the uncertainty relation [55]. In Eq. (7) we
assume that the pseudodensity matrix R is temporally sep-
arable. Since the set of probability distributions p(a|x, λ)
in a hidden-state model Eq. (7) is only constrained by the
normalization property, a hidden-state model can reproduce
an assemblage given by the above equation, but not vice
versa. Therefore, we arrive at the hierarchical relation between
temporal separability and temporal hidden-state model: a
temporal assemblage constructed from a dynamical evolution
admits a temporal hidden-state model if the corresponding
pseudodensity matrix is temporally separable. Similarly,

p(a, b|x, y) = tr[Eb|yρa|x (t )]

= tr

[
Eb|y

∑
λ

p(λ)p(a|x, λ)σλ

]

=
∑

λ

p(λ)p(a|x, λ)pQ(b|y, λ) (17)

can be reproduced by macroscopic correlations [Eq. (2)], but
not vice versa, i.e., there is a hierarchical relation between the
temporal hidden-state model and macrorealism: a temporal
correlation is macrorealistic if the corresponding temporal
assemblage admits a temporal hidden-state model. The hierar-
chy can be described in a converse way: a nonmacrorealistic
dynamics leads to a temporal steerable assemblage, and a
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FIG. 2. The blue-dotted, red-solid, and black-dashed curves rep-
resent, respectively, the dynamics of the f , the TSR, and 〈B〉max

T-CHSH

of a qubit undergoing the depolarizing channel Eq. (B1c). We can see
that the order of the three quantifiers (from the earliest to the latest
vanishing time) is 〈B〉T-CHSH, TSR, and f , demonstrating the hierarchy
relation proposed in this work. Here, t is in units of depolarizing
rate γD.

dynamics which leads to a temporal steerable assemblage gives
an inseparable pseudodensity matrix.

In the following, we propose a proposition which will be
used in the example.

Proposition. When the initial state of the qubit is prepared
in the maximally mixed state, the pseudodensity matrix con-
structed under the amplitude damping, the phase damping, and
the depolarizing channels are temporal separable if f = 0, i.e.,

f = 0 ⇒ ∃ ωA
λ , θ Ā

λ , such that R =
∑

λ

p(λ)ωA
λ ⊗ θ Ā

λ .

(18)

The purpose of using the maximally mixed state as the initial
condition is to produce assemblages which admit NSIT (cases
which violate NSIT will be discussed later). The proof of the
proposition is given in Appendix B.

As a simple example, we consider a qubit experiencing a
depolarizing channel, described by Eq. (B1c). In Fig. 2 we plot
the dynamics of the f , the TSR, and 〈B〉max

T-CHSH. We can see
that the vanishing time, in which the corresponding classical
model emerges, of each quantifier is different, demonstrating
the hierarchical relation among the three temporal quantum
relations.

VI. CLASSICAL STEERING

In the above discussions, the scenario we consider is
under the condition of NSIT. That is, the obtained temporal
assemblages {ρa|x (t )} obey∑

a

ρa|x (t ) =
∑

a

ρa|x ′ (t ) ∀x �= x ′. (19)

Given that temporal hidden-state model and temporal Bell
inequalities assume noninvasive measurements, observing
nonmacrorealism and temporal steering while satisfying NSIT

gives a stricter example of both properties [56,57] (in that it
rules out certain types of examples of false signatures of both
effects due to classical clumsiness). In this section we give a
simple example of such a false signature, which appears when
the obtained temporal assemblages are not restricted to NSIT.

First, we show that, by the following explicit example,
instead of performing measurements on an initial quantum
state, one can prepare a temporal assemblage which leads
to temporal steerability by just preparing a set of “classical
(subnormalized) states”:

ρa|x (0) = diag[αa|x, βa|x], (20)

where αa|x and βa|x are non-negative real numbers with a,
x ∈ {1, 2}. We refer to these states as “classical” since all of
them have just diagonal terms. Therefore, each state can be
created by mixing, say, the spin of electrons in just one direction
(e.g., z direction). Such a temporal assemblage is steerable but
trivial, and this is the reason that this scenario is not considered
in the previous discussion, and ruled out by assuming NSIT.

In Appendix C we show that if the measurement settings at
time t1 = 0 are set to be two, the asymptotic value of TSR (or
temporal steerable weight) when time goes to infinity will be
the same as the trace distance between the summation of the
elements of the temporal assemblage in different measurement
settings, i.e.,

TSR[{ρa|x (t → ∞)}] = D

(∑
a

ρa|x,
∑

a

ρa|x ′

)
, (21)

where D is the trace distance between two quantum states. One
notes that the trace distance in the classical case represents
the distinguishability between two probability distributions.
Equation (21) means that the quantification of temporal
steering arises from a classically “clumsy” experiment if the
condition of NSIT is violated.

VII. INFERRING CAUSAL STRUCTURE WITH
TEMPORAL STEERABILITY

Finally, motivated by Ref. [39] proposing the f function
as a measure of quantum causal effect, which discriminates
between spatial and temporal correlations, we propose that the
degree of temporal steerability can also be another measure of
a quantum causal effect.

First of all, let us define the scenario of quantum causality
discussed here. Consider two quantum systems that interact
with each other through a black box as shown in Fig. 3(a).
The correlations between the two systems may be due to
spatial correlations (common cause) in Fig. 3(b) or temporal
correlations (direct cause) in Fig. 3(c). The problem we would
like to address is that how to discriminate between these two
scenarios without knowing the mechanism of the black box.

To illustrate that temporal steering can discriminate between
common and direct cause, we propose to include an auxiliary
qubit (qubit-3) coherently coupled to qubit-1 as shown in
Fig. 3(d). For illustrative purpose, we consider the following
two scenarios. The first scenario is that qubit-1 and -2 initially
share a maximally entangled state, while, for the second
scenario, qubit-1 and -2 are coherently coupled with each other
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FIG. 3. Schematic diagram for the quantum causality schemes
considered here. (a) The quantum correlations of two qubits arise from
a “black box.” The correlations may be due to (b) a common cause
(space-like correlation) or (c) a direct cause (time-like correlation). (d)
and (e) We propose to include an auxiliary qubit (qubit-3) coherently
coupled to qubit-1. By examining the time-like steering of qubit-3 to
qubit-2, one can infer whether the correlations are due to a common
cause or a direct cause. This is because, if the correlations are from
the common cause, there is no time-like steering of qubit-3 to qubit-
2 (dashed line), while an oscillatory time-like steering (blue curve)
exists if they are from a direct cause.

via the Hamiltonian

H = h̄J (σ+
1 σ−

2 + σ−
1 σ+

2 ), (22)

where J is the coupling strength and σ±
i are the raising and

lowering operators of qubit-i. To obtain the temporal assem-
blage of qubit-2 at t2 = t , three measurements in mutually
unbiased bases of X̂, Ŷ , and Ẑ are performed on qubit-3 at time
t1 = 0. Actually, this is the so-called spatiotemporal steering
scenario [52], which is a generalization of temporal steering.
The TSR of qubit-2 TSR3→2[{ρ2

a|x (t )}] is plotted in Fig. 3.
We can see that in the case that two qubits share a common
cause, TSR3→2[{ρ2

a|x (t )}] is always zero, while in the case that
two qubits are connected by a direct cause, TSR3→2[{ρ2

a|x (t )}]
oscillates with time. This simple example illustrates how, as
one might expect, given the hierarchy of temporal correlation
introduced earlier, that the temporal steerability can be used to
distinguish between the direct and common causal effect in a
quantum network.

VIII. CONCLUDING REMARKS

It is worth to note that a hierarchy relation between temporal
steerability and macrorealism is also considered in Ref. [58].
However, in their work, neither the steerability witness nor
the temporal CHSH inequality is optimized. The results of our
work fill this gap. Open questions include: does the separable
property of proposition Eq. (18) hold for any quantum chan-
nel? Can a temporal assemblage be obtained directly from a
pseudodensity matrix under the requirement of the violation of
no signaling in time? How will the hierarchical relation change
if we consider another formulation of “a state over time,” e.g.,
the one in [59] or the one constructed by a discrete Wigner
representation [60,61] (see Ref. [62] for more comparisons
between the three methods)?

Note added—Recently we became aware of [63], which in-
dependently proved a hierarchy between temporal steerability
and nonmacroscopicity.
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APPENDIX A: OBTAINING A SET OF TEMPORAL
CORRELATIONS AND A TEMPORAL ASSEMBLAGE

FROM A PSEUDODENSITY MATRIX

Now we show that one can obtain the temporal assemblage
{ρa|x (t )}a,x by performing a set of positive-operator valued
measurements (POVMs) {Ea|x}a,x with Ea|x � 0, satisfy-
ing

∑
a Ea|x = 1, on the pseudodensity matrix R, in which

{Ea|x}a,x is the POVMs producing {ρa|x (t )}a,x . More precisely,
we show

ρa|x (t ) = trA(Ea|x ⊗ 1R) ∀a, x, (A1)

where

ρa|x (t ) = E (ρa|x (0)) = E (
√

Ea|xρ0

√
Ea|x ) (A2)

and ρ0 = 1/2.
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Proof—Without the loss of generality, we assume
{Ea|x}a=±1 be projectors for each x, i.e.,

Ea|x = 1
2 (1 + a · �x · �σ ), (A3)

with a · �x being the vector corresponding to projector Ea|x in
the Bloch sphere and �σ = (X̂, Ŷ , Ẑ) being the Pauli matrices.
Besides, the post-measurement states for each measurement
event a|x will be Ea|x . The temporal assemblage would be

ρa|x (t ) = p(a|x)E
(

Ea|x
1

2
Ea|x

)

= 1

2
E
(
1

2

)
+ a

8

3∑
j=1

tr{σj [E (E1|x ) − E (E−1|x )]}σj

= 1

2
· 1

2

3∑
k=0

tr

[
σkE

(
1

2

)]
σk + a

8

3∑
j=1

tr{σj [E (E1|x ) − E (E−1|x )]}σj

= 1

4
+ 1

4

3∑
k=1

tr

[
σkE

(
1

2

)]
σk + a

8

3∑
j=1

tr{σj [E (E1|x ) − E (E−1|x )]}σj . (A4)

Then, by the definition of the pseudodensity matrix R in the main text, we can write down the pseudodensity matrix in the
Pauli bases:

R = 1

4

⎧⎨
⎩1 ⊗ 1 +

3∑
k=1

tr

[
σkE

(
1

2

)]
1 ⊗ σk + 1

2

3∑
i,j=1

tr[σj [E (E1|i ) − E (E−1|i )]]σi ⊗ σj

⎫⎬
⎭. (A5)

Finally, the target quantity trA(Ea|x ⊗ 1R) in Eq. (A1) would be

trA(Ea|x ⊗ 1R) = 1

4
trA(Ea|x ⊗ 1) + 1

4

3∑
k=1

tr

[
σkE

(
1

2

)]
trA(Ea|x ⊗ σk )

+ 1

8

3∑
ij=1

tr{σj [E (E1|i ) − E (E−1|i )]} trA(Ea|x ⊗ 1 · σi ⊗ σj )

= 1

4
+ 1

4

3∑
k=1

tr

[
σkE

(
1

2

)]
σk + 1

8

3∑
ij=1

tr{σj [E (E1|i ) − E (E−1|i )]} tr(Ea|xσi )σj . (A6)

Using the fact that tr(Ea|xσi ) = aδx,i , the above equation will
be the same as Eq. (A4). Since now we have the tempo-
ral assemblages, obtained from the pseudodensity matrix, it
is straightforward to obtain a set of temporal correlations
p(a, b|x, y).

We should note that from Eq. (A1), the way one obtains
the temporal assemblage by performing measurement on
the pseudodensity matrix is merely a mathematical relation
between ρa|x (t ), Ea|x , and R, instead of a physical system being
measured. This is different from the case in the standard spatial
scenario that one obtains an assemblage by performing a set
of local measurements on a subsystem of a quantum state. On
the other hand, as we mentioned before, the reason to use the
maximally mixed state as initial state is to obey the condition
of no signaling in time (NSIT).

APPENDIX B: PROOF OF PROPOSITION

To support the proposition, in the following we will show the
partial transpose of pseudodensity matrix R is always positive
semidefinite, i.e., RTA � 0, by considering the three stan-
dard quantum channels—the amplitude-damping channel, the

phase-damping channel, and the depolarizing channel—which
are often used to describe the dynamics of a system. Then, using
the positive-partial-transpose (PPT) criterion [64,65], it is easy
to show that R is separable.

The dynamics of a qubit undergoing the amplitude-
damping, the phase-damping, and the depolarizing channels,
can be respectively described by the following three Lindblad-
form master equations:

ρ̇s = γA

2
[2σ−ρs(t )σ+ − σ+σ−ρs(t ) − ρs(t )σ+σ−], (B1a)

ρ̇s = γP

4

[
2σ3ρs(t )σ3 − σ 2

3 ρs(t ) − ρs(t )σ 2
3

]
, (B1b)

ρ̇s = γD

8

∑
i

[
2σiρs(t )σi − σ 2

i ρs(t ) − ρs(t )σ 2
i

]
, (B1c)

where ρs is the standard density matrix of the qubit,
{γi}i=A,P,D denote the decay rates of the dynamics in the
different channels, and σ+ (σ−) is the creation (annihilation)
operator. Assisted by the definition of the pseudodensity
matrix, one can obtain the pseudodensity matrix in each
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scenario:

RA =

⎛
⎜⎜⎜⎝

1
2e−tγA 0 0 0

0 1
2 (1 − e−tγA ) 1

2e−tγA/2 0

0 1
2e−tγA/2 0 0

0 0 0 1
2

⎞
⎟⎟⎟⎠, (B2a)

RP =

⎛
⎜⎜⎜⎝

1
2 0 0 0

0 0 1
2e−tγP 0

0 1
2e−tγP 0 0

0 0 0 1
2

⎞
⎟⎟⎟⎠, (B2b)

RD =

⎛
⎜⎜⎜⎝

1
4 (1 + e−tγD ) 0 0 0

0 1
4 (1 − e−tγD ) 1

2e−tγD 0

0 1
2e−tγD 1

4 (1 − e−tγD ) 0

0 0 0 1
4 (1 + e−tγD )

⎞
⎟⎟⎟⎠. (B2c)

It can be shown that the partial transpose of each above
pseudodensity matrix is always positive semidefinite, i.e.,
RTA � 0 for t ∈ (0,∞). The fact that f = 0 implies R � 0,
indicating R can be treated as a valid density matrix describing
a qubit-qubit system. By using the positive-partial-transpose
(PPT) criterion [64,65]: a density matrix �AB describing a
qubit-qubit (or a qubit-qutrit) system is separable if and only if
its partial transpose �

TA
AB is positive semidefinite. In summary,

we prove the proposition by the following steps:

R � 0 ∧ RTA � 0 ∧ PPT criterion ⇒ R is separable.

(B3)

APPENDIX C: PROOF OF EQ. (10) IN THE MAIN TEXT

Following the property of temporal steerable weight (TSW)
[18], one realizes that

σT
a|x −

∑
λ

Dλ(a|x)σλ � 0, (C1)

where Dλ(a|x) are the extremal deterministic values, λ repre-
sents a local hidden variable, x is the measurement basis, and
a is the measurement outcome. Since

∑
a Dλ(a|x) = 1, one

has the following: ∑
a

σ T
a|x −

∑
λ

σλ � 0, (C2)

If we are limited to two measurement inputs and preparing
the assemblages with a classical way (without the off-diagonal
terms), the summation of the temporal assemblages σT

a|x can
be written as

∑
a

σ T
a|1 =

(
α 0
0 1 − α

)
, (C3)

∑
a

σ T
a|2 =

(
β 0
0 1 − β

)
. (C4)

Let us assume α > β. The summation of the local hidden
assemblage

∼
σλ = ∑

λ σλ that can best mimic the temporal
assemblages and fulfill the requirement of Eq. (B2) is thus
written as

∼
σλ =

(
β 0

0 1 − α

)
. (C5)

To prove that Eq. (C5) is the optimal solution, one can add a
non-negative number ε into the diagonal terms of the matrix in
Eq. (C5). It is easy to see that Tr(σ̃λ) is maximum when ε = 0.
Therefore, the TSW is equal to the trace distance between the
two states

∑
a σ T

a|1 and
∑

a σ T
a|2, i.e.,

TSW = 1 − Tr(
∼
σλ) = α − β. (C6)

A similar argument can also be applied to the temporal steering
robustness (TSR) [20] with the following requirement:

∑
λ

σλ −
∑

a

σ T
a|x � 0. (C7)

This leads one to write the summation of the local hidden
assemblage as

∼
σλ =

(
α 0

0 1 − β

)
, (C8)

and the corresponding TSR is written as

TSR = Tr(
∼
σλ) − 1 = α − β. (C9)

These conclude our proof that, in the classical scenario (no
off-diagonal elements), the temporal steering is equal to the
trace distance between the summation of the elements of the
temporal assemblage in different measurement settings.

022104-7



KU, CHEN, LAMBERT, CHEN, AND NORI PHYSICAL REVIEW A 98, 022104 (2018)

[1] E. Schrödinger, Discussion of probability relations between
separated systems, Proc. Camb. Philos. Soc. 31, 555 (1935).

[2] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered com-
plete? Phys. Rev. 47, 777 (1935).

[3] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1,
195 (1964).

[4] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering,
Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen
Paradox, Phys. Rev. Lett. 98, 140402 (2007).

[5] S. J. Jones, H. M. Wiseman, and A. C. Doherty, Entangle-
ment, Einstein-Podolsky-Rosen correlations, Bell nonlocality,
and steering, Phys. Rev. A 76, 052116 (2007).

[6] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid,
Experimental criteria for steering and the Einstein-Podolsky-
Rosen paradox, Phys. Rev. A 80, 032112 (2009).

[7] D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard,
A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits,
H. M. Wiseman, S. W. Nam, and A. G. White, Conclusive
quantum steering with superconducting transition-edge sensors,
Nat. Commun. 3, 625 (2012).

[8] B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N.
Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, Loophole-
free Einstein-Podolsky-Rosen experiment via quantum steering,
New J. Phys 14, 053030 (2012).

[9] R. Gallego and L. Aolita, Resource Theory of Steering, Phys.
Rev. X 5, 041008 (2015).

[10] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Quantifying
Einstein-Podolsky-Rosen Steering, Phys. Rev. Lett. 112, 180404
(2014).

[11] M. Piani and J. Watrous, Necessary and Sufficient Quan-
tum Information Characterization of Einstein-Podolsky-Rosen
Steering, Phys. Rev. Lett. 114, 060404 (2015).

[12] D. Cavalcanti and P. Skrzypczyk, Quantum steering: A review
with focus on semidefinite programming, Rep. Prog. Phys. 80,
024001 (2017).

[13] D. Cavalcanti and P. Skrzypczyk, Quantitative relations between
measurement incompatibility, quantum steering, and nonlocal-
ity, Phys. Rev. A 93, 052112 (2016).

[14] R. Uola, T. Moroder, and O. Gühne, Joint Measurability of
Generalized Measurements Implies Classicality, Phys. Rev. Lett.
113, 160403 (2014).

[15] M. T. Quintino, T. Vértesi, and N. Brunner, Joint Measurability,
Einstein-Podolsky-Rosen Steering, and Bell Nonlocality, Phys.
Rev. Lett. 113, 160402 (2014).

[16] R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, One-to-One
Mapping between Steering and Joint Measurability Problems,
Phys. Rev. Lett. 115, 230402 (2015).

[17] Y.-N. Chen, C.-M. Li, N. Lambert, S.-L. Chen, Y. Ota, G.-Y.
Chen, and F. Nori, Temporal steering inequality, Phys. Rev. A
89, 032112 (2014).

[18] S.-L. Chen, N. Lambert, C.-M. Li, A. Miranowicz,
Y.-N. Chen, and F. Nori, Quantifying Non-Markovianity
with Temporal Steering, Phys. Rev. Lett. 116, 020503 (2016).
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[42] J. Kofler and Č. Brukner, Condition for macroscopic realism
beyond the Leggett-Garg inequalities, Phys. Rev. A 87, 052115
(2013), .

[43] A. J. Leggett and A. Garg, Quantum Mechanics Versus Macro-
scopic Realism: Is the Flux There When Nobody Looks?, Phys.
Rev. Lett. 54, 857 (1985).

[44] C. Emary, N. Lambert, and F. Nori, Leggett-Garg inequalities,
Rep. Prog. Phys. 77, 016001 (2014).

[45] C. Budroni and C. Emary, Temporal Quantum Correlations and
Leggett-Garg Inequalities in Multilevel Systems, Phys. Rev.
Lett. 113, 050401 (2014).

[46] N. Lambert, K. Debnath, A. F. Kockum, G. C. Knee, W. J.
Munro, and F. Nori, Leggett-Garg inequality violations with a
large ensemble of qubits, Phys. Rev. A 94, 012105 (2016).

[47] L. Clemente and J. Kofler, Necessary and sufficient conditions
for macroscopic realism from quantum mechanics, Phys. Rev.
A 91, 062103 (2015).

[48] T. Fritz, Quantum correlations in the temporal Clauser-Horne-
Shimony-Holt (CHSH) scenario, New J. Phys 12, 083055
(2010).

[49] S.-L. Chen, Quantum steering: Device-independent quantifica-
tion and temporal quantum correlations, Ph.D. Thesis, National
Cheng-Kung University, 2017.

[50] L. Vandenberghe and S. Boyd, Semidefinite programming,
SIAM Rev. 38, 49 (1996).

[51] M. F. Pusey, Negativity and steering: A stronger Peres conjec-
ture, Phys. Rev. A 88, 032313 (2013).

[52] S.-L. Chen, N. Lambert, C.-M. Li, G.-Y. Chen, Y.-N. Chen, A.
Miranowicz, and F. Nori, Spatio-temporal steering for testing

nonclassical correlations in quantum networks, Sci. Rep. 7, 3728
(2017).

[53] S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen, Natural
Framework for Device-Independent Quantification of Quantum
Steerability, Measurement Incompatibility, and Self-Testing,
Phys. Rev. Lett. 116, 240401 (2016).

[54] These two Hilbert spaces are basically the same. However, due
the the following discussion, e.g., take partial trace of R, it is
necessary to use distinguishable subscripts.

[55] H. Maassen and J. B. M. Uffink, Generalized Entropic Uncer-
tainty Relations, Phys. Rev. Lett. 60, 1103 (1988).

[56] J. J. Halliwell, Leggett-Garg inequalities and no-signaling in
time: A quasiprobability approach, Phys. Rev. A 93, 022123
(2016).

[57] J. J. Halliwell, Comparing conditions for macrorealism: Leggett-
Garg inequalities versus no-signaling in time, Phys. Rev. A 96,
012121 (2017).

[58] S. Mal, A. S. Majumdar, and D. Home, Probing hierarchy of
temporal correlation requires either generalised measurement or
nonunitary evolution, arXiv:1510.00625.

[59] M. S. Leifer and R. W. Spekkens, Towards a formulation
of quantum theory as a causally neutral theory of Bayesian
inference, Phys. Rev. A 88, 052130 (2013).

[60] W. K. Wootters, A Wigner-function formulation of finite-state
quantum mechanics, Ann. Phys. (NY) 176, 1 (1987).

[61] D. Gross, Hudson’s theorem for finite-dimensional quantum
systems, J. Math. Phys. 47, 122107 (2006).

[62] D. Horsman, C. Heunen, M. F. Pusey, J. Barrett, and R. W.
Spekkens, Can a quantum state over time resemble a quan-
tum state at a single time? Proc. R. Soc. A 473, 20170395
(2017).

[63] R. Uola, F. Lever, O. Gühne, and J.-P. Pellonpää, Unified picture
for spatial, temporal and channel steering, Phys. Rev. A 97,
032301 (2018).

[64] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of
mixed states: Necessary and sufficient conditions, Phys. Lett. A
223, 1 (1996).

[65] A. Peres, Separability Criterion for Density Matrices, Phys. Rev.
Lett. 77, 1413 (1996).

022104-9

https://doi.org/10.1038/nphys3266
https://doi.org/10.1038/nphys3266
https://doi.org/10.1038/nphys3266
https://doi.org/10.1038/nphys3266
https://doi.org/10.1038/srep18281
https://doi.org/10.1038/srep18281
https://doi.org/10.1038/srep18281
https://doi.org/10.1038/srep18281
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1038/srep00885
https://doi.org/10.1038/srep00885
https://doi.org/10.1038/srep00885
https://doi.org/10.1038/srep00885
https://doi.org/10.1103/PhysRevA.87.052115
https://doi.org/10.1103/PhysRevA.87.052115
https://doi.org/10.1103/PhysRevA.87.052115
https://doi.org/10.1103/PhysRevA.87.052115
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevA.94.012105
https://doi.org/10.1103/PhysRevA.94.012105
https://doi.org/10.1103/PhysRevA.94.012105
https://doi.org/10.1103/PhysRevA.94.012105
https://doi.org/10.1103/PhysRevA.91.062103
https://doi.org/10.1103/PhysRevA.91.062103
https://doi.org/10.1103/PhysRevA.91.062103
https://doi.org/10.1103/PhysRevA.91.062103
https://doi.org/10.1088/1367-2630/12/8/083055
https://doi.org/10.1088/1367-2630/12/8/083055
https://doi.org/10.1088/1367-2630/12/8/083055
https://doi.org/10.1088/1367-2630/12/8/083055
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1103/PhysRevA.88.032313
https://doi.org/10.1103/PhysRevA.88.032313
https://doi.org/10.1103/PhysRevA.88.032313
https://doi.org/10.1103/PhysRevA.88.032313
https://doi.org/10.1038/s41598-017-03789-4
https://doi.org/10.1038/s41598-017-03789-4
https://doi.org/10.1038/s41598-017-03789-4
https://doi.org/10.1038/s41598-017-03789-4
https://doi.org/10.1103/PhysRevLett.116.240401
https://doi.org/10.1103/PhysRevLett.116.240401
https://doi.org/10.1103/PhysRevLett.116.240401
https://doi.org/10.1103/PhysRevLett.116.240401
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.96.012121
https://doi.org/10.1103/PhysRevA.96.012121
https://doi.org/10.1103/PhysRevA.96.012121
https://doi.org/10.1103/PhysRevA.96.012121
http://arxiv.org/abs/arXiv:1510.00625
https://doi.org/10.1103/PhysRevA.88.052130
https://doi.org/10.1103/PhysRevA.88.052130
https://doi.org/10.1103/PhysRevA.88.052130
https://doi.org/10.1103/PhysRevA.88.052130
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1063/1.2393152
https://doi.org/10.1063/1.2393152
https://doi.org/10.1063/1.2393152
https://doi.org/10.1063/1.2393152
https://doi.org/10.1098/rspa.2017.0395
https://doi.org/10.1098/rspa.2017.0395
https://doi.org/10.1098/rspa.2017.0395
https://doi.org/10.1098/rspa.2017.0395
https://doi.org/10.1103/PhysRevA.97.032301
https://doi.org/10.1103/PhysRevA.97.032301
https://doi.org/10.1103/PhysRevA.97.032301
https://doi.org/10.1103/PhysRevA.97.032301
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413



