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We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance
between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS)
model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite
programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled
Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii)
an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability
properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties
can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we
propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces.
This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement
basis, which can then be used to determine the proposed steering monotone (which describes the steerability of
an assemblage) optimized over all mutually unbiased bases.

DOI: 10.1103/PhysRevA.97.022338

I. INTRODUCTION

Quantum entanglement [1], Einstein-Podolsky-Rosen
(EPR) steering [2], and Bell nonlocality [3] are different
forms of quantum nonlocality [4]. These quantum correlations
are powerful resources for quantum engineering, quantum
cryptography, quantum communication, and quantum infor-
mation processing [5–7]. Taking an operational perspective
[4], EPR steering can certify the entanglement between two
systems when one of the measurements is untrusted, i.e., no
assumptions are made on the functioning of the measurement
device. On the other hand, Bell nonlocality can certify the
entanglement with the untrusted measurements on both sides.
One can also certify an entangled state by performing quantum
state tomography with all-trusted measurement devices. Thus,
EPR steering is a form of quantum correlation, which can
be classified between entanglement and Bell nonlocality, in
the following meaning: it certifies the entanglement between
two systems assuming trusted measurements only on one
of these [4]. Eighty years of research on EPR steering has
resulted in many experimental demonstrations [8–21] and
various applications [22–26], which include multipartite quan-
tum steering [27–31], the correspondence with measurement
incompatibility [32–36], one-way steering [20,37–39], one-
sided device-independent processing in quantum key distri-
bution [40], continuous-variable EPR steering [29,41–43], as
well as temporal [44–49] and spatiotemporal steering [50].
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In recent years, several measures of steering, such as steer-
able weight [38], steering robustness [51], steering fraction
[52], steering cost [53], intrinsic steerability [54], as well as
the relative entropy of steering [7,55] have been proposed (see
also the review [39]). All these quantifiers are monotones under
one-way local operations assisted by classical communication
(one-way LOCCs) [7]. More recently, several works using
the geometrical approaches to steering have been considered,
such as depicting quantum correlations for two-qubit states
[56,57] and a geometrical approach to witness steering [58,59].
Here, we would like to use the consistent steering robustness
(CSR) introduced by Cavalcanti et al. [32] and the quantum
steering ellipsoid (QSE) introduced by Jevtic et al. [56,57]
to construct such a geometric witness. The QSE provides a
visualization and geometric representation of any two-qubit
state [30,31,60,61]. Specifically, the QSE for a given two-qubit
state corresponds to the set of all Bloch vectors of one qubit
(say Bob), which can be prepared by another qubit (say Alice)
by considering all possible projective measurements on her
qubit [56,57].

In this work, we propose a distance between assemblages
based on the trace distance between single elements. Given
an assemblage, a trace-distance measure of steerability is then
proposed as the distance to the closest unsteerable assemblage.
Here, we prove that the consistent trace-distance measure
of steerability is a convex steering monotone, with respect
to restricted one-way LOCCs introduced in Ref. [54]. We
note that our proposal is reminiscent of other distance-based
measures of various quantum phenomena. These include “non-
classical distance” for quantifying the quantumness of optical
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fields [62,63], distance-based measures of entanglement [64],
trace-distance measures of coherence [65], or trace-distance
measures quantifying Bell nonlocality [66].

In order to estimate the proposed steering monotone,
we provide lower and upper bounds that can be efficiently
computed by semidefinite programs (SDPs) [67]. Specifically,
a lower bound is obtained via an operator-norm distance,
whereas a few upper bounds are found by applying various
known steering measures [32,38,51,68].

Moreover, we introduce the local-hidden-state (LHS) sur-
face as a way of visualizing steerability properties of a
two-qubit quantum state in the Bloch sphere. In particular,
these notions connect to the QSE and provide a witness of
steerability based on the different volumes enclosed by the two
surfaces. This steerability witness enables finding an optimal
measurement basis [60]. Thus, this is particularly important for
calculating the proposed steering monotone optimized over
all mutually unbiased bases. To illustrate the usefulness of
LHS surfaces, we provide the explicit solution of the LHS
surface for the Werner states. Moreover, we present a few upper
and lower bounds of the steerability measure for the Werner,
Horodecki, and rank-2 Bell-diagonal states [69,70]. Note that
this approach, despite some resemblance, essentially differs
from, e.g., the relative entropy of entanglement [64,70,71]
and the nonclassical distance [62,63] used for quantifying the
quantumness of bosonic systems.

This paper is organized as follows. In Sec. II, we summa-
rize the basic notions concerning EPR steering. In Sec. III,
we introduce a steering quantifier; we also prove that it is
a monotone under restricted one-way LOCCs, and provide
computable lower and upper bounds for it. In Sec. IV, we
introduce a steering witness based on the notion of LHS surface
and discuss its properties. In Sec. V, we apply our results to
several interesting examples. Finally, in Sec. VI, we provide
the conclusions and outlook for our work.

II. PRELIMINARY NOTIONS

EPR steering can be operationally defined as the success of
the following task [4]: One party, say Alice, tries to convince
another party, say Bob, that they share an entangled state
ρAB . To accomplish this task, Bob asks Alice to perform
some measurements, described by positive-operator-valued
measures (POVMs) Aa|x with Aa|x � 0, satisfying

∑
a Aa|x =

1, where x denotes the basis of the measurement, a is its
outcome, and 1 is a unit operator. Bob’s measurements are
assumed to be fully characterized by quantum mechanics.
Therefore, he can perform quantum state tomography and
obtain the unnormalized quantum states σa|x = trA(ρABAa|x ⊗
1). In particular, any {Aa|x}a,x gives rise to a collection of
unnormalized quantum states {σa|x}a,x , which are termed as
an assemblage. An assemblage also includes the information
of Alice’s marginal statistics, p(a|x) = tr(σa|x).

The assemblage {σa|x}a,x is unsteerable if it admits an LHS
model,

σa|x = σ US
a|x =

∑
λ

p(λ)p(a|x,λ)σλ ∀a,x. (1)

An LHS model can be understood as follows: Alice sends
a preexisting quantum state σλ according to her input x

and outcome a with a probability distribution p(λ) and a
conditional probability distribution p(a|x,λ). In this sense, the
assemblage, received by Bob, is just a classical postprocessing
of the set of states {σλ}λ, which is clearly independent of
Alice’s measurements. Likewise, a quantum state ρAB is called
steerable if the given assemblage does not admit an LHS
model. Such a state is necessarily entangled, but the converse
is not true [4].

In the context of a resource theory of steering [7], the
most general free operation for EPR steering is a stochastic
one-way LOCC, defined as follows. Given an assemblage
{σa|x}a,x , Bob performs a quantum measurement on his system.
The measurement is described by a completely positive trace-
nonincreasing map ε defined by

ε(σB) :=
∑

ω

Kω(σB)K†
ω, such that

∑
ω

K†
ωKω � 1, (2)

for the reduced state σB of Bob, where Kω is the Kraus operator
associated with a classical outcome ω. In the most general case,
the set of classical outcomes is a coarse graining of the set of
possible ω (quantum instruments may be defined by more than
one Kraus operator), but, as we discuss below, there is no loss
of generality by considering that each outcome ω is associated
with a single Kraus operator Kω.

After such an operation, Bob communicates with Alice,
obtaining a classical result ω prior to her measurement. She
applies a local deterministic wiring map Wω, defined explicitly
below, described by the normalized conditional probability
distributions: p(x|x ′,ω), describing the generation of any
initial input x from final input x ′ and Bob’s result ω, and
p(a′|a,x,x ′,ω), describing the generation of Alice’s final
outcome a′ from a, x, x ′, and ω. The final assemblage with
input x ′ and outcomes ω,a′ becomes{

σω
a′|x ′

}
a′,x ′ := Mω({σa|x}a,x). (3)

Here, Mω({σa|x}a,x) := KωWω({σa|x}a,x)K†
ω is a subchannel of

the map M := ∑
ω Mω when Bob postselects the ωth outcome

with probability p(ω) = Tr[Mω(
∑

a{σa|x}a,x)], while

Wω({σa|x}a,x) =
{∑

a,x

p(x|x ′,ω)p(a′|a,x,x ′,ω)σa|x

}
a′,x ′

(4)

is a deterministic wiring map. We recall that a function S is
a steering monotone (see Ref. [7]) if it is zero for unsteerable
assemblages and it is a monotone, i.e., it does not increase (on
average), under one-way LOCCs, i.e.,∑

ω

p(ω)S

(
Mω({σa|x}a,x)

p(ω)

)
� S({σa|x}a,x), (5)

for a given assemblage {σa|x}a,x . Note that the particular case
when

∑
ω p(ω) = 1 or

∑
ω K†

ωKω = 1 is called a deterministic
one-way LOCC. Otherwise, this is a stochastic one-way
LOCC. Finally, we note that the use of a coarse-grained set
of classical outcomes simply implies the equality of some of
Alice wirings, i.e., Wω = W ′

ω, if ω and ω′ are coarse grained
into the same classical outcome.

In the following, we consider a restricted set of one-way
LOCC, which has been proposed in Ref. [54]. This restriction
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consists of requiring that Alice’s choice of wiring does not
depend on the classical outcome ω obtained by Bob via local
operations. This restriction can be motivated by practical rea-
sons [54]: Given a spatial separation between Alice and Bob,
the protocol may be more efficient if Alice directly applies her
operation on her system instead of waiting for communication
with Bob. This “restriction hypothesis” translates into the
condition p(x|x ′,ω) = p(x|x ′), and hence into the condition

Wω({σa|x}a,x) =
{∑

a,x

p(x|x ′)p(a′|a,x,x ′,ω)σa|x

}
a′,x ′

.

III. GEOMETRIC QUANTIFIERS OF STEERABILITY

A. Trace-distance steerability measure

The (quantum) trace distance is a metric to distinguish
two density operators ρ and ρ ′, i.e., DQ(ρ,ρ ′) := 1

2‖ρ − ρ ′‖,
where ‖X‖ := tr[|X|] is the trace norm. When ρ and ρ ′
commute, the trace distance reduces to the classical trace
distance, i.e., the Kolmogorov distance [72], which can be
defined as DC(P,P ′) := 1

2

∑
x |P (x) − P ′(x)| for two prob-

ability distributions P and P ′.
One can easily prove the properties of a metric, i.e., it is

(i) non-negative, (ii) symmetric, (iii) vanishes if and only if
ρ = ρ ′, and (iv) satisfies the triangle inequality. Similarly, we
can define the distance between two assemblages as

DA({σa|x}a,x,{σ ′
a|x}a,x) =

∑
a,x

p(x)D(σa|x,σ ′
a|x), (6)

where D(a,b) := 1
2‖a − b‖, and {σa|x}a,x and {σ ′

a|x}a,x are two
assemblages with the same number of inputs Nx . In general,
p(x) can be chosen to be uniform with respect to the number of
measurement settings, i.e., 1

Nx
. As for DQ, one can easily prove

that DA satisfies all the properties of a metric (cf. Appendix
A). Note that trace distance between two assemblages is first
introduced by Kaur et al. [55]. Nevertheless, our definition is
different from theirs.

In the following, we want to introduce a measure of steer-
ability based on the distance of a given assemblage from the
set of unsteerable states. Several convex steering monotones
have been introduced, with different properties and different
interpretations. Our goal here is to introduce a different
measure based on the trace distance between assemblages. We
introduce a quantifier, called consistent trace-distance measure
of steerability, defined as the minimal trace distance to the
“consistent” unsteerable assemblage [32], namely,

STD({σa|x}a,x) := min

{
DA({σa|x}a,x,{ρa|x}a,x)|

{ρa|x}a,x ∈ LHS,
∑

a

ρa|x =
∑

a

σa|x, ∀x

}
, (7)

where LHS denotes the set of unsteerable assemblages, i.e.,
those admitting an LHS model given by Eq. (1). In Appendix B,
we prove that STD is a restricted convex steering monotone.

Unfortunately, it is quite hard to calculate such a monotone
without knowing the structure of LHSs. Instead, we find a way
to derive lower and upper bounds based on SDPs.

B. Upper bound based on the restricted-noise consistent
steering robustness

An upper bound of STD can be obtained via the notion
of steering robustness [51], i.e., the amount of noise that
can be added to an assemblage to make it unsteerable, and
the notion of CSR [32], i.e., with the requirement that the
noise assemblage has the same reduced state. We introduce
a robustness measure based on this kind of mixing with a
reduced state, which can be summarized as follows: Given
an assemblage {σa|x}a,x and the associated reduced state σB =∑

a σa|x , we define a steering monotone as

SR
CSR({σa|x}a,x)

= min

{
t

∣∣∣∣ σa|x + t[p(a|x)σB]

1 + t
is unsteerable

}
, (8)

which can be referred to as a restricted-noise consistent
steering robustness (RNCSR), where p(a|x) = tr(σa|x). The
quantity SR

CSR can be efficiently computed as an SDP (see
Appendix C).

Given an assemblage {σa|x}a,x , the unsteerable assemblage,
which is obtained as the solution of the SDP for calculating
SR

CSR, is denoted by {σ R
a|x}a,x . We can then easily compute the

distance between these two assemblages as follows:

DA

({σa|x}a,x,
{
σ R

a|x
}

a,x

)
= 1

Nx

tmin

1 + tmin

∑
a,x

p(a|x)D(σ̃a|x,σB), (9)

where tmin is the optimal parameter t obtained from Eq. (8) and
the tilde denotes normalized states, e.g., σ̃a|x = σa|x/ tr(σa|x).
As a consequence, the minimal trace distance between an
assemblage and the restricted set of unsteerable assemblage
obtained via mixing with noise σB corresponds to substituting
tmin into the solution of an SDP for the SR

CSR in Eq. (9). Thus,
an upper bound on STD can be simply given by

SR
max({σa|x}a,x) = DA

({σa|x}a,x,
{
σ R

a|x
}

a,x

)
. (10)

Note that if Bob’s system is a qubit, then SR
max({σa|x}a,x)

corresponds to a half of the sum of all the Euclidean distances
between the Bloch vectors σ̃a|x and σB in the Bloch sphere
multiplied by the probability distribution p(a|x) and the
scaling factor tmin/[Nx(1 + tmin)]. Mathematically, this can be
expressed as

SR
max({σa|x}a,x) =

∑
a,x

p(a|x) tmin

Nx(1 + tmin)

| �pa|x − �qb|
2

, (11)

where |�a − �b| denotes the Euclidean distance between vectors
�a and �b. Moreover, �pa|x,i = tr(σ̃a|xσi) and �qb,i = tr(σBσi) (for
i = 1,2,3) are the components of the Bloch vectors of σ̃a|x and
σB , respectively, and {σ1,σ2,σ3} ≡ {X,Y,Z} denote the Pauli
operators.

C. Upper bound based on the consistent steering robustness

Here we provide another upper bound on the steering
monotone STD, which is also based on the CSR. We show that
this new bound is even tighter than that of SR

max({σa|x}a,x), as
defined in Eq. (10).
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The CSR is defined as follows [32]:

SCSR({σa|x}a,x) = min

{
t

∣∣∣∣ σa|x + tτa|x
1 + t

is unsteerable, and
∑

a

τa|x = σB, ∀x

}
, (12)

where {τa|x}a,x is an arbitrary noise assemblage with the same
reduced state.

Similarly to SR
max, an upper bound of STD can be obtained

from the optimal solution {σ CSR
a|x }a,x of an SDP for the CSR.

Note that although the {σ CSR
a|x }a,x is an optimal unsteerable

assemblage, it may not be closest according to the trace
distance. Thus, an upper bound based on the CSR can be
defined as

Smax({σa|x}a,x) = DA

({σa|x}a,x,
{
σ CSR

a|x
}

a,x

)
. (13)

Because SR
max was obtained for a restricted noise, it is obvious

that the following inequality holds in general:

Smax � SR
max. (14)

D. Lower bound based on operator norm

In this section, we show how to compute a lower bound of
STD as an SDP. Without loss of generality, we can write the
assemblage {ρa|x}a,x ∈ LHS, as ρa|x = ∑

λ δa,λx
σλ, where λ is

a vector (λx)x and δa,λx
represent the deterministic strategy for

choosing the assemblage element σλ [23]. For consistency, we
assume the condition

∑
λ σλ = ∑

a ρa|x = σB . Then we note
that the trace norm can be lower bounded by the operator norm

‖A‖∞ := min{μ| − μ1 � A � μ1}, (15)

i.e., ‖A‖∞ � ‖A‖ for all operators A. Combining the lower
bound based on this norm with the definition of the unsteer-
able assemblage, we obtain the following lower bound for
STD({σa|x}a,x):

Smin := min
σλ

:
1

2Nx

∑
a,x

∥∥∥∥∥σa|x −
∑

λ

δa,λx
σλ

∥∥∥∥∥
∞

subject to:
∑

λ

σλ = σB ;

σλ � 0, ∀λ; (16)

where δa,λx
is the usual deterministic strategy for the LHS

model. Now, we can rewrite the above problem as the following
SDP:

Smin = min
μa,x,σλ

:
1

2Nx

∑
a,x

μa,x,

subject to: − μa,x1 � σa|x −
∑

λ

δa,λx
σλ � μa,x1,

∑
λ

σλ = σB ;

σλ � 0, ∀λ. (17)

By definition, we have 0 � μa,x � 1, so the same holds for the
solution of the SDP. This implies that the primal SDP problem

is bounded. Moreover, it is also strictly feasible, e.g., just take
any strictly positive assemblage σλ, consistent with the reduced
state σB , and μa,x = 1 for all a,x. This implies the strong
duality condition, i.e., the primal and dual SDPs have the same
optimal value.

Note, however, that the operator-norm quantifier
Smin({σa|x}a,x) is not a convex steering monotone since
the operator-norm distance is, in general, not contractive
under completely positive trace-nonincreasing maps.

Finally, we have the following lower and upper bounds:

Smin({σa|x}a,x) � STD({σa|x}a,x) � Smax({σa|x}a,x)

� SR
max({σa|x}a,x), (18)

which can be efficiently computed via our SDPs. A clear
comparison of these three upper bounds and lower bound for
some states is shown in Fig. 1.

IV. GEOMETRIC WITNESS OF STEERABILITY

In Sec. III, we concentrated on assemblages, but in this
section we focus on steerability of a quantum state rather than
assemblages.

In addition to the geometrical picture introduced in Sec. III,
we provide a way to visualize two-qubit steering properties
through the notion of a LHS surface and a QSE. We first
recall that the QSE [56] is defined as the surface of normal-
ized assemblages σ̃a|x = σa|x/tr(σa|x), obtained by Bob for
all possible projective measurements of Alice. All projective
measurements on Alice’s side form the surface of the QSE,
while the POVMs correspond to the points in the interior. The
QSE centers at c̃ = (b̃ − T Tã)/(1 − ã2) with the orientation
and semiaxes lengths si = √

qi given by the eigenvectors and
eigenvalues qi of the ellipsoid matrix,

Q = 1

1 − ã2
(T T − b̃ãT)

(
1 + ããT

1 − ã2

)
(T − ãb̃T), (19)

where ã and b̃ are the Bloch vectors of the reduced states of
Alice and Bob, respectively. Here, T is the correlation matrix
with elements Tjk = tr[ρABσj ⊗ σk] (for j,k = 1,2,3), where
ρAB is the bipartite state shared by Alice and Bob.

We can analogously define the corresponding LHS surface.
Instead of considering all possible single measurements, how-
ever, we need to fix a measurement assemblage for Alice. In
this case, we assume that Alice can perform three mutually
unbiased measurements [73] on her side with outcomes ±1.
Consequently, Bob obtains the assemblage {σa|x}a,x , consisting
of six terms. To compute the closest unsteerable assemblage,
{σ US

a|x }a,x , we restrict to the RNCSR case which can be com-
puted as an SDP. By normalizing such an assemblage, σ̃ US

a|x =
σ US

a|x /tr(σ US
a|x ), Bob obtains six vectors in the Bloch sphere. The

LHS surface is then obtained when Alice performs all possible
rotations of her mutually unbiased measurement bases.

Intuitively, the bipartite state ρAB is unsteerable if its LHS
surface and QSE are identical because {σ̃a|x}a,x = {σ̃ US

a|x }a,x .
Moreover, it is clear that conv (LHS surface) is always
contained in conv (QSE), where we denoted with conv the
convex hull of the points in the corresponding surface. In fact,
given {σa|x}a,x , the corresponding solution {σ US

a|x }a,x , computed
via an SDP for the RNCSR, satisfies tr(σa|x) = tr(σ US

a|x ), and
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FIG. 1. Upper (SR
max and Smax) and lower (Smin) bounds of the

steerability measure STD for (a) the Werner states (rank-4 Bell-
diagonal states), (b) Horodecki states, and (c) rank-2 Bell-diagonal
states vs their mixing parameter p. A given assemblage is cre-
ated when Alice performs three mutually unbiased measurements
(eigenvectors of the Pauli spin matrices X,Y , and Z). Here, we
compute the unsteerable assemblage obtained from the restricted-
noise consistent steering robustness (RNCSR, SR

CSR) bounded by
SR

max and the consistent steering robustness (CSR, SCSR) bounded by
Smax. As can be seen, the steerability monotonically increases with
increasing parameter for (b), (c) p � 1/2 and (a) p � 1/

√
3. Note

that the meaning of the mixing parameter p is completely different in
(a), (b), and (c) as given by the definitions of the corresponding states
in Secs. V A, V B, and V C.

hence σ̃ US
a|x is a convex hull of points inside the QSE, namely,

σ̃ US
a|x = σ̃a|x + tσB

1 + t
. (20)

Therefore, we can geometrically witness steering when

	V ≡ VQSE − VLHS surface > 0, (21)

where VQSE and VLHS surface are the volumes of the QSE and
LHS surface, respectively.

Note that the steering witness 	V focuses on the steerability
of a quantum state, while the proposed steering monotone

STD describes the steerability of an assemblage. Thus, one
could think that it is rather hard, in general, to compare these
approaches and to show which of these is more useful. Now we
would like to explain an important relation between the witness
	V and the steering monotone STD. Note that STD is defined
on an assemblage and hence it requires the measurement
settings to be fixed. In contrast to this, the calculation of 	V

involves looking at all possible mutually unbiased bases; hence
it provides a more complete information about the steerability
of a given state. In addition, McCloskey et al. [60] showed that
the geometric information encoded in the QSE often provides
the optimal measurement directions, corresponding to the three
ellipsoid semiaxes. Similarly, the LHS surface provides the
information about the measurement directions giving usually
the highest steering monotone STD.

The concept of the LHS surface can be generalized to
include different SDP characterizations of the “closest” un-
steerable assemblages, e.g., via the steering robustness [51]
or other quantifiers [39]. Moreover, such a notion can also be
generalized beyond the qubit case. The interest for the present
approach is motivated by the possibility of visualizing the
steering properties of a state onto the Bloch sphere and its
relations with the QSE.

V. APPLICATIONS

In Sec. III, we provided examples of lower and upper
bounds for our steering monotone STD. In what follows, we
demonstrate the usefulness of the LHS surface and the trace-
distance measures of steerability in several related examples.

We analyze three important prototype classes of states (i.e.,
the Werner, Horodecki, and Bell-diagonal states), which are
formed by the singlet state |S〉 mixed with three different
states. Thus, the meaning of the mixing parameter is different
in these states although denoted, for simplicity, by the same
symbol p. Specifically, (a) for the Werner states, the singlet
state |S〉 is mixed with a (separable) completely mixed state,
which is not orthogonal to |S〉; (b) for the Horodecki states,
|S〉 is mixed with a separable state, which is orthogonal to
|S〉; and (c) for the Bell-diagonal states, |S〉 is mixed with
another maximally entangled state (i.e., the entangled triplet
state), which is orthogonal to |S〉.

A. Steerability of Werner states

We analytically show the solution of the LHS surface for
the Werner states [69], which are mixtures of the singlet state
and the maximally mixed state, i.e.,

ρW(p) = p|S〉〈S| + (1 − p)
1

4
, (22)

where |S〉 = 1/
√

2(|10〉 − |01〉) and 0 � p � 1 is the mixing
weight. It is clear that the Werner states are rank-4 Bell-
diagonal states for p < 1. When Alice applies the three Pauli
operators (X, Y , and Z) to measure a given Werner state,
the corresponding Bloch vectors of Bob’s normalized assem-
blage are (±p,0,0), (0,±p,0), and (0,0,±p). The simplest
solution of the preexisted quantum states {σλ}λ is located at
(±p, ± p, ± p) in the Bloch sphere. On the other hand, the
LHSs are the mixtures of four preexisted states according
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FIG. 2. EPR steerability of the Werner states: (a) steerability measure SW
TD, which is based on trace distance, and (b) steerability witness

given by Eq. (21), which is based on the volume of the QSE and LHS surface. For (a), we use the three Pauli bases to obtain the preexisted
states {σλ}λ (red circles), steered states {σ̃a|x}a,x (black triangles), and the unsteerable assemblage {σ̃ US

a|x }a,x (blue circles), respectively. The

auxiliary green cube helps one to see the relative positions of the LHS and the steered states. As expected, when p � 1/
√

3, we find that the
positions of the steered states are outside the LHSs. On the other hand, the Bloch vectors of {σ̃ US

a|x }a,x remain as (±1/
√

3,0,0), (0,±1/
√

3,0), and

(0,0,±1/
√

3), independent of p. This is because the maximal length of a Bloch vector is equal to unity. When p � 1/
√

3, the unsteerable states
{σ̃ US

a|x }a,x are exactly identical to the steered states {σ̃a|x}a,x . For (b), we show the QSE and LHS surface for different values of p. Both surfaces
are spheres so it is sufficient to show the two-dimensional projection. The outer and inner circles are the QSE and LHS surface, respectively.
These circles are centered at c̃ = (0,0,0). The three semiaxes of the QSE lie along x, y, and z. However, the orientations of the three LHS axes
are the same as those of the QSE, but the length is p only when 0 < p < 1/

√
3. When p > 1/

√
3, the lengths are fixed at 1/

√
3. In other words,

the QSE and LHS surfaces are identical when p � 1/
√

3. Once p � 1/
√

3, the LHS surface is fixed, but the QSE expands with p.

to the strategy p(λ) with probability p(a|x,λ) = 1/4. When
p � 1/

√
3, the LHSs σ̃ US

a|x are identical to the steered states

σ̃a|x . As p � 1/
√

3, the Bloch vectors of σ̃ US
a|x are fixed at

(±1/
√

3,0,0), (0,±1/
√

3,0), and (0,0,±1/
√

3), as shown in
Fig. 2. This is because the maximal length of a Bloch vector
is equal to unity. The optimal value of p for the LHS and
preexisted states is 1/

√
3, coinciding with the upper bound

SR
max on the steering inequality 〈XX〉 + 〈YY 〉 + 〈ZZ〉 � √

3
[21]. However, the set of steered states σ̃a|x , i.e., the QSE,
gradually expands with p. One can also rotate the measurement
settings on Alice’s side, but keep them mutually unbiased.
Once all sets of the three measurements are performed, Bob
obtains the LHS surface, which is the set of all σ̃ US

a|x (see Fig. 2).
One can solve analytically this simple case and show that the
LHS surface of the Werner state is actually a sphere, centered
at c̃ = (0,0,0) as the QSE, with radius 1/

√
3 for p � 1/

√
3,

and radius p otherwise (see Fig. 2 and Appendix D). The trace
distance between them is equal to

DW
A ({σa|x}a,x) = 1

4

(
p − 1√

3

)
(23)

for p � 1/
√

3, and 0 otherwise, which is identical to a
quarter of the Euclidean distance between the σ̃ US

a|x and σ̃a|x .
Interestingly, the DW

A ({σa|x}a,x), which can be computed by
our analytical solution for the Werner states, is smaller than
Smax and the same as Smin. Thus, we conclude that SW

TD =

DW
A ({σa|x}a,x), where the superscript W indicates that the

results are for the Werner states. Note that in this example,
we considered only three Pauli measurement bases. It can be
constructive to compare Fig. 2 for the Werner states with Figs. 3
and 4 for other special states.

Another comparison of various upper and lower bounds
for the Werner states is shown in Fig. 1(a). It is seen that the
upper bounds of SW

TD for the Werner states are vanishing for
the mixing parameter p � 1/

√
3 and are linearly increasing

with p > 1/
√

3. This is contrary to the behavior of the same
bounds for the states analyzed in Figs. 1(b) and 1(c).

B. Steerability of Horodecki states

The Horodecki states are the mixtures of a maximally
entangled state, say the singlet state |S〉, and a separable state,
say |00〉, i.e.,

ρH(p) = p|S〉〈S| + (1 − p)|00〉〈00|. (24)

In Fig. 3, we show that the LHS surfaces, which are computed
by the RNCSR for the Horodecki states, are similar to those
for the Werner states. When 0 � p � 1/2, the LHS surface
and QSE are identical. Therefore, the trace distance between
a given assemblage and unsteerable assemblage, which we
consider X,Y, and Z, is 0 when 0 � p � 1/2. As p � 1/2, the
QSE and LHS surfaces gradually expand, but the QSE expands
more rapidly than the LHS surface. The trace distance of the
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p = 0.5p = 0.7p = 0.8

FIG. 3. QSE-based witness of the steerability of the Horodecki states. As can be seen, a given state is steerable if the LHS surface and QSE
are not identical. Horodecki states are unsteerable if the parameter p = 1/2. Otherwise these states are steerable. Note that one of the lower
bounds of STD corresponds to the distance between the inner and outer surfaces (i.e., the Euclidean distance between σ̃ US

a|x and σ̃a|x in the Bloch
sphere) multiplied by the probability distribution p(a|x) and some scaling factor defined in the text.

assemblages also increases when 1/2 � p � 1 [see Fig. 1(b)].
Via numerical fitting of the computed points, we find that the
LHS surface associated with the Horodecki states is consistent
with the corresponding QSE. Another comparison of various
upper and lower bounds for the Horodecki states is shown in
Fig. 1(b).

C. Steerability of rank-2 Bell-diagonal states

In general, Bell-diagonal states of two qubits are mixtures
of the four maximally entangled quantum states. Here, for
simplicity, we consider special rank-2 Bell-diagonal states,
i.e., mixtures of the singlet state |S〉 and a triplet state |T 〉 =
1/

√
2(|10〉 + |01〉), i.e.,

ρB(p) = p|S〉〈S| + (1 − p)|T 〉〈T |, (25)

where p is the mixing weight. In Fig. 4, we show that the LHS
surface, which was computed by the RNCSR, is identical to
the QSE only when p = 1/2; otherwise, these are different.
The distance between a given assemblage and unsteerable
assemblage, which we consider X,Y, and Z, also reveals the
same behavior, as shown in Fig. 1(c). However, the LHS surface
of these Bell-diagonal states cannot be fitted by an ellipsoid.

The upper bounds of STD for the Horodecki states [as
shown in Fig. 1(b)] and the Bell-diagonal states [Fig. 1(c)] are
vanishing for the mixing parameter p ∈ [0,1/2] and p = 1/2,
respectively. Moreover, these bounds are nonlinearly increas-
ing with p � 1/2. This is in contrast to those upper bounds

for the Werner states [shown in Fig. 1(a)], which vanish for
p ∈ [0,1/

√
3] and are linearly increasing with p > 1/

√
3. As

already mentioned in the introduction to Sec. V, the meaning
of the mixing parameter p for these three classes of states
is completely different. By analyzing the Werner states, we
see that by mixing the singlet state |S〉 with the maximally
mixed state 1/4, the steerability of such “noisy” singlet states
is completely destroyed for a wider range of the values of the
mixing parameter p in comparison to the other two cases, i.e.,
to the mixing of the singlet state |S〉 with a state |ψ〉 orthogonal
to |S〉 both for the separable state |ψ〉 = |00〉 (which results
in the Horodecki states) and for the maximally entangled state
|ψ〉 = |T 〉 (which results in the Bell-diagonal states).

VI. CONCLUSIONS AND OUTLOOK

In this work, we defined the trace distance between two
assemblages and the corresponding measure of steerability
based on this distance. We have shown that this measure
of steerability is indeed a convex steering monotone under
restricted one-way LOCCs. We provided a way of estimating
such a quantity via lower and upper bounds based on SDPs.
Specifically, a lower bound is based on the operator norm, while
a few upper bounds are found by applying various steering
measures, including the CSR [32] and a restricted version of the
CSR. Using the latter bound, we proposed a way of visualizing
the steerability property of a quantum state in the Bloch sphere
via the notion of a LHS surface, which relates the steerability

p = 0.5p = 0.7p = 0.8

FIG. 4. QSE-based witness of the steerability of the rank-2 Bell-diagonal states. As can be seen, a given state is steerable if its LHS surface
and QSE are not identical. The Bell-diagonal states are unsteerable if the parameter p = 1/2. Otherwise these are steerable.
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problem, in the sense of the existence of a LHS model, with
the notion of QSEs.

We computed EPR steerability by describing a set of
states in the Bloch sphere. We did not construct a space of
assemblages. Thus, we defined, in particular, the upper bound
SR

max, which can be directly computed by summing up (with
some coefficients) all the “Euclidean distances” between Bloch
vectors. Therefore, SR

max has a clear geometrical meaning.
Moreover, in Sec. V A, we also pointed out that STD for the
Werner states (as denoted by SW

TD) has a direct relation to
the distance between the set of states in the Bloch sphere.
The monotone SW

TD is a linear function of the distance from
the points (x,0,0), (0,x,0), and (0,0,x) (where x = ±1/

√
3)

of the Bloch sphere to a normalized quantum state of its
assemblage in the Bloch sphere, when the mixing parameter
p > 1/

√
3. Thus, by referring to a “geometrical” interpreta-

tion, we mean the Euclidean distance between quantum states
in the Bloch sphere.

We defined the witness 	V of steerability correspond-
ing to the difference of the volumes enclosed by the QSE
and the LHS surface. The LHS surfaces enable calculation
of the proposed steering monotone STD optimized over all
mutually unbiased bases. We remark that this observation
relates the different concepts of (i) the steering witness 	V ,
which reveals the steerability of a quantum state, and (ii) the
steering monotone STD, which describes the steerability of an
assemblage.

Our study stimulates some further investigations. First,
it is known that the QSE has an analytical representation.
Therefore, it is natural to ask if the LHS surface also has an
analytical formulation, at least, for some specific states. Our
analysis shows that this is the case for the Werner states and we
have numerical evidence that the same could be possible for the
Horodecki states. Second, since we have obtained the witness
of steerability for a given quantum state, given in Eq. (21), it is
interesting to investigate whether such a difference of volumes,
i.e., between the QSE and LHS surface, has some physical
meaning and can be used to obtain a new steering monotone
for a quantum state.
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APPENDIX A: METRIC PROPERTIES

Here we define the trace distance between two assemblages
as

DA({σa|x}a,x,{ρa|x}a,x) = 1

Nx

∑
a,x

D(σa|x,ρa|x), (A1)

where D(ρ,ρ ′) := 1
2‖ρ − ρ ′‖ and ‖X‖ := tr[|X|] is the trace

norm. Now we show that DA satisfies the following three basic
properties required for a true metric:

(1) It is obvious that DA({σa|x}a,x,{ρa|x}a,x) = 0 because
{σa|x}a,x and {ρa|x}a,x are the same.

(2) Here, we prove that the trace distance between two
assemblages is symmetric:

DA({σa|x}a,x,{ρa|x}a,x) = 1

Nx

∑
a,x

D({σa|x}a,x,{ρa|x}a,x)

= 1

Nx

∑
a,x

D({ρa|x}a,x,{σa|x}a,x)

= DA({ρa|x}a,x,{σa|x}a,x). (A2)

The second equality is based on a property of the matrix norm.
(3) We now show that the trace distance between two

assemblages satisfies the triangle inequality,

DA({σa|x}a,x,{ρa|x}a,x)

= 1

Nx

∑
a,x

D({σa|x}a,x,{ρa|x}a,x)

� 1

Nx

∑
a,x

[D({σa|x}a,x,{θa|x}a,x) + D({θa|x}a,x,{ρa|x}a,x)]

= DA({σa|x}a,x,{θa|x}a,x) + DA({θa|x}a,x,{ρa|x}a,x). (A3)

The first inequality follows from the property of the trace norm.
This completes our proof.

APPENDIX B: RESTRICTED CONVEX
STEERING MONOTONE

First, we recall the definition of a convex steering monotone
introduced in Ref. [7] with the restrictive assumption from
Ref. [54], namely, the independence of Alice’s choice from
Bob’s outcome ω.

A function S, relating assemblages with non-negative real
numbers, is a convex steering monotone if it satisfies the
following:

(i) It vanishes for unsteerable assemblages,

S({σa|x}a,x) = 0 for all {σa|x}a,x ∈ LHS. (B1)

(ii) (Monotonicity) S is nonincreasing, on average, under
restricted one-way LOCCs, i.e.,

∑
ω

P (ω) S

({
σω

a′|x ′

P (ω)

}
a′,x ′

)
� S({σa|x}a,x), (B2)

where

σω
a′ |x ′ :=

∑
a,x

p(x|x ′)p(a′|a,x,x ′,ω)Kωσa|xK†
ω (B3)
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is an assemblage obtained from the initial assemblage {σa|x}a,x

by performing restricted one-way LOCCs. Here, Kω is a Kraus
operator with outcome ω and

∑
i K

†
i Ki = 1, while p(x|x ′) and

p(a′|a,x,x ′,ω) are classical postprocessing, i.e., deterministic
wiring maps, on Alice’s side.

(iii) (Convexity) Given a real number 0 � μ � 1 and two
assemblages {σa|x}a,x and {σ ′

a|x}a,x , the steering function S

satisfies the inequality

S(μ{σa|x}a,x + (1 − μ){σ ′
a|x}a,x)

� μS({σa|x}a,x) + (1 − μ)S({σ ′
a|x}a,x).

Given an assemblage, we recall that the consistent trace-
distance measure of steerability is defined as

STD({σa|x}a,x) := min

{
DA({σa|x}a,x,{ρa|x}a,x)|

{ρa|x}a,x ∈ LHS,
∑

a

ρa|x =
∑

a

σa|x, ∀x

}
, (B4)

where DA({σa|x}a,x,{σ ′
a|x}a,x) = ∑

a,x p(x)D(σa|x,σ ′
a|x). First,

it is obvious that the trace-distance measure of steerability
satisfies condition (i). Before we prove that the trace-distance
measure of steerability satisfies condition (ii), we prove the
following Lemma.

Lemma 1. Let {Iω}ω be a collection of positive trace-
nonincreasing maps, summing up to a trace-nonincreasing map
I := ∑

ω Iω. Then, for any Hermitian operators T and S, we
have ∑

ω

tr[|Iω(T ) − Iω(S)|] � tr[|T − S|]. (B5)

Proof. The proof is a slight modification of the one by
Ruskai [74]. Let us define X := T − S. Since X is Hermitian,
by spectral decomposition, we can write X = X+ − X−, with
X+,X− � 0. We then have∑

ω

tr[|Iω(T ) − Iω(S)|]

=
∑

ω

tr[|Iω(X)|] =
∑

ω

tr[|Iω(X+) − Iω(X−)|]

�
∑

ω

tr[|Iω(X+)|] + tr[|Iω(X−)|]

=
∑

ω

tr[Iω(X+)] + tr[Iω(X−)]

= tr

[∑
ω

Iω(X+ + X−)

]

� tr[X+ + X−] = tr[|X+ − X−|] = tr[|X|], (B6)

where tr[|X|] and tr[X] denote the trace norm and trace,
respectively, andw we used, in order, the triangle inequality,
positivity, linearity, and trace-nonincreasing property. �

Lemma 2. The trace distance between two assemblages
does not increase under deterministic wiring maps on Alice’s
side, under the restricted hypothesis p(x|x ′,ω) = p(x|x ′) of
Eq. (B3).

Proof. A wiring map Wω, depending on a parameter ω,
is a transformation of assemblages into assemblages given
(component-wise) by Eq. (4). Note that given two assemblages
{σ 1

a|x}a,x,{σ 2
a|x}a,x , we can write

DA(Wω

({
σ 1

a|x
}

a,x

)
,Wω

({
σ 2

a|x
}

a,x

) = DA

⎛
⎝{∑

a,x

p(x|x ′)p(a′|a,x,x ′,ω)σ 1
a|x

}
a′,x ′

,

{∑
a,x

p(x|x ′)p(a′|a,x,x ′,ω)σ 2
a|x

}
a′,x ′

⎞
⎠

=
∑
a′,x ′

p(x ′)D

(∑
a,x

p(x|x ′)p(a′|a,x,x ′,ω)σ 1
a|x,

∑
a,x

p(x|x ′)p(a′|a,x,x ′,ω)σ 2
a|x

)

�
∑

a′,x ′,a,x

p(x|x ′)p(a′|a,x,x ′,ω)p(x ′)D
(
σ 1

a|x,σ
2
a|x

) =
∑
a,x,x ′

p(x,x ′)D
(
σ 1

a|x,σ
2
a|x

)

=
∑
a,x

p(x)D
(
σ 1

a|x,σ
2
a|x

) = DA

({
σ 1

a|x
}

a,x
,
{
σ 2

a|x
}

a,x

)
, (B7)

where the inequality holds since, for λi � 0 (not necessarily summing up to one),

D

(∑
i

λiρi,
∑

i

λiρ
′
i

)
= 1

2
tr

∣∣∣∣∣
∑

i

λi(ρi − ρ ′
i)

∣∣∣∣∣ � 1

2

∑
i

tr |λi(ρi − ρ ′
i)| = 1

2

∑
i

λi tr |ρi − ρ ′
i |. (B8)

This concludes the proof. �
Lemma 3. The quantifier STD does not increase, on average, by performing local operations on Bob’s side defined by a collection

of completely positive trace-nonincreasing maps {Iω}ω, which sum up to a trace-preserving map I = ∑
ω Iω.

Proof. Let {ρ̃∗ω
a|x}a,x be the optimal unsteerable consistent assemblage giving the minimum trace distance forIω({σa|x}a,x)/P (ω),

and {ρ∗
a|x}a,x the unsteerable consistent assemblage giving the minimum trace distance for {σa|x}a,x . We can then
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write∑
ω

P (ω)STD

(Iω({σa|x}a,x)

P (ω)

)
=

∑
ω

P (ω)DA

(Iω({σa|x}a,x)

P (ω)
,{ρ̃∗

a|x}
)
�

∑
ω

P (ω)DA

(Iω({σa|x}a,x)

P (ω)
,
Iω({ρ∗

a|x}a,x)

P (ω)

)

=
∑

ω

DA(Iω({σa|x}a,x),Iω({ρ∗
a|x}a,x)) =

∑
ω,a,x

tr[|Iω(σa|x) − Iω(ρ∗
a|x)|] �

∑
a,x

tr[|σa|x − ρ∗
a|x |],

(B9)

where we used for the first inequality the fact that ρ̃∗
a|x is the minimum, linearity of the trace distance for non-negative P (ω), and

Lemma 1 for the last inequality. �
Theorem 1. The consistent trace-distance measure of steerability STD does not increase on average under restricted one-way

LOCCs, namely,

∑
ω

P (ω) STD

({
σω

a′|x ′

P (ω)

}
a′,x ′

)
� STD({σa|x}a,x). (B10)

Proof. The proof is simply given by an application of Lemmas 2 and 3, namely,

∑
ω

P (ω) STD

({
σω

a′ |x ′

P (ω)

}
a′,x ′

)
=

∑
ω

P (ω) STD

({
Wω({Kωσa|xK†

ω}a,x)a′|x ′

P (ω)

}
a′,x ′

)

�
∑

ω

P (ω) STD

({
Kωσa|xK†

ω

P (ω)

}
a,x

)
� STD({σa|x}a,x). (B11)

�
Finally, we prove convexity. Given the assemblage {Ka|x}a|x , obtained as a convex mixture Ka|x = μσa|x + (1 − μ)ρa|x , we

have
STD({Ka|x}a|x) := min

{KUS
a|x }a,x∈LHS

DA

({Ka|x}a,x,
{
KUS

a|x
}

a,x

)
:= min

{KUS
a|x }a,x∈LHS

DA

({μσa|x + (1 − μ)ρa|x}a,x,
{
KUS

a|x
}

a,x

)
� DA

({μσa|x + (1 − μ)ρa|x}a,x,
{
μσ̃ US

a|x + (1 − μ)ρ̃US
a|x

}
a,x

)
=

∑
a,x

p(x)
1

2

∥∥μσa|x + (1 − μ)ρa|x − μσ̃ US
a|x − (1 − μ)ρ̃US

a|x
∥∥

=
∑
a,x

p(x)
1

2

∥∥μσa|x − μσ̃ US
a|x + (1 − μ)ρa|x − (1 − μ)ρ̃US

a|x
∥∥

�
∑
a,x

p(x)

{
1

2

∥∥μσa|x − μσ̃ US
a|x

∥∥ + 1

2

∥∥(1 − μ)ρa|x − (1 − μ)ρ̃US
a|x

∥∥}

= μSTD({σa|x}a,x) + (1 − μ)STD({ρa|x}a,x). (B12)

The first inequality is that the convex combination of the other
two optimal LHS assemblages is not necessarily the optimal
assemblage for the convex combination assemblages (but it
is still consistent in the sense of the total reduced state). The
final inequality is due to the property of the trace norm. This
completes our proof of convexity.

APPENDIX C: SEMIDEFINITE PROGRAMMING
FORMULATION OF SR

CSR

The RNCSR, SR
CSR defined by Eq. (8), can be computed by

the following SDP:

min:
∑

λ

tr(σλ) − 1,

subject to:
∑

λ

p(a|x,λ)σλ − σa|x

�
[∑

λ

tr(σλ) − 1

]
tr(σa|x)σB,

for all a,x;∑
λ

tr(σλ) � 1;

σλ � 0, ∀λ; (C1)

with p(a|x,λ) taken as the deterministic strategies, i.e., λ :=
(λx)x and p(a|x,λ) := δa,λx

.
In fact, it is sufficient to note that for all t � SR

CSR, there
exists {σ ′

λ}λ such that

(1 + t)
∑

λ

p(a|x,λ)σ ′
λ − σa|x = t tr(σa|x)σB. (C2)
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Since
∑

λ tr(σ ′
λ) = 1, we can absorb the factor (1 + t) into

the LHS assemblage, i.e., σλ = (1 + t)σ ′
λ. Note that the first

inequality in the definition of the SDP, despite being a weaker
condition than the inequality, does not provide a lower value
of SR

CSR. To prove this, let us just consider a feasible solution
{σλ} of the SDP; we then have

∑
λ

p(a|x,λ)σλ − σa|x −
[∑

λ

tr(σλ) − 1

]
tr(σa|x)σB

=: ηa|x � 0. (C3)

Then, by summing over a and taking the trace of the left-hand
side of (C3), we obtain tr(

∑
a ηa|x) = 0, for allx, which implies

ηa|x = 0 for all a,x, since ηa|x � 0, by our assumption.

APPENDIX D: LHS SURFACE OF WERNER STATES

Here, we assume that one measurement is the Z mea-
surement and the others are aligned in the XY plane. Since
three measurements are orthogonal, the Werner states can be
expanded in the Pauli bases, i.e., ρ = 1

4 (1 − ∑3
i=1 pσi ⊗ σi).

All projective measurements can also be expressed in the
Pauli bases, i.e., E±|a = 1

2 (1 ± ∑3
i=1 aiσi), where a can be

seen as a vector in the Bloch sphere. Once Alice performs
projective measurements on her qubit, Bob’s qubit collapses
into ρa

± = 1
2 (1 ± ∑

i paiσi).
Now we use spherical coordinates to expand a =

(sin θ cos φ, sin θ sin φ, cos θ ). Alice can choose three orthog-
onal ai given by

a1 = (cos φ, sin φ,0),

a2 = (cos(φ + π/2), sin(φ + π/2),0),

a3 = (0,0,1). (D1)

The postmeasurement states which Bob holds are

ρ
a1+ = (p cos φ,p sin φ,0),

ρ
a1− = (−p cos φ, − p sin φ,0),

ρ
a2+ = (−p sin φ,p cos φ,0),

ρ
a2− = (p sin φ, − p cos φ,0),

ρ
a3+ = (0,0,p), ρ

a3− = (0,0, − p). (D2)

Here we already use the Bloch-vector representation of a
quantum state. There are eight preexisted quantum states σλ,
which can be expressed as

σλ1 = p(cos φ − sin φ, sin φ + cos φ,1),

σλ2 = p(cos φ + sin φ, sin φ − cos φ,1),

σλ3 = p(− cos φ − sin φ, − sin φ + cos φ,1),

σλ4 = p(− cos φ + sin φ, − sin φ − cos φ,1),

σλ5 = p(cos φ − sin φ, sin φ + cos φ, − 1),

σλ6 = p(cos φ + sin φ, sin φ − cos φ, − 1),

σλ7 = p(− cos φ − sin φ, − sin φ + cos φ, − 1),

σλ8 = p(− cos φ + sin φ, − sin φ − cos φ, − 1).

It is obvious that the preexisted quantum states only exist
when p � 1/

√
3 because the radius of a pure-state Bloch

vector is equal to one. One can choose four specific preexisted
quantum states to mimic the postmeasurement states with equal
probability of 1/4. Thus, the LHS states are ρ

ai ,US
± and are

given by Eqs. (D2), with p � 1/
√

3 for i = 1,2, and 3. As
p > 1/

√
3, the LHS states do not exist. We can easily check

that the states ρ
ai ,US
± , given by Eq. (D2) for p � 1/

√
3, are

located at the circle centered at (0,0,0) and with radius p

because the Werner states are highly symmetrical. Once we
rotate the measurement settings, the new measurements which
correspond to the original XY plane are also located on a circle.
Thus, the LHS state of the Werner state is a sphere.
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