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Heralded near-deterministic multiqubit controlled-PHASE gates with integrated error detection have recently
been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015)]. This protocol is based on a single
four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator
mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity
bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and
its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits
inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside
the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with
flux and PHASE qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a
quadratic fidelity improvement compared to cavity-assisted deterministic gates.
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I. INTRODUCTION

The ability to carry out quantum gates is one of the central
requirements for a functional quantum computer [1]. For
this reason, quantum gates have been extensively studied in
theoretical and experimental in various systems. These include
(for reviews see Refs. [2,3] and references therein): super-
conducting circuits, trapped ions, diamond nitrogen-vacancy
centers, semiconductor nanostructures, or linear-optical se-
tups. Despite such substantial efforts, the environment-induced
decoherence still represents a major hurdle in the quest for
perfect quantum gates. To protect quantum systems from deco-
herence, three basic approaches have been explored: quantum
error correction, dynamical decoupling, and decoherence-free
subspaces (for reviews see Refs. [4,5] and references therein).
Such approaches try to cope with decoherence and, thus, to
prevent the leakage of quantum information from a quantum
system into its environment.

Alternatively, there exists a very distinct way where
decoherence acts as a resource, rather than as a traditional
noise source [6–10]. Recent progress in treating open quantum
systems has yielded an effective operator formalism [11,12].
As in Ref. [12], (1) when the interactions between the ground-
and excited-state subspaces of an open system initially in
its ground state are sufficiently weak (so it can be consid-
ered as perturbations of the two subspaces) and (2) when
the interactions inside the ground-state subspace are much
smaller than those inside the excited-state subspace, one can
adiabatically eliminate these excited states in the presence of
both unitary and dissipative dynamics, and obtain an effective
master equation containing the effective Hamiltonian, as well
as the effective Lindblad operators, associated only with the
ground states. In addition to reducing the complexity of the
time evolution for an open quantum system, this approximation
treatment is applicable to the explorations of decay processes,

hence may lead to a better performance than that in the case
of relying upon coherent-unitary dynamics.

So far, such a formalism has been widely used for dissi-
pative entanglement preparation [11,13–18], quantum phase
estimation [19], and other applications [20–23]. In particular,
Borregaard et al. presented a heralded near-deterministic
method for quantum gates in a single optical cavity [24], with
a significant improvement in the error scaling, compared to
deterministic cavity-based gates. However, in order to carry out
scalable quantum information processing, a distant herald for
quantum gates in coupled resonators is of a great importance
concerning both experimental feasibility and fundamental tests
of quantum mechanics.

The goal of this paper is to propose and analyze an approach
to heralding controlled quantum gates in two macroscopically
distant resonators, by generalizing the single-resonator method
of Borregaard et al. [24]. We use an auxiliary quartit atom,
which is located in one resonator and driven by two coherent
fields, to distantly herald controlled-PHASE gates acting on
the two lowest levels of qutrit atoms, which are located in
the other resonator. These controlled-PHASE operations studied
here include the two-qubit controlled-Z gate (controlled-sign
gate) and its multiqubit-controlled version referred to as a
Toffoli-like gate. We also propose a realization of these gates
using superconducting artificial atoms in a dissipative circuit
quantum electrodynamics (QED) system.

Circuit-QED systems, which are composed of super-
conducting artificial atoms coupled to superconducting res-
onators, offer promising platforms for quantum engineering
and quantum-information processing [2,25–29]. Although
artificial and natural atoms are similar in various properties
including, for example, discrete anharmonic energy levels
[30–32], superconducting atoms have some substantial ad-
vantages over natural atoms. These include the following: (1)
The spacing between energy levels, decoherence rates, and
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coupling strengths between different circuit elements are tun-
able by adjusting external parameters, thus, providing flexibil-
ity for quantum information processing [2,3]. (2) The potential
energies of natural atoms have an inversion symmetry, leading
to a well-defined parity symmetry for each eigenstate. Thus,
an allowable dipole transition requires a parity change, and
can only occur between the two eigenstates having different
parities. However, the potential energies of superconducting
artificial atoms can be controlled [33] by external parameters,
and, in turn, the inversion symmetry can be broken or
unbroken. When the symmetry is unbroken, each eigenstate
of an artificial atom can have a well-defined parity symmetry
and, thus, exhibit a transition behavior similar to natural atoms.
But when the symmetry is broken, then there is no well-defined
parity symmetry for each eigenstate and, thus, the microwave-
induced single-photon transition between any two eigenstates
can be possible. That is, the selection rules can easily be modi-
fied [34]. (3) The couplings between different circuit elements
can be strong, ultrastrong (for reviews see Refs. [3,32]), or
even deep strong [35], which, in particular, enable efficient
state preparation within a short time and with a high fidelity.

Specifically, based on circuit QED we realize a distant her-
ald for a multiqubit Toffoli-like gate, whose the fidelity scaling
is quadratically improved as compared to unitary-dynamics-
based gates in cavities [24,36]; moreover, heralded controlled-
Z gates even with more significant improvements can also
be achieved by using single-qubit operations. Note that the
conditional measurement on the heralding atom is performed
to remove the detected errors from the quantum gate. Thus,
these detected errors can reduce only the success probability
but not the gate fidelity. When the gate is successful, the gate
fidelity can still be very high as limited only by the undetected
errors. In contrast to previous works, a macroscopically distant
herald for quantum gates is proposed in superconducting
circuits via the combined effect of the dissipative and unitary
dynamics, thereby having the potential advantage of high
efficiency in experimental scenarios. By considering only the
d lowest energy levels of a superconducting artificial atom,
one can use them as a logical qudit for performing quantum
operations. In special cases, one can operate with a qubit (for
d = 2), qutrit (for d = 3), or quartit (ququart, for d = 4). Here
we will analyze these special qudits.

This paper is organized as follows. In Sec. II we describe a
physical model for heralded quantum PHASE gates and propose
a superconducting circuit for its realization. In Sec. III we
derive the effective master equation, which is used in Sec. IV
to realize a multiqubit Toffoli-like gate. Working with single-
qubit operations, Sec. V then presents a heralded controlled-Z
gate. The last section is our summary. A detailed derivation of
the effective master equation, which is applied in Sec. III, is
given in the Appendix.

II. PHYSICAL MODEL IN SUPERCONDUCTING
CIRCUITS

The basic idea underlying our protocol is schematically
illustrated in Figs. 1 and 2. Figure 1 shows our proposal
of the circuit-QED implementation of the protocol based on
superconducting qudits, while the corresponding energy-level
diagrams of the qudits are depicted in Fig. 2. Specifically,

FIG. 1. (a) Schematic diagram of a superconducting circuit lay-
out, which shows our implementation of a heralded near-deterministic
controlled multiqubit Toffoli-like gate and, in a special case, the
two-qubit controlled-Z (CZ) gate. Two transmission-line resonators
(TLRs), labeled by A and B, are linearly coupled via a capacitor.
Resonator A is coupled to a PHASE quartit (e.g., a four-level qudit) via
a capacitance, while resonator B is coupled to N identical flux qutrits
(e.g., three-level qudits). Such circuit elements can be controlled via
ac and dc signals through the control lines. The distance between the
qudit and qutrits can be of order of cm due to the macroscopic length
of the resonators. (b) An energy-level diagram for a prototypical
phase quartit, and (c) that diagram for a typical flux qutrit. Here we
assume that the energy potential for the quartit is cubic and for the
qutrit is an asymmetric double well. Note that both flux and PHASE

qudits can be tuned (for example, by adjusting the flux bias in the
qudit loop) to obtain exactly two, three, or four levels. For example,
following the method of Refs. [37,38], the PHASE qudit state can be
controlled by an ac signal ISC, while a dc signal IB is used to bias the
circuit. Moreover, a short measurement pulse IM is applied to decrease
the barrier in the energy potential well of panel (b) to enable given
upper states to tunnel out of the well. These tunneling currents can be
detected by another SQUID, which, for brevity, is not plotted here.
Thus, the proposed quantum gates can be realized, based solely on
flux or PHASE qudits, or other superconducting qudits. The successful
operation of this Toffoli-like gate is heralded by the detection of the
quartit in its ground state |g1〉.

we consider two superconducting transmission-line resonators
A and B, connected by a capacitor [39]. The coupling
Hamiltonian, of strength J , for the two resonators can be
expressed as (hereafter we set h̄ = 1)

HAB = J (aAa
†
B + a

†
AaB), (1)

where aA (aB) is the annihilation operator of the resonator A

(B). We assume that superconducting artificial atoms, which
are treated as qudits (i.e., d-level quantum systems) [38,40],
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FIG. 2. Energy-level diagram showing allowed transitions and couplings in the circuit-QED system depicted in Fig. 1. Two single-mode
resonators, labeled by A and B are coupled with a strength J . An auxiliary, quartit atom, which acts as a heralding device, is confined in the
resonator A. Two microwave fields drive off-resonantly the transitions |g1〉 → |e1〉 and |e1〉 → |e2〉 of the auxiliary quartit, with strengths �1

and �2, respectively. Moreover, the states |g2〉 and |e2〉 are coupled by the resonator mode aA with strength gA. In the resonator B, there are
confined N qutrit atoms, for which the two lowest-energy levels can be treated as qubits. For each qutrit atom, only the state |1〉 is coupled to
|2〉 by the resonator mode aB with strength gB . Upon restricting our discussion to sufficiently weak microwave drive �1, we could adiabatically
eliminate the excited states of the total system to yield an effective Lindblad-type master equation, which involves the ground states only. The
resulting dynamics allows for the realization of the controlled-PHASE gates, which can successfully occur if the auxiliary quartit in the state
|g1〉 is measured.

are coupled to the resonators. Specifically, a superconducting
PHASE quartit is directly confined inside the resonator A and
is used as an auxiliary quartit atom to herald the success of
quantum gates. Such a quartit consists of two ground levels |g1〉
and |g2〉, as well as two excited levels |e1〉 and |e2〉, depicted
in Fig. 1(b). Because the potential energy of the PHASE quartit
is always broken, the quartit levels have no well-defined parity
symmetry [38,41,42]. Thus, we can couple any two levels by
applied fields. We assume that the transition between |g2〉 and
|e2〉 is coupled to the resonator A by an inductance, with a
Hamiltonian

HA = gA(aA|e2〉〈g2| + H.c.), (2)

where gA > 0 is a coupling strength.
In a similar manner, we couple the resonator B to N�-

type qutrits, for example, superconducting flux three-level
atoms [33,43]. Each qutrit consists of two ground levels |0〉 and
|1〉, together with one excited level |2〉, depicted in Fig. 2(c).
The lowest two levels of an atomic qutrit are treated as qubit
states. With current technologies, superconducting atoms can
be made almost identical. Thus, for simplicity, we can assume
that these qutrits are identical and have the same coupling,
of strength gB , to the resonator B. Such a coupling can be
ensured by adjusting the control signals on the qutrits and
by tuning the separation between any two qutrits to be much
smaller than the wavelength of the resonator B, respectively.
The corresponding Hamiltonian is

HB = gB

N∑
k=1

(aB |2〉k〈1| + H.c.). (3)

where k labels the qutrits and gB > 0 is the coupling strength
of the resonator B. Note that the direct dipole-dipole coupling
between the qutrits has been neglected, owing to their large
spatial separations. Nevertheless, these qutrits can interact
indirectly via the common field aB of the resonator B,
analogously to the model of three-level quantum dots in
a resonator studied for quantum-information processing in

Refs. [44,45]. Because the Josephson junctions are nonlinear
circuits elements [32], and therefore the resulting levels are
highly anharmonic compared to the driving strengths as well
as to the atom-resonator coupling strengths, all transitions of
the quartit and the qutrits can be driven or coupled separately
by the control lines, as shown in Fig. 2(a).

We also assume that a microwave field at the frequency
ωm,1 drives the |g1〉 ↔ |e1〉 transition, with a driving strength
�1 and at the same time, the excited states |e1〉 and |e2〉 are
also coupled by means of a microwave field at the frequency
ωm,2, with a coupling strength �2. The interaction Hamiltonian
describing the effect of these external drives reads as

HD = 1
2 (�1e

iωm,1t |g1〉〈e1| + �2e
iωm,2t |e1〉〈e2| + H.c.). (4)

Define ωg,x , ωe,x , and ωz as the frequencies of the atomic levels
|gx〉, |ex〉, and |z〉, respectively, with x = 1,2 and z = 0,1,2.
Thus, the total Hamiltonian for our system is

HT = H0 + HA + HB + HAB + HD, (5)

where

H0 =
∑
x=1,2

(ωg,x |gx〉〈gx |+ωe,x |ex〉〈ex |)+
N∑

k=1

∑
z=0,1,2

ωz|z〉k〈z|

+ωc(a†
AaA + a

†
BaB) (6)

is the free Hamiltonian.
Upon introducing the symmetric and antisymmetric optical

modes, a± = (aA ± aB)/
√

2, the total Hamiltonian in a proper
rotating frame reads HT = He + V + V †, with

He =
N∑

k=1

{
δ|2〉k〈2| + gB√

2
[(a+ − a−)|2〉k〈1| + H.c.]

}
+�e,1|e1〉〈e1| + �e,2|e2〉〈e2| + 2Ja

†
+a+

+ gA√
2

[(a++a−)|e2〉〈g2|+H.c.]+�2

2
(|e2〉〈e1|+H.c.)

(7)
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TABLE I. Basic notations used in this paper. Here x = 1,2 and
z = 0,1,2.

Notation Meaning

ωg(e),x |gx〉-(|ex〉-) level frequency
ωz |z〉-level frequency
ωc Common resonance frequency of resonators A and B

ωm,x Microwave drive x frequency
�x Microwave x driving amplitude strength
gA (gB ) Coupling strength between the quartit (qutrit) atom

and resonator A (B)
J Interresonator coupling strength
γg,x Decay rate from level |ex〉 to |gx〉
γx−1 Decay rate from level |2〉 to |x − 1〉
γ Total decay rate, γ = γ0 + γ1, of each qutrit atom
κ Resonator decay rate
CB Atom-resonator cooperativity, CB = g2

B/(κγ ),
�e,1 Microwave detuning, �e,1 = ωe,1 − ωg,1 − ωm,1

�e,2 Microwave detuning, �e,2 = ωe,2 − ωg,1 − ωm,1 − ωm,2

δ Resonator detuning, δ = ω2 − ω1 − ωm,1 − ωm,2

−ωg,1 + ωg,2

and

V = �1

2
|e1〉〈g1|. (8)

Note that we have applied the rotating-wave approximation
(RWA), which directly drops the fast oscillating terms of the
total Hamiltonian. The detunings are defined as (see Fig. 2)

δ = ω2 − ω1 − ωm,1 − ωm,2 − ωg,1 + ωg,2, (9)

�e,1 = ωe,1 − ωg,1 − ωm,1, (10)

�e,2 = ωe,2 − ωg,1 − ωm,1 − ωm,2. (11)

In Eq. (7) we have assumed

ωc = ω2 − δ − ω1 + J, (12)

such that the three-photon Raman transition between the levels
|g1〉 ↔ |e1〉 ↔ |e2〉 ↔ |g2〉, is resonant when mediated by the
antisymmetric mode a−, but is detuned by 2J when mediated
by the symmetric mode a+. We further assume that |e1〉 and
|e2〉 decay to |g1〉 and |g2〉, respectively, with rates γg,1 and
γg,2, and for each qutrit atom, |2〉 can decay either to |0〉 with
a rate γ0 or to |1〉 with a rate γ1. In addition, both resonators
are assumed to have the same decay rate κ . All basic symbols
used in this paper are shown in Table I.

III. MASTER EQUATION

Here we present a standard approach based on the master
equation in the Lindblad form to study the dissipative dynamics
of our system. The master equation is valid under a few
fundamental assumptions which include [46–48] (A1) the
approximation of the weak coupling between the analyzed
system and its reservoir (environment), (A2) the Markov
approximation, and (A3) the secular approximation. The
approximations (A1) and (A2) are often referred to as the
Born-Markov approximation. By applying (A2), one assumes

that the environmental-memory effects are short-lived, such
that the system evolution depends only on its present state. This
approximation is valid if the environmental correlation time
(which can be evaluated by the decay timescale of the two-time
correlation functions of the environmental operators coupled
to the system) is much shorter than a typical system-evolution
timescale over which the system experiences a significant
evolution. For example, the Born-Markov approximation is
valid if an environment is large and weakly coupled to a
system. The approximation (A3) is applied to cast a given
Markovian master equation into the Lindblad form. This
corresponds to ignoring fast-oscillating terms in the master
equation based on (A1) and (A2). Thus, (A3) is sometimes
called the RWA, although it is usually applied at the level of a
given master equation, and not necessarily at the level of the
system-reservoir interaction Hamiltonian. There are numerous
references showing the excellent agreement between the
experimental and theoretical results based upon the master
equation in the Lindblad form describing the lossy interaction
of quantum systems (including superconducting artificial
atoms) and resonator fields (see, e.g., Refs. [49,50] and
references therein). The validity of these approximations for
a single-qudit version of our system was also experimentally
analyzed in Ref. [15].

The standard master equation in the Lindblad form for
the system described by the Hamiltonian given in Eq. (5),
assuming the zero-temperature environment (bath), can be
given by [46–48]

ρ̇T (t) = i[ρT (t),HT ] + 1

2

∑
j

[2LjρT (t)L†
j

− ρT (t)L†
jLj − L

†
jLjρT (t)], (13)

where ρT (t) is the density operator of the total system. The
Lindblad operators associated with the resonator decay and
atomic spontaneous emission are accordingly given by

L± = √
κa±,

Lg,x = √
γg,x |gx〉〈ex |, (14)

Lk,x−1 = √
γx−1|x − 1〉 k〈2|,

where k labels the qutrit atoms, and x = 1,2.
We now consider a weak microwave drive �1, so that

{�1/�e,1,�1/gA(B)} � 1. In this situation, both the resonator
modes and excited atomic states can be adiabatically elimi-
nated if the system is initially in its ground state. Following
the procedure in Ref. [12], the dynamics is therefore described
by the effective Hamiltonian,

Heff = −1

2
V †[H−1

NH + (
H−1

NH

)†]
V, (15)

and the effective Lindblad operators,

L
j

eff = LjH
−1
NHV. (16)

Here

HNH = He − i

2

∑
j

L
†
jLj (17)

accounts for the no-jump Hamiltonian, where the sum runs
over all dissipative processes as mentioned in Eq. (14).
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The effective Lindblad master equation then has the
form

ρ̇(t) = i[ρ(t),Heff] + 1

2

∑
j

{
2L

j

eff ρ(t)
(
L

j

eff

)†
− [(

L
j

eff

)†
L

j

eff ρ(t) + ρ(t)
(
L

j

eff

)†
L

j

eff

]}
, (18)

assuming the reservoir at zero temperature. Here ρ(t) is the
density operator of the quartit and qutrit atoms.

As explained in detail in the Appendix, when working
within the limits �2 � �e,1 and κ � J , we can more
explicitly obtain the effective Hamiltonian

Heff = |g1〉〈g1| ⊗
N∑

n=0

�nPn, (19)

where Pn represents a projector onto a subspace characterized
by n atomic qutrits in |1〉, and

�n = − �̃2

4γ
Re

{
1

Zn

(iδ̃ + nCB)

}
(20)

refers to an AC stark shift with

Zn = iδ̃�̃e,2 + CB(αδ̃ + n�̃e,2) − nαC2
B/G. (21)

Here we have defined the overall decay rate γ = γ0 + γ1,
of each qutrit atom, the effective drive �̃ = �1�2/(2�e,1),
and the following dimensionless quantities: the atom-resonator
cooperativity CB = g2

B/(κγ ), the strength G = J/κ , the com-
plex detunings δ̃ = δ/γ − i/2, �̃e,2 = �e,2/γ − iβ/2, and the
parameters

α = (gA/gB)2, β = γg,2/γ. (22)

In all our numerical simulations we set α = β = 1. The term,
−�2

1/(4�e,1), of �n has been removed since it causes only an
overall phase. Equation (19) indicates that the time evolution
under the effective Hamiltonian gives rise to a dynamical phase
imprinted onto each state of the qutrits, while making the state
of the quartit atom unchanged. Correspondingly, the effective
Lindblad operators are found to be

L±
eff = |g2〉〈g1| ⊗

N∑
n=0

r±,nPn, (23)

L
g,x

eff = |gx〉〈g1| ⊗
N∑

n=0

rgx,nPn, (24)

L
k,x−1
eff = |g2〉〈g1| ⊗

N∑
n=1

rx−1,n|x − 1〉k〈1|Pn, (25)

with x = 1,2. Here the effective decay rates r±,n, rgx,n, and
rx−1,n are expressed, respectively, as

r+,n = �̃
√

αCB

4GZn

√
2γ

(iδ̃ + 2nCB),

r−,n = − �̃
√

αCB

Zn

√
2γ

[iδ̃ − nCB/(2G)],

rg1,n = �1
√

γg,1

2�e,1
, (26)

rg2,n = − �̃
√

β

2Zn
√

γ
(iδ̃ + nCB),

rx−1,n = − �̃
√

αγx−1

2γZn

CB,

as derived in the Appendix. According to these effective
Lindblad operators, we find that all dissipative processes,
except the one corresponding to L

g,1
eff independent of n, cause

the |g1〉 → |g2〉 decay. The errors induced by these decays
are detectable by measuring the state of the quartit atom, and
can be removed by conditioning on the quartit atom being
measured in |g1〉. Upon solving the effective master equation
of Eq. (18), the probability of detecting the quartit atom in the
state |g1〉 is given by

P =
N∑

n=0

Tr[(|g1〉〈g1| ⊗ Pn)ρ(t)], (27)

where Tr is the trace operation over the subspace spanned
by the ground states of the quartit and qutrit atoms, and∑N

n=0 Pn = IG is the identity operator acting on the ground
state manifold of qutrit atoms. Such a detection could be
performed using the method developed in Refs. [37,38] for
a PHASE qudit, which we have briefly described in the caption
of Fig. 1. We note that also other schemes for the detection
of PHASE and flux qudit states can be applied including the
dispersive read-out methods [51–53]. After this measurement,
the conditional density operator of the qutrits is then

ρqutrit(t) = 1

P

N∑
n,n′=0

e−i(�n−�n′ )t e−(�n+�n′ )t/2

×Pn[〈g1|ρ(0)|g1〉]Pn′ , (28)

with the following total decay rate:

�n = |r+,n|2 + |r−,n|2 + |rg2,n|2

+ n(|r0,n|2 + |r1,n|2). (29)

Thus, by measuring the quartit atom and referring to the P

as the success probability, we could realize heralded quantum
controlled-PHASE gates as discussed below. In this approach,
the detectable errors reduce only the success probability,
instead of reducing the gate fidelity. If we successfully
measure the quartit in |g1〉, then the resulting gate has a
very high fidelity, which is limited only by the undetectable
errors induced, for example, by the differences between the
decay rates �n for different states of the qutrit atoms. Thus,
the underlying key idea is to remove the detectable errors
by a heralding measurement and, then, to achieve quantum
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gates with very high fidelities in two macroscopically distant
resonators.

IV. HERALDED MULTIQUBIT TOFFOLI-LIKE GATE

In this section we will demonstrate a heralded near-
deterministic multiqubit Toffoli-like gate, which is defined
as the multiqubit controlled-Z gate. Thus, the action of our
Toffoli-like gate on N qubits in a state |ψ〉 = |q1,q2, . . . ,qN 〉
is given by |ψ〉 → (−1)(q1⊕1)(q2⊕1)···(qN ⊕1)|ψ〉. In our case these
logical qubits correspond to the two lowest states of the qutrits
in the resonator B. The successful action of this Toffoli-like
gate is heralded by the detection of the quartit in its ground
state |g1〉. Note that the standard three-qubit Toffoli gate is
defined as the double-controlled NOT (CCNOT) gate and given
by the map [1]: |q1,q2,q3〉 → |q1,q2,q3 ⊕ q1q2〉, rather than
the map |q1,q2,q3〉 → (−1)(q1⊕1)(q2⊕1)(q3⊕1)|q1,q2,q3〉, which
is applied here as in, e.g., Ref. [24].

In order to realize our multiqubit Toffoli-like gate, we can
make �n>0 independent of n, and ensure that |�0| � |�n>0|.
To this end, we tune δ = 0 and �e,2/γ = αCB(R + 1/G),
where

R =
√

1

2

(
1

G2
+ β

αCB

+ 1

CB

)
. (30)

In the limit of min{G,CB} � 1, this choice can lead to

�0 = − �̃2

4γ

1

αCB

(R + 1/G), (31)

�n>0 = − �̃2

4γ

1

αCBR
, (32)

which satisfies the condition |�0| � |�n>0|. Therefore, our
N -qubit Toffoli-like gate can be achieved by applying a driving
pulse of duration tToff = π/|�n>0|. Up to an overall phase,
such a gate flips the PHASE of the qubit state with all qubits in
|0〉, but has no effect on the other qubit states. However, the
particular detunings δ and �e,2 also yield

� ≡ �0 = �1 = �̃2

2γ

1

αCB

, (33)

�n>1 = �̃2

4γ

1

αCB

(
2 − 1 − 1/n

CBR2

)
, (34)

again in the limit of min{G,CB} � 1. According to Eq. (27),
the decay factor exp[−(�n + �n′)/2] cannot be completely
removed conditional on the quartit being measured in |g1〉,
thus, leading to gate errors.

In order to quantify the quality of this gate, we need to
define a conditional fidelity as

FToff = 〈φ|ρqubit(tToff)|φ〉, (35)

where |φ〉 is assumed to be the desired state after the gate
operation. Correspondingly, the gate error is characterized by
1 − FToff. Considering a generic initial state of the quartit and
qutrit atoms,

|�〉ini = |g1〉
[

1

2N/2

N∏
k=1

(|0〉 + |1〉)k
]
, (36)

the success probability and the conditional fidelity is given by

PToff = 1

2N

N∑
n=0

Cn
N exp(−�ntToff), (37)

FToff = 1

22NPToff

[
N∑

n=0

Cn
N exp(−�ntToff/2)

]2

, (38)

respectively, with Cn
N = N !/[n!(N − n)!] being the binomial

coefficient. Again in the limit {G,CB} � 1, we have �ntT � 0,
which in turn results in

PToff = 1 − Tp

π√
CB

, (39)

FToff = 1 − Tf

π2

CB

, (40)

where the scaling factors Tp and Tf are written as

Tp = 2r + 1

r

[
1

2N
(1 + S1) − 1

]
, (41)

Tf = 1

2N+2r2

[
(1 + S2) − 1

2N
(1 + S1)2

]
, (42)

respectively. Here r =
√

(1/λ2 + β/α + 1)/2 with λ =
G/

√
CB , and Sx = ∑N

n=1 Cn
N/nx for x = 1,2. Together with

a success probability

PToff ∝ 1 − 1/
√

CB. (43)

Thus, the proposed protocol for our multiqubit Toffoli-like
gate has an error scaling as

1 − FToff ∝ 1/CB, (44)

which is a quadratic improvement as compared to gate
protocols making use of coherent unitary dynamics in cav-
ities [36], as explained in Ref. [24]. The latter gate suffers
errors from the resonator decay and atomic spontaneous
emission. Instead our protocol exploits the combined effect
of the unitary and dissipative processes, thus, resulting in the
above improvement. In fact, the atom-resonator cooperativity
CB could experimentally reach >104 in superconducting
circuits [3,54], thus, making the gate error very close to zero
and the success probability close to unity.

The success probability is plotted as a function of either the
cooperativity CB or the interresonator coupling J , illustrated
in Fig. 3. There we have assumed that γg,1 = γg,2, γ0 = γ1 =
0.5γ , and the quartit atom is the same as the qutrit atoms,
such that α = β = 1. Similarly, we also plot the corresponding
gate error in Fig. 4. As expected, we find that increasing
the cooperativity not only makes the success probability very
high [see Fig. 3(a)], but it also makes the gate error very low
[see Fig. 4(a)]. For example, the success probability of up to
∼0.9 and the gate error of up to ∼2.0 × 10−6 can be achieved
when N = 20, λ = 5, and CB = 103. Within the limit λ � 1,
the |g1〉 ↔ |e1〉 ↔ |e2〉 ↔ |g2〉 three-photon Raman transition
off-resonantly mediated by means of the symmetric mode
a+ could be neglected, yielding r → √

(β/α + 1)/2; hence,
according to Eqs. (39) and (40), the gate error is limited by
an upper bound [see Fig. 4(b)], along with the corresponding
success probability also upper bounded [see Fig. 3(b)].
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FIG. 3. Success probability, PToff, of our multiqubit Toffoli-like
gate as a function of (a) the cooperativity CB or (b) the interresonator-
coupling strength λ, and for N = 5 (solid black curves), 10 (dashed
red curves), 15 (dashed-dotted blue curves), and 20 (dashed-double
dotted olive curves) three-level atoms. Here we have assumed that
λ = 5 in (a) and CB = 100 in (b). In both panels, the damping rates
are set as γg,1 = γg,2 = γ , γ0 = γ1 = 0.5γ , gA = gB , CB = g2

B/(κγ ),
λ = J/(κ

√
CB ), and α = β = 1.

V. HERALDED CONTROLLED-Z GATE

Let us now consider the heralded near-deterministic real-
ization of the two-qubit controlled-Z (CZ) gate. This gate is
also known as the two-qubit controlled-sign gate, controlled-
PHASE-flip gate, or controlled-PHASE gate. Specifically, the
action of the CZ gate in our system can be explained as follows:
Conditioned on the detection of the quartit in its ground state
|g1〉, the CZ gate flips the phase of the state |11〉 of an arbitrary
two-qubit pure state |ψ〉 = c0|00〉 + c1|01〉 + c1|01〉 + c1|11〉
or any mixture of such states, where ck are the complex
normalized amplitudes and the qubit states correspond to the
two lowest-energy levels of the two qutrits in the resonator B.

It follows from Eq. (28) that, in order to completely remove
the gate error, the decay rate �n needs to be independent of the
qutrits. To this end, we retune the detunings δ and �e,2 to be

δ

γ
= 1

2(2D + G−1)
, (45)

�e,2

γ
= αCB(D + G−1), (46)
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FIG. 4. Analytical results for the gate error (gate infidelity),
1 − FToff, of our multiqubit Toffoli-like gate as a function of (a) the
cooperativity CB or (b) the interresonator coupling strength λ, and for
N = 5 (solid black curves), 10 (dashed red curves), 15 ( dashed-dotted
blue curves), and 20 (dashed-double dotted olive curves) three-level
atoms (qutrits). The other parameters are also set to be the same as in
Fig. 3. There the success probability is in a one-to-one correspondence
with the gate error here.

where D =
√

[1/G2 + β/(αCB)]/2. Thus, in the limit
{G,CB} � 1, retuning δ and �e,2 as above yields an n-
independent decay rate

�n = �, (47)

for all n, while Eq. (33) is valid only for n = 0,1. The
corresponding energy shifts are given by

�0 = −�D

2
(48)

and

�n>0 = − �̃2

2γ

n(2D + 1/G)

αCB(4nD2 + 2nD/G + 1/CB)
. (49)

Subsequently, according to Eq. (28), the conditional density
operator of the qutrits becomes

ρqutrit(t) =
N∑

n,n′=0

e−i(�n−�n′ )tPn[〈g1|ρ(0)|g1〉]Pn′ , (50)
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where the decay factor, exp (−�t), has been eliminated
through a measurement conditional on the quartit atom
being detected in the state |g1〉. Together with single-qubit
operations, we can utilize the dynamics described by the
ρqutrit(t) of Eq. (50) to implement a heralded CZ gate for N = 2.

For this purpose, the duration of the driving pulse is chosen
to be

tCZ = π |�2 − 2�1 + �0|−1, (51)

and the unitary operation on each qubit, applied after the pulse,
has the action

U |0〉 = ei�0tCZ/2|0〉, U |1〉 = ei(2�1−�0)tCZ/2|1〉, (52)

so as to ensure the right PHASE evolution. The resulting gate
is either to flip the PHASE of the qubit state |11〉, or to leave
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FIG. 5. Numerical simulations (marked by symbols) for the
success probability, PCZ, of the heralded CZ gate, and for the
cooperativity CB = 20 (black down-triangles), 50 (red stars), 100
(blue up-triangles), and 200 (olive diamonds). The success probability
is displayed versus the detuning �e,1 given in terms of the overall
decay rate γ in (a), as well as versus the inter-resonator coupling
strength λ in (b). For comparison, we also plot the analytical
success probability (curves) and find that the analytical results
are in good agreement with the exact numerics. Here we have
assumed λ = 1.84 in (a) and �e,1 = 150γ in (b). In both panels we
have set that γg,1 = γg,2 = γ , γ0 = γ1 = 0.5γ , κ = 10γ , gA = gB ,
CB = g2

B/(κγ ), λ = J/(κ
√

CB ), α = β = 1, �1 = �e,1/(10C
1/4
B ),

and �2 = 4γC
1/4
B .

the otherwise qubit states unchanged. The associated success
probability for any initial pure state is

PCZ = exp(−�tCZ), (53)

which can, as long as {G,CB} � 1, be approximated as

PCZ = 1 − Zp

π√
CB

, (54)

with a scaling factor

Zp = 2d + 3

2(2d + 1/λ)
+ 1

4d(2d + 1/λ)2
, (55)

where d =
√

(1/λ2 + β/α)/2. If assuming that the desired
state is |ψ〉, we can calculate the conditional fidelity for this
gate via

FCZ = 〈ψ |(U ⊗ U)ρqutrit(tCZ)(U ⊗ U)†|ψ〉, (56)

and then can directly find FCZ = 1. This implies that with
the single-qubit operation, we achieve a more significant
improvement than that shown in Eq. (44), and, thus, by
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FIG. 6. Numerical simulations for the gate error, 1 − FCZ, of the
heralded CZ gate, and for the cooperativity CB = 20, 50, 100, and
200. Upon setting the same parameters as used in Fig. 5, the gate
error is displayed versus the detuning �e,1/γ in (a), as well as versus
the interresonator coupling strength λ in (b). There is a one-to-one
correspondence between the gate error here and the numerically
calculated success probability PCZ in Fig. 5.
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decreasing �1 and increasing �e,1, an arbitrarily small gate
error can even be achievable.

In order to confirm the heralded CZ gate, we now perform
numerical simulations exactly using, instead of the effective
master equation in Eq. (18), the full zero-temperature master
equation, given by Eq. (13), for the density operator ρT (t) of
the total system initially in

|�〉ini = |�〉ini ⊗ |vac〉, (57)

with |vac〉 being the vacuum state of the coupled resonators and
|�〉ini is given in Eq. (36). The numerical simulations calculate
the success probability PCZ, the conditional density operator
ρqutrit(tCZ), and fidelity FCZ using the expressions below:

PCZ =
∑

n=0,1,2

Tr[(|g1〉〈g1| ⊗ Pn ⊗ I)ρT (tCZ)], (58)

ρqutrit(tCZ) = 1

PCZ

Trcav[〈g1|ρT (tCZ)|g1〉], (59)

FCZ = 〈ψ |(U ⊗ U)ρqutrit(tCZ)(U ⊗ U)†|ψ〉, (60)

where Tr and Trcav are trace operations over the total system
and the resonators, respectively, and I is an identity operator
related to the two resonators. For the simulations, we assume
that γg,1 = γg,2, γ0 = γ1 = 0.5γ , and α = β = 1; moreover,
we take κ = 10γ , �1 = �e,1/(10C

1/4
B ), �2 = 4γC

1/4
B , and

determine the detunings δ and �e,2 according to Eqs. (45)
and (46), respectively. Then, we calculate the success probabil-
ity PCZ and the gate error 1 − FCZ, as a function of either the de-
tuning �e,1 or the interresonator coupling J , for different coop-
erativities [55,56]. The numerical results (marked by symbols)
are plotted in Fig. 5 for the success probability and in Fig. 6
for the gate error. The analytical success probability, which
we use curves to represent, is also plotted in Fig. 5, and shows
good agreement with the exact results. In Fig. 6(a) we find that
as the detuning �e,1 increases, the gate error first decreases
and then increases. This is because, in addition to suppressing
the error from the |e1〉 → |g1〉 decay (see the Appendix), such
an increase in �e,1, however, increases the driving strength

TABLE II. The action of a heralded multiqubit Toffoli-like gate.
Note that �0 �= �1 = �2 = · · · = �N , and we have also ignored an
overall phase, exp(−iπ ), of the output states.

n Input states
Time evolution−−−−−−−→ Output states

0 |000 · · · 0〉 exp (−i�0tToff)−−−−−−−→ −|000 · · · 0〉
1 |100 · · · 0〉 exp (−i�1tToff)−−−−−−−→ |100 · · · 0〉

|010 · · · 0〉 |010 · · · 0〉
...

...
|0 · · · 001〉 |0 · · · 001〉

2 |110 · · · 0〉 exp (−i�2tToff)−−−−−−−→ |110 · · · 0〉
|101 · · · 0〉 |101 · · · 0〉

...
...

|0 · · · 011〉 |0 · · · 011〉
...

...
...

...

N |111 · · · 1〉 exp (−i�N tToff)−−−−−−−−→ |111 · · · 1〉

TABLE III. The action of the heralded controlled-Z gate. Note
that �0, �1, and �2 are not equal to each other. Thus, some unitary
operations should be applied on qubits to achieve their proper PHASE

evolution.

n Input states
Time evolution−−−−−−−→ Output states

0 |00〉 exp (−i�0tCZ)−−−−−−−→ |00〉
1 |10〉 exp (−i�1tCZ)−−−−−−−→ |10〉

|01〉 |01〉
2 |11〉 exp (−i�2tCZ)−−−−−−−→ −|11〉

�1 = �e,1/(10C
1/4
B ), and hence the nonadiabatic error. There

is a trade-off between the two errors. Again within the limit
λ � 1, the off-resonant Raman transition could be removed
as before, yielding d → √

β/(2α). As a result, one finds that
the scaling factor, given by Eq. (55), is equal to

Zp → 2d + 3

4d
+ 1

16d3
. (61)

Hence, when λ is sufficiently large, both the success proba-
bility and the gate error will be independent of λ, illustrated
in Figs. 5(b) and 6(b). It should be noted that to calculate the
success probability in Fig. 5(a), and the gate error in Fig. 6(a),
we have chosen λ = 1.84, because this value can lead to the
shortest driving pulse for the two-qubit gate if α = β.

Finally, we note that the energy shifts, �n, for both
Toffoli-like and CZ gates involve only the ground states,
because the effective master equation (18) is obtained by
adiabatically eliminating the excited states. According to the
effective Hamiltonian of Eq. (19), a quantum state, with n,
of the qutrit atoms has an energy shift, �n. Consequently, a
dynamical phase, exp(−i�nt), can be imposed by choosing the
appropriate evolution times for a given quantum state. Thus,
the quantum gates, including the multiqubit Toffoli-like (see
Table II) and two-qubit CZ gates (Table III), are realized by
choosing appropriate evolution times.

VI. CONCLUSIONS

We have described a method for performing a heralded
near-deterministic controlled-PHASE gates in two distant res-
onators in the presence of decoherence, including the two-
qubit controlled-Z (CZ) gate and its multiqubit-controlled
generalization known, which can be referred to as a Toffoli-like
gate. Our proposal is a generalization of the single-resonator
method introduced by Borregaard et al. [24]. The method in
our paper uses an auxiliary microwave-driven four-level atom
(quartit) inside one resonator to serve as both an intraresonator
photon source and a detector, and, thus, to control and also
herald the gates on atomic qutrits inside the other resonator.
In addition to the quantum gate fidelity scalings, which are
superior to traditional cavity-assisted deterministic gates, this
method demonstrates a macroscopically distant herald for
controlled quantum gates, and at the same time avoids the
difficulty in individually addressing a microwave-driven atom.
We note that the original method of Ref. [24] is based on the
heralding and operational atoms coupled to the same resonator

012315-9



QIN, WANG, MIRANOWICZ, ZHONG, AND NORI PHYSICAL REVIEW A 96, 012315 (2017)

mode acting as a cavity bus. Here we are not applying this
cavity bus.

The operator formalism used in our paper to calculate the
effective Hamiltonian [i.e., Eq. (15)] and the effective Lindblad
operators [i.e., Eq. (16)] follows the approach in Ref. [12].
The dynamical behavior of the system can be fairly well
approximated by the effective master equation. For example,
the results obtained respectively by using the full and effective
master equations in Figs. 4 and 6 in Ref. [12], or in Figs. 5
and 6 in our paper, are in good agreement. The physics of
this approximation can be understood by the simple qutrit
atom in Fig. 2. A direct picture is that the three-level atom
in state |0〉 is first excited to the state |2〉, then can go to the
state |1〉 by an atomic decay, or can go back to the state |0〉
also by another atomic decay. If starting in the state |1〉, the
atom has a similar behavior. Roughly speaking, there exists an
indirect interaction between the states |0〉 and |1〉, as well as
the direct interaction between the states |0〉, |1〉, and the state
|2〉, mediated by the atomic decays. Thus, after adiabatically
eliminating the state |2〉, the energy shifts of the states |0〉, |1〉,
and even a direct interaction between them, would be induced
by the atomic decays. Upon combining the above processes,
mediated by the atom decays with the coherent drives and
other interactions, the effective master equation was obtained
here in analogy to that in Ref. [12].

We have also proposed a circuit-QED system with super-
conducting qutrits and quartits implementing the proposed
protocol as shown in Fig. 1. Our circuit includes two coupled
transmission-line resonators, which are linearly coupled via
a SQUID. These resonators can be coupled to qudits via a
capacitance. For example, we assumed a PHASE quartit coupled
to one of the resonators serving a herald, and N identical
flux qutrits coupled to the other resonator for performing the
controlled-PHASE gates. Typically, the length of a transmission-
line resonator can be of up to the order of cm [57], but the size
of a superconducting atoms is of ∼μm [3].

We assume realistic parameters from experiments with su-
perconducting quantum circuits [54,57]. Specifically, γ /2π =
10 MHZ, κ/2π = 6 MHz, CA = CB = 170 (α = β = 1),
�e,1/2π = 420 MHz, �1/2π = 70 MHz, λ = 1.84, J/2π =
144 MHz, and �2/2π = 87 MHz. The implementation of
the CZ gate with these parameters can result in a success
probability of ∼0.55, a gate error of ∼0.006, and a gate
time of ∼6 μs. These gate performance parameters are quite
good for a coupled-resonator system. Indeed by increasing
the capacitance of the capacitor between the TLRs, it is
possible to achieve a stronger J [39] and, thus, a smaller gate
error and a shorter gate time. Furthermore, the decoherence
time T2 of a flux qubit can be improved to ∼85 μs [58],
which is much larger than 6 μs. This justifies neglecting
such decoherence effect on the flux qutrits. But for a PHASE

qubit, T2 reaches ∼1 μs, which is smaller than 6 μs [41].
Nevertheless, the PHASE quartit in our protocol works only as
an auxiliary atom to herald the quantum gate by measuring the
|g1〉 population on which the decoherence, quantified T2, has
no effect. Hence, such decoherence of both PHASE quartit and
flux qutrits can be effectively neglected in our protocol.

Another possible implementation can be based on ultracold
atoms coupled to nanoscale optical cavities. In this situation,
the atoms 87Rb can be used for both quartit and qutrit

atoms [24,59,60]. Furthermore, nanoscale optical cavities have
been realized by the use of defects in a two-dimensional
photonic crystal, and one can place such nanocavities very
close to each other to directly couple them by evanescent
fields [61], or one can use a common waveguide (a quantum
bus) to indirectly couple such cavities [62].

Although we have chosen to discuss the specific case of
two coupled resonators, this description may be extended
to a coupled-cavity array [63–67]. Hence, it would enable
applications such as scalable quantum information processing
and long-distance quantum communication.
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APPENDIX: DERIVATION OF EFFECTIVE
MASTER EQUATION

In this appendix, we will derive the effective master
equation by using the method in Ref. [12]. We start with the
total Hamiltonian HT in the main text. Upon introducing the
symmetric and antisymmetric modes, a± = (aA ± aB)/

√
2, of

the coupled resonators, and then switching into a rotating frame
with respect to

Hrot =
N∑

k=1

[
(ωc + ω1 − J )|2〉k〈2| +

∑
z=0,1

ωz|z〉k〈z|
]

+ ω̄|e1〉〈e1| + (ω̄ + ωm,2)|e2〉〈e2|
+

∑
x=1,2

ωg,x |gx〉〈gx | + (ωc − J )(a†
+a+ + a

†
−a−),

(A1)

where ω̄ = ωm,1 + ωg,1, the total Hamiltonian is transformed
to

HT = He + V + V †, (A2)

as given in the main text. With the Lindblad operators in
Eq. (14), we obtain the no-jump Hamiltonian of the form

HNH =
N∑

k=1

{
δ̄|2〉k〈2| + gB√

2
[(a+ − a−)|2〉k〈1| + H.c.]

}
+ �̄e,1|e1〉〈e1| + �̄e,2|e2〉〈e2| + J̄ a

†
+a+

− iκ

2
a
†
−a− + gA√

2
[(a+ + a−)|e2〉〈g2| + H.c.]

+ �2

2
(|e2〉〈e1| + H.c.), (A3)
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where �̄e,1 = �e,1 − iγg,1/2, �̄e,2 = �e,2 − iγg,2/2, δ̄ = δ −
iγ /2, and J̄ = 2J − iκ/2. Following the formalism in
Ref. [12], the effective Hamiltonian and Lindblad operators
are given, respectively, by

Heff = 1
2V †[H−1

NH + (
H−1

NH

)†]
V, (A4)

L
j

eff = LjH
−1
NHV. (A5)

To proceed, we work within the single-excitation subspace
and, after a straightforward calculation, obtain

�n = − �1

2
√

γg,1
Re(rg1,n), (A6)

r+,n = �1�̃m

√
CA

4J̃Xn

√
2γ

(iδ̃ + 2nCB), (A7)

r−,n = −�1�̃m

√
CA

2Xn

√
2γ

(̃δ − nCB/J̃ ), (A8)

rg1,n = �1
√

γg,1

2γXn

[iδ̃�̃e,2 + (CAδ̃ + nCB�̃e,2)

× (1 − i/2J̃ ) − 2nCACB/J̃ ], (A9)

rg2,n = −�1�̃m
√

γg,2

4γXn

{iδ̃ + nCB[1 − i/(2J̃ )]}, (A10)

rk,n = −�1�̃m

√
γkCACB

4γXn

[1 + i/(2J̃ )], (A11)

where CA = g2
A/(κγ ), �̃e,1 = �e,1/γ − iγg,1/(2γ ), J̃ =

2J/κ − i/2, �̃2 = �2/γ , Z = �̃e,1�̃e,2 − (�̃m/2)
2
, Xn =

iZδ̃ + (CAδ̃�̃e,2 + nCBZ)[1 − i/(2J̃ )] − 2nCACB�̃e,1/J̃ ,
and k = 0,1. In the limit �2 � �e,1, we can make a Taylor
expansion around �2/�e,1 = 0, yielding

�n = − �2
1

4�e,1
− �̃2

4γ
Re

{
1

Yn

[
iδ̃ + nCB

(
1 − i

2J̃

)]}
,

(A12)

r+,n = �̃
√

CA

2J̃Yn

√
2γ

(iδ̃ + 2nCB), (A13)

r−,n = − �̃
√

CA

Yn

√
2γ

(iδ̃ − nCB/J̃ ), (A14)

rg1,n = �1
√

γg,1

2�e,1
+ �̃

√
γ̃g,1

2γYn

{
iδ̃ + nCB

[
1 − i

2J̃

]}
,

(A15)

rg2,n = − �̃
√

γg,2

2γYn

{iδ̃ + nCB[1 − i/(2J̃ )]}, (A16)

rk,n = − �̃
√

γkCACB

2γYn

[1 + i/(2J̃ )], (A17)

where �̃ = �1�2/(2�e,1), γ̃g,1 = γg,1�
2
2/(4�2

e,1), and Yn =
iδ̃�̃e,2 + (CAδ̃ + nCB�̃e,2)[1 − i/(2J̃ )] − 2nCACB/J̃ . In
Eq. (A12), the term, −�2

1/(4�e,1), of �n can be removed
because it has no effect on the PHASE gates. Meanwhile, in
Eq. (A15), we find that the |e1〉 → |g1〉 decay is suppressed
by increasing �e,1, such that the second term of rg1,n can be
removed as long as γ̃g,1 � 1. Thus, Eqs. (A12)–(A17), under
the assumption that κ � J , reduce to Eqs. (20) and (26).
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