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Entangling two oscillators with arbitrary asymmetric initial states
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We present a Hamiltonian which can be used to convert any asymmetric state |ϕ〉a|φ〉b of two oscillators a

and b into an entangled state via a single-step operation. Furthermore, with this Hamiltonian and only local
operations, two oscillators, initially in any asymmetric initial states, can be entangled with a third oscillator.
The prepared entangled states can be engineered with an arbitrary degree of entanglement. A discussion of the
realization of this Hamiltonian is given. Numerical simulations show that, with current circuit QED technology,
it is feasible to generate high-fidelity entangled states of two microwave optical fields, such as entangled coherent
states, entangled squeezed states, entangled coherent-squeezed states, and entangled cat states. Our finding opens
a avenue for creating not only wavelike or particlelike entanglement but also wavelike and particlelike hybrid
entanglement.
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I. INTRODUCTION

Entangled states of light are a fundamental resource for
many quantum information tasks [1–8]. In the regime of
discrete variables, entanglement of up to eight photons has
been experimentally demonstrated via linear optical devices
[9,10]. In the regime of continuous variables, Einstein-
Podolsky-Rosen (EPR) states of light have been experimen-
tally generated from two independent squeezed fields [11,12],
two independent coherent fields [13], or a single squeezed
light source [14]; two- or three-color entangled states of light
have been experimentally prepared by means of nondegen-
erate optical parametric oscillators [15–17]. Recently, hybrid
entanglement between particlelike and wavelike optical qubits
or between quantum and classical states of light [18,19] has
also been demonstrated in experiments, which has drawn
increasing attention because hybrid entanglement of light is
a key resource in establishing hybrid quantum networks and
connecting quantum processors with different encoding qubits.
Moreover, a large number of theoretical proposals have been
presented for generating particular types of entangled states
of light or photons in various physical systems [20–33].

In this paper, we propose a Hamiltonian which can be used
to convert any asymmetric state |ϕ〉a|φ〉b of two oscillators a

and b into an entangled state α|ϕ〉a|φ〉b ± β|φ〉a|ϕ〉b. Here, the
term asymmetric state refers to the product state |ϕ〉a|φ〉b, with
|ϕ〉 �= |φ〉. The procedure consists of a single unitary operation
and a posterior measurement on the states of the qudit coupler
that is used to couple the oscillators. Furthermore, by com-
bining this Hamiltonian with additional local operations, two
oscillators a and b initially in any asymmetric state |ϕ〉a|φ〉b
and a third oscillator in the vacuum state |0〉c can be converted
to a tripartite entangled state α|ϕ〉a|φ〉b|0〉c + β|φ〉a|ϕ〉b|1〉c
with no measurement required. Hereafter, we call them the
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bipartite and tripartite protocols, respectively. In both cases,
the degree of entanglement, determined by the two coefficients
α and β, is adjustable by controlling the initial state of the
qudit coupler. More importantly, the light fields involved can
be wavelike entangled states, particlelike entangled states, or
wavelike and particlelike hybrid entangled states, depending
on whether the states |ϕ〉 and |φ〉 are both wavelike states
(e.g., coherent states, squeezed states, and cat states), both
particlelike states (e.g., Fock states), or one wavelike state and
one particlelike state (e.g., coherent states and Fock states).

Independent of the nature of the two nonidentical states
|ϕ〉 and |φ〉, the bipartite protocol requires postselection by
measurement while the tripartite protocol does not. So they are
not the “same”. The protocol can be applied to optical cavities,
microwave resonators, nanomechanical oscillators, and even
hybrids of these systems. Mechanical oscillators preserve their
ability to interact with almost anything and can be utilized for
preparing nonclassical states of light [34–36] or matter [37].
In recent years, optical and microwave cavities and resonators
as well as mechanical oscillators have played crucial roles
in quantum information processing and manipulating light or
microwave photons. In fact, hybrid quantum systems have
become one of the most exciting areas of quantum science and
technology [38].

As shown below, the entanglement generation operates
essentially via the quantum state swapping conditioned on
the state of the coupler. Namely, when the coupler is in the
state |g′〉, the two-oscillator initial state |ϕ〉a|φ〉b remains
unchanged; however, when the coupler is in the state |g〉,
the two-oscillator initial state |ϕ〉a|φ〉b changes to |φ〉a|ϕ〉b via
the state swapping |ϕ〉 ↔ |φ〉. Hence, the physical mechanism
used for the entanglement creation here is quite different from
those based on state synthesis algorithms [39–43].

The previous protocols for entangling two oscillators
in high-dimension Hilbert space are based on complex
state synthesis algorithms that require a sequence of uni-
tary operations [39–43]. In stark contrast, the present pro-
posal requires only a single unitary operation, significantly

2469-9926/2017/95(5)/052341(7) 052341-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.052341


YANG, SU, ZHENG, NORI, AND HAN PHYSICAL REVIEW A 95, 052341 (2017)

simplifying the experimental implementation and reducing the
operation time and thus the negative effect of decoherence
on fidelity. According to [35–39], the number of operations,
required by state-synthesis algorithms for preparing the target
states |�〉target = ∑

m,n Cmn|m,n〉, increases drastically with
the dimensionality of the subspace of the Fock-state space in
which the target states are embedded [39–43].

Interestingly, it is also noted that based on the proposed
Hamiltonian, a SWAP gate of two discrete-variable qubits or
two continuous-variable qubits can be realized in a single
operation, including the two-qubit SWAP gate with cat-state
encoding qubits which have attracted increasing attention
recently [44].

II. HAMILTONIAN AND INTUITION

Two oscillators a and b are coupled to a coupler with an
energy level |g〉. In the interaction picture, the Hamiltonian
considered here is given by (assuming h̄ = 1)

H = ω(â†â + b̂†b̂)|g〉〈g| + λ(â†b̂ + âb̂†)|g〉〈g|, (1)

where a (b) is the photon annihilation operator of oscillator a

(b), |ω| (with ω being either positive or negative) is the fre-
quency or frequency shift of both oscillators, and |λ| (with λ be-
ing either positive or negative) is the coupling strength between
the two oscillators. The second term, λ(â†b̂ + âb̂†)|g〉〈g|,
represents the interaction between the two oscillators when
the coupler is in the state |g〉. After some interaction time, this
term results in the exchange of the states of the two oscillators
when the coupler is in the state |g〉. However, the two-oscillator
state exchange is imperfect without including the first term,
ω(â†â + b̂†b̂)|g〉〈g|, because the state exchange resulting from
the second term, λ(â†b̂ + âb̂†)|g〉〈g|, comes with inevitable
photon-number-dependent phase errors. For instance, the state
|ϕ〉 = ∑∞

n=0 cn|n〉 of oscillator a (with |n〉 being the n-photon
Fock state) is transferred onto oscillator b initially in a
vacuum state by an error state |ϕ〉er = ∑∞

n=0 cne
iφn |n〉 (see

the discussion below).
Note that Eq. (1) is different from the well-known

Hamiltonian H̃ = ω(â†â + b̂†b̂) + λ(â†b̂ + âb̂†) describing
two single-mode interacting oscillators. This is because each
term in Eq. (1) contains a coupler operator |g〉〈g|, which is,
however, not involved in H̃ .

III. ENTANGLING OSCILLATORS

Suppose that oscillator a is in an arbitrary pure state |ϕ〉a
and oscillator b is in another arbitrary pure state |φ〉b. Assume
that a coupler is in a superposition state α|g′〉 + β|g〉, with
|α|2 + |β|2 = 1. Here, |g′〉 is an excited state of the coupler.
Under the Hamiltonian in Eq. (1), the initial state of the system
|ϕ〉a|φ〉b(α|g′〉 + β|g〉) evolves into

e−iH t |ϕ〉a|φ〉b(α|g′〉 + β|g〉)
= α|ϕ〉a|φ〉b|g′〉 + β(e−iHet |ϕ〉a|φ〉b) ⊗ |g〉, (2)

where we have used 〈g|g′〉 = 0. Here, He = H0 + HI , with
H0 = ω(â†â + b̂†b̂) and HI = λ(â†b̂ + âb̂†). He describes the
dynamics of the oscillators, which arises from Eq. (1) when
the coupler is in the state |g〉. Because of [H0,HI ] = 0, the

oscillator state e−iHet |ϕ〉a|φ〉b of Eq. (2) can be written as

e−iHet |ϕ〉a|φ〉b = U2U1|ϕ〉a|φ〉b, (3)

with U1 = e−iHI t and U2 = e−iH0t .
U1 leads to the transformations U1â

†U+
1 = cos(λt)â† −

i sin(λt)b̂† and U1b̂
†U+

1 = cos(λt)b̂† − i sin(λt)â†. For |λ|t =
(2m + 1/2)π (m is an integer), one has U1(â†)

n
U+

1 = (∓ib̂†)
n

and U1(b̂†)
n
U+

1 = (∓iâ†)
n
, which will be applied in the

derivation of Eq. (5) below. Here and below, a minus sign (−)
corresponds to λ > 0, while a plus (+) corresponds to λ < 0.
The arbitrary pure states |ϕ〉a and |φ〉b can be expressed as

|ϕ〉a =
∞∑

n=0

cn|n〉a, |φ〉b =
∞∑

m=0

dm|m〉b, (4)

where cn and dm are normalized coefficients and
|n〉a = (â†)

n

√
n!

|0〉a [|m〉b = (b̂†)
m

√
m!

|0〉b] represents the n−photon
(m-photon) Fock state of oscillator a (b).

By performing a unitary transformation U1, after t =
π/(2|λ|), the state |ϕ〉a|φ〉b evolves into

U1|ϕ〉a|φ〉b

=
∞∑

n=0

∞∑
m=0

cndm√
n!m!

[U1(â†)nU+
1 ][U1(b̂†)mU+

1 ]U1|0〉a|0〉b

=
∞∑

n=0

cn(∓i)n
(b̂†)n√

n!
|0〉a

∞∑
m=0

dm(∓i)m
(â†)m√

m!
|0〉b

=
∞∑

n=0

cne
∓inπ/2|n〉b ⊗

∞∑
m=0

dme∓imπ/2|m〉a, (5)

where the positions of |0〉a and |0〉b in the third line are
exchanged in the last line and U1|0〉a|0〉b = |0〉a|0〉b is applied.
The first (second) part of the product in the last line represents
the state of oscillator b (a). Comparing the last line with the
original states |ϕ〉a and |φ〉b given in Eq. (4), one can see that
the two oscillators exchange their states while accumulating
photon-number-dependent phase errors e∓inπ/2 and e∓imπ/2,
respectively.

By performing a unitary transformation U2 with t =
π/(2|λ|) and setting ∓π/2 − ωt = 2kπ (k is an integer), state
(5) becomes

U2(U1|ϕ〉a|φ〉b)

=
∞∑

n=0

cne
in(∓π/2−ωt)|n〉b ⊗

∞∑
m=0

dmeim(∓π/2−ωt)|m〉a

=
∞∑

n=0

cn|n〉b ⊗
∞∑

m=0

dm|m〉a = |ϕ〉b|φ〉a, (6)

where |ϕ〉b (|φ〉a) takes the same form the state |ϕ〉a (|φ〉b)
with the subscript a (b) replaced by b (a). Combining Eqs. (3)
and (6), one finds that state (2) would be

α|ϕ〉a|φ〉b|g′〉 + β|φ〉a|ϕ〉b|g〉. (7)

Now apply a classical pulse to the coupler, resulting in |g′〉 →
(|g〉 + |g′〉)/√2 and |g〉 → (|g〉 − |g′〉)/√2. Thus, state (7)
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FIG. 1. (a) Illustration of the coupler interacting with two oscillators and a classical pulse. Here, δa = ωp + ωeg − ωa = δb, which can be
readily met by adjusting the pulse frequency ωp . (b) Setup of two cavities coupled to a flux device via a capacitor, Ca or Cb.

becomes

1√
2

(|ψ+〉 ⊗ |g〉 + |ψ−〉 ⊗ |g′〉), (8)

with

|ψ±〉 = α|ϕ〉a|φ〉b ± β|φ〉a|ϕ〉b. (9)

Equation (8) shows that when the coupler is measured in the
state |g〉 (|g′〉), the two oscillators are prepared in an entangled
state |ψ〉+ (|ψ−〉), for which the degree of entanglement can
be adjusted by varying α and β during the preparation of the
initial state of the coupler.

It is straightforward to show that state (7) can be trans-
formed to a three-oscillator entangled state

α|ϕ〉a|φ〉b|1〉c + β|φ〉a|ϕ〉b|0〉c (10)

by performing local operations on the coupler and a third
oscillator c initially in the vacuum state. For instance, this
transformation from state (7) to state (10) can be achieved
by tuning the frequency of oscillator c on resonance with the
|g〉 ↔ |g′〉 transition or vice versa to have a single photon
emitted into oscillator c when the coupler is in the excited
state |g′〉.

IV. HAMILTONIAN CONSTRUCTION

The four levels of the coupler are denoted as |g〉, |g′〉, |e〉,
and |f 〉 [Fig. 1(a)]. The level |g′〉 can remain unaffected, for
example, by having the transition between |g′〉 and any other
level highly detuned from the frequencies of the two oscillators
and the classical pulse. Oscillator a (b) is coupled to the |g〉 ↔
|f 〉 (|g〉 ↔ |e〉) transition with coupling strength ga (gb) and
detuning �a = ωfg − ωa (δb = ωeg − ωb) [Fig. 1(a)]. Here,
ωfg (ωeg) is the |g〉 ↔ |f 〉 (|g〉 ↔ |e〉) transition frequency,
and ωa (ωb) is the frequency of oscillator a (b). A classical
pulse of frequency ωp is coupled to the |e〉 ↔ |f 〉 transition
with detunings � = ωf e − ωp [Fig. 1(a)]. In the interac-
tion picture under the free Hamiltonian Hfield + Hatom, with

Hfield = ωaâ
†â + ωbb̂

†b̂, the Hamiltonian is given by

H = (gae
i�at âσ+

fg + gbe
iδbt b̂σ+

eg + H.c.)

+ (�ei�tσ+
f e + H.c.), (11)

where σ+
fg = |f 〉〈g|, σ+

f e = |f 〉〈e|, � is the Rabi frequency of

the classical pulse, and â (b̂) is the photon annihilation operator
of oscillator a (b).

Under large-detuning conditions and when the levels |e〉
and |f 〉 are not occupied, the Hamiltonian of Eq. (11) can
be expressed as the following effective Hamiltonian (see the
Appendix):

Heff = −(
g2

a/�a + g̃2
a/δ

)
â†â|g〉〈g| − g2

b/δb̂
†b̂|g〉〈g|

+ λ(âb̂† + â†b̂)|g〉〈g|, (12)

where g̃a = ga�(�−1
a + �−1)/2, δa = �a − �, and λ =

g̃agb/δ > 0. In Eq. (12), we have set δa = δb ≡ δ > 0, i.e.,
ωp = ωa − ωb, which can be readily achieved by adjusting
the pulse frequency ωp. By setting

g2
a

�a

+ g2
a�

2

4δ

(
�−1

a + �−1)2 = g2
b

δ
= −ω (13)

(e.g., by adjusting the pulse Rabi frequency �), one sees that
Eq. (12) takes the same form as the Hamiltonian (1). Based
on Eq. (13) and setting ∓π/2 − ωt = 2kπ , we can obtain the
following relationship between the various parameters:

gb = |4k ± 1|
2
√

2k(2k ± 1)�a/δ
ga,

� = ��a

� + �a

√
δ/[2k(2k ± 1)�a], (14)

which shows that the pulse Rabi frequency � is independent
of the coupling strengths ga and gb.

Note that the four-level structure in Fig. 1(a) is widely
available in natural or artificial atoms such as quantum
dots, nitrogen-vacancy centers, and various superconducting
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FIG. 2. Fidelities versus the operation time t for (a) entangled coherent states, (b) entangled squeezed states, (c) entangled coherent-squeezed
states, and (d) entangled cat states. Dashed blue curves were based on the effective Hamiltonian (12) without considering decoherence, while
red curves were based on the master equation (A1) by taking decoherence into consideration.

devices [45]. Thus, the Hamiltonian (1) can be realized with a
variety of physical systems. As shown above, the Hamiltonian
(12), i.e., Eq. (1), was constructed based on the Raman
transition induced by the field-pulse cooperation. Note that
it is possible to construct the proposed Hamiltonian (1) based
on other physical mechanisms.

V. CIRCUIT-QED IMPLEMENTATION

Circuit QED with resonators and superconducting qubits is
one of the most promising candidates for quantum information
processing (for reviews, see [46–49]). We now consider a
setup consisting of two microwave resonators coupled via
a superconducting artificial atom [Fig. 1(b)]. Each resonator
here is a one-dimensional transmission-line resonator (TLR).
The four levels of the coupler are illustrated in Fig. 1(a).
The pulse- or resonator-induced unwanted transitions between
irrelevant levels are assumed to be negligibly small. This
can be achieved by a prior design of the coupler with a
strong anharmonicity (e.g., a superconducting flux device).
Alternatively, this condition can be satisfied by adjusting the
coupler level spacings or the resonator frequencies. In practice,
level spacings of superconducting devices can be rapidly ad-
justed within a few nanoseconds (e.g., see [50] and references
therein), and to a lesser extent, frequencies of the resonators
can be quickly tuned in 1–3 ns [51,52]. When the interresonator
cross talk is taken into account, the Hamiltonian (11) becomes
H ′ = H + ε, where ε describes the unwanted interresonator
cross talk, given by ε = gabe

i�abt â†b̂ + H.c., with the two-
resonator coupling strength gab and the resonator frequency
detuning �ab = ωa − ωb. Here, ωa (ωb) is the frequency of
resonator a (b).

The fidelity of the operation is given byF = √〈ψid |ρ|ψid〉,
where |ψid〉 is the ideal state given in Eq. (7), while ρ is the
final density operator of the whole system after the operation
is performed in a realistic system. As an example, we consider
α = β = 1/

√
2.

By solving the master equation and choosing the system
parameters appropriately (see the Appendix), the simulated
fidelity F versus the operation time t is shown in Fig. 2 for
η = �a/ga = 25, k = 1, and α = ξ = 1, where | ± ξ 〉 are
squeezed vacuum states. One can see that for t ∼ 0.5 μs,
a high fidelity can be obtained: (i) F � 0.959 for the
entangled coherent states 1√

2
(|α〉a| − α〉b ± | − α〉a|α〉b)

[Fig. 2(a)], (ii) F � 0.912 for the entangled squeezed
states 1√

2
(|ξ 〉a| − ξ 〉b ± | − ξ 〉a|ξ 〉b) [Fig. 2(b)], (iii)

F � 0.929 for the entangled coherent-squeezed states
1√
2
(|α〉a|ξ 〉b ± |ξ 〉a|α〉b) [Fig. 2(c)], and (iv) F � 0.918 for

the entangled cat states 1√
2
(|cat〉a|cat〉b ± |cat〉a|cat〉b).

For η = 25, we have ga/2π ∼ 60 MHz, gb/2π ∼ 25 MHz,
and �/2π ∼ 114 MHz, which are available in experiments
[53,54]. The frequency of a circuit resonator is typically a few
gigahertz. For the sake of concreteness, consider ωa/(2π ) ∼
7.5 GHz and ωb/(2π ) ∼ 4.5 GHz. For the values of κ−1

a and
κ−1

b used in the numerical simulation, the required quality
factors for the two resonators are Qa ∼ 9.4 × 105 and Qb ∼
5.6 × 105, which are readily available in experiments [55,56].
The analysis here demonstrates that by applying the proposed
protocol, the high-fidelity generation of entanglement between
asymmetric states of two oscillators is feasible with current
circuit QED technology. Finally, we remark that the fidelity
obtained above was calculated without considering the initial-
state preparation and measurement errors, which, however,
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could be negligible due to progress in accurate preparation
and measurement of the states of superconducting artificial
atoms [57].

Finally, it is noted that based on the Hamiltonian (1), when
the coupler is in the state |g〉, a SWAP gate of two discrete-
variable qubits or two continuous-variable qubits, defined
by |ϕ〉a|ϕ〉b → |ϕ〉a|ϕ〉b, |ϕ〉a|φ〉b → |φ〉a|ϕ〉b, |φ〉a|ϕ〉b →
|ϕ〉a|φ〉b, and |φ〉a|φ〉b → |φ〉a|φ〉b, can be realized via a single
operation. Here, a qubit is encoded by the two states |ϕ〉 and
|φ〉 of each oscillator. For |ϕ〉 = |cat〉 and |φ〉 = |cat〉, the
two-qubit SWAP gate is implemented with cat-state encoding
qubits [44].
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APPENDIX

1. Derivation of an effective Hamiltonian

Let us start with the original Hamiltonian given in Eq. (11),
i.e.,

H = ga(âσ+
fge

i�at + H.c.) + gb(b̂σ+
ege

iδbt + H.c.)

+�(ei�tσ+
f e + H.c.), (A1)

where σ+
eg = |e〉〈g| and σ+

fg = |f 〉〈g|, � is the Rabi frequency

of the pulse, and â (b̂) is the photon annihilation operator for
quantum oscillator a (b).

Under the large-detuning conditions �a � ga and � � �,
there is no energy exchange between oscillator a and the
coupler or between the pulse and the coupler [Fig. 1(a)]. In
addition, under the conditions �a − δb � gagb(�−1

a + δ−1
b )/2

and � − δb � �gb(�−1 + δ−1
b )/2, there is no interaction

between oscillator b and either oscillator a or the pulse
[Fig. 1(a)]. In this case, the effective Hamiltonian can be
expressed as [58]

Heff = g2
a

�a

[|f 〉〈f | + â†â(|f 〉〈f | − |g〉〈g|)]

+ �2

�
(|f 〉〈f | − |e〉〈e|) − g̃a(âσ+

ege
iδa t + H.c.)

+ gb(b̂σ+
ege

iδbt + H.c.), (A2)

where g̃a = ga�(�−1
a + �−1)/2 and δa = �a − �. Under

the large-detuning conditions δa � {g̃a,g
2
a/�a,�

2/�} and
δb � {gb,g

2
a/�a,�

2/�}, the effective Hamiltonian Heff

becomes [58]

Heff = g̃2
a

δ
[|e〉〈e| + â†â(|e〉〈e| − |g〉〈g|)]

+ g2
b

δb

[|e〉〈e| + b̂†b̂(|e〉〈e| − |g〉〈g|)]

+ g2
a

�a

[|f 〉〈f | + â†â(|f 〉〈f | − |g〉〈g|)]

+ �2

�
(|f 〉〈f | − |e〉〈e|) − g̃agb

2

(
1

δa

+ 1

δb

)
× [(âb̂†|e〉〈e| − â†b̂|g〉〈g|)ei(δa−δb)t + H.c.]. (A3)

When the levels |e〉 and |f 〉 are not occupied, the effective
Hamiltonian Heff reduces to

Heff = −
(

g2
a

�a

+ g̃2
a

δ

)
â†â|g〉〈g| − g2

b

δ
b̂†b̂|g〉〈g|

+ λ(âb̂† + â†b̂)|g〉〈g|, (A4)

where λ = g̃agb/δ and we have set δa = δb = δ.

2. Master equation and parameters used in the
numerical simulation

After taking dissipation and dephasing into account, the
system dynamics is determined by the master equation

dρ

dt
= −i[H ′,ρ] + κaL[â] + κbL[b̂]

+
∑

j=g,g′,e

γfjL[σ−
fj ] +

∑
k=g,g′

γekL[σ−
ek] + γg′gL[σ−

g′g]

+
∑

j=g′,e,f

γϕ,l(σllρσll − σllρ/2 − ρσll/2), (A5)

where L[�] = �ρ�+ − �+�ρ/2 − ρ�+�/2 (with � =
â,b̂,σ−

g′g,σ
−
eg,σ

−
eg′ ,σ

−
fg,σ

−
fg′ ,σ

−
f e), σg′g′ = |g′〉〈g′|, σee = |e〉〈e|,

and σff = |f 〉〈f |. In addition, κa (κb) is the decay rate of
resonator a (b); γg′g , γeg , γeg′ , γfg , γfg′ , and γf e are the
energy relaxation rates for |g′〉 → |g〉, |e〉 → |g〉, |e〉 → |g′〉,
|f 〉 → |g〉, |f 〉 → |g′〉, and |f 〉 → |e〉, respectively, and γϕ,g′ ,
γϕ,e, and γϕ,f are the dephasing rates of levels |g′〉, |e〉, and
|f 〉.

The parameters used in the numerical simulation are
(i) �a/2π = 1.5 GHz, �/2π = 1.25 GHz, (ii) δb/2π =
0.25 GHz, (iii) γ −1

ϕ,g′ = γ −1
ϕ,e = γ −1

ϕ,f = 15 μs, (iv) γ −1
g′g = 60

μs, γ −1
eg′ = 40 μs, γ −1

f e = 30 μs, γ −1
eg = γ −1

fg′ = γ −1
fg = 100

μs [59], and (v) κ−1
a = κ−1

a = 20 μs. We choose g12 =
0.1 max{ga,gb}. Here, we consider a rather conservative case
for both the interresonator cross talk and the decoherence time
of flux qudits because the interresonator cross-talk strength
can be smaller by at least one order of magnitude [29] and
decoherence time ranging from 70 μs to 1 ms has been reported
for a superconducting qudit [60–63].
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