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Single-photon devices at microwave frequencies are important for applications in quantum information
processing and communication in the microwave regime. In this work we describe a proposal of a multioutput
single-photon device. We consider two superconducting resonators coupled to a gap-tunable qubit via both its
longitudinal and transverse degrees of freedom. Thus, this qubit-resonator coupling differs from the coupling in
standard circuit quantum-electrodynamic systems described by the Jaynes-Cummings model. We demonstrate
that an effective quadratic coupling between one of the normal modes and the qubit can be induced and this
induced second-order nonlinearity is much larger than that for conventional Kerr-type systems exhibiting photon
blockade. Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from the
resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching. Contrary to previous
studies on resonant photon blockade, the first-excited state of our device is a pure single-photon Fock state
rather than a polariton state, i.e., a highly hybridized qubit-photon state. In addition, it is found that the optical
state truncation caused by the strong qubit-induced nonlinearity can lead to an entanglement between the two
resonators, even in their steady state under the Markov approximation.
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I. INTRODUCTION

In quantum information, the generation, distribution, and
storage of quantum information at the single-photon level are
of great importance [1–3]. Therefore, single-photon sources
of nonclassical light states are needed [4,5]. In some cases, we
can reduce the power of a laser or maser source to avoid high
probabilities of a multiphoton output. However, the field might
be of an extremely low intensity. Photon sources differ not only
by their frequencies and polarizations, but also by the statistical
properties of the emitted photons [6]. Photons from a coherent
source are still classical, while in proposals of security for
the quantum cryptography [7] the sources of single photons
exhibiting strong antibunching and sub-Poissonian statistics
can help to avoid eavesdropping on an encode message.

To increase the output rate of such sources of nonclassical
fields, one requires some form of nonlinearity. For example,
single-photon manipulation can be realized via photon block-
ade (see Refs. [8–16] and references therein), in which the
nonlinearity prevents more than a single excitation being exited
in a cavity: Only when the first photon has left the cavity
can another identical photon be reexcited. Photon blockade
originates from the anharmonic energy-level structure in non-
linear systems. It has been predicted and demonstrated exper-
imentally in platforms such as optical cavities with a trapped
atom [17], integrated photonic crystal cavities with a quantum
dot [18,19], or microwave transmission-line resonators (super-
conducting “cavities”) with a single superconducting artificial
atom [20,21]. Recently, photon blockade and closely related
phonon blockade were predicted in optomechanical systems
(see, e.g., [22–27]). In the earlier studies, the observation
of conventional photon blockade requires large nonlinearities
with respect to the decay rate of the system. More recently, it
was found that strong entanglement [9,28] and strong photon

antibunching [29,30] can be generated via destructive quantum
interference in coupled nonlinear oscillators: Transition paths
for multiexcitations cancel each other and, as a result, the
population of the two-photon state is effectively suppressed.
This underlying mechanism is called unconventional photon
blockade and further research has been devoted to it in various
kinds of systems [31–36]. It is worth mentioning that the idea
of using photon blockade as a single-photon turnstile device
was suggested already in the early theoretical works on this
effect [9,11].

The standard single-photon blockade has also been gen-
eralized to multiphoton blockade, which is also referred to
as photon tunneling. These multiphoton effects have been
not only described theoretically (see, e.g., [13,27,37–40] and
references therein), but even demonstrated experimentally
[4,19,41–43]. Such multiphoton effects are often discussed
in the context of optical state truncation (for a review see
Refs. [44,45]). Here we focus on the standard single-photon
blockade, although we also show that multiphoton processes
can also be induced in our system.

Recent developments on superconducting quantum devices
provide versatile artificial quantum systems for quantum
communication and information processing [46–51]. For
example, methods for microwave-photon detection based on
superconducting quantum circuits have been demonstrated in
Refs. [52–56]. Moreover, schemes for measuring photon statis-
tics in the microwave regime have also been proposed in both
theoretical and experimental studies [57,58]. All this progress
has laid a solid foundation for applications at the single-photon
level based on superconducting circuits. Therefore, efficient
and well-performed single-photon devices in the microwave
regime are very important and have been studied. Resonant
photon blockade has been observed in a quantum circuit
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composed of a superconducting qubit and a transmission-line
resonator [21]. Moreover, Ref. [59] discussed the effect of
ultrastrong coupling on photon blockade in circuit quantum
electrodynamics (QED) systems. All these schemes require the
qubit and resonator to be resonant. In another approach [20],
the dispersive microwave-photon blockade was predicted due
to the χ (3) nonlinearity (about ∼1 MHz), which can be induced
by a qubit. The sub-Poissonian photon statistics and photon
antibunching were also predicted in such systems.

Here we introduce another mechanism to obtain
microwave-photon blockade via the effective quadratic cou-
pling in a circuit-QED-based system. Our scheme is composed
of two resonators and a single qubit. Different from standard
circuit-QED systems with Jaynes-Cummings coupling, our
system is based on both longitudinal and transverse couplings.
We demonstrate that, in principle, arbitrary multiphoton
processes can be induced in our system. In particular, we
obtain the effective Hamiltonian for the quadratic coupling
between one supermode and the qubit. As opposed to the
resonant photon blockade, the first excitation of this system
is a bare single-photon state, rather than hybridized with the
qubit excited state (i.e., a polariton state), which might provide
higher tolerance to imperfections in experiments [20]. The
second-order nonlinear coupling strength can be of tens of
MHz under current experiment approaches, which is much
stronger than the induced χ (3) nonlinearity in superconducting
systems [15,40]. With a stronger nonlinearity, we can consider
resonators with higher-photon escape rates and apply stronger
coherent drive fields for the two resonators and the single-
photon output fields can be of much higher intensities. By
modeling the quantum input and output fields from channels
of independent resonators and joint channels of two resonators,
we find that all three output fields are antibunched and
sub-Poissonian in photon-number statistics, so our proposal
can serve as an efficient single-microwave-photon source with
multioutput channels.

The organization of this paper is as follows. In Sec. II we
describe the layout of the model consisting of a qubit and two
superconducting resonators and then we analytically derive the
Hamiltonian for multiphoton processes in the two resonators.
In Sec. III we demonstrate how to employ the effective
quadratic coupling between the qubit and the resonators to
achieve single-photon blockade in the two resonators. After
that, we find that it is possible to apply our system as a
microwave single-photon device with multioutput channels.
In Sec. IV we show our numerical results. In particular, we
analyze nonclassical photon-number correlations and give a
phase-space description of the single-mode (single-resonator)
states generated via photon blockade. Section V presents a
summary and discussion.

II. MODEL

A. Circuit layout and Hamiltonian

As schematically shown in Fig. 1, we consider a gap-tunable
superconducting artificial atom, such as a charge or flux qubit,
coupled with two superconducting resonators of frequencies
ω1 and ω2 [60–63]. Moreover, we assume that the coupling
between the resonators is directly mediated via a capacitance

FIG. 1. (a) Schematic circuit layout and (b) couplings and
dissipative channels of our proposal. A gap-tunable qubit (e.g.,
a flux or charge qubit) couples with two superconducting (e.g.,
transmission-line) resonators with strengths Gi for i = 1,2. The
eigenfrequencies for the ith resonator and the qubit are ωi and
ωq , respectively. A capacitor C is used to directly mediate the two
resonators and results in a coupling strength g. On the left-hand side,
two coherent microwave drives, with strengths ε1 and ε2, are applied
to the resonators 1 and 2, respectively. On the right-hand side, the
single-photon output microwave photons are collected from ports 1,
2, and 3. Ports 1 and 2 are semi-infinite transmission lines connected
to resonators 1 and 2. This results in photon escape rates κ1,1 and
κ2,2, respectively. Port 3 is the joint output transmission line from
resonators 1 and 2, with photon escape rates κ1,2 and κ2,1. We assume
that the input fields bin,i for these three ports are all independent
vacuum noises. Besides escaping into the transmission lines, the
photons in the two resonators can also dissipate into the environment
with intrinsic rates κin,i. For the qubit, the decay (dephasing) rate is
� (�f ).

C [64]. The Hamiltonian can be written as

H̄0 = 1

2
ωσ̄z + 1

2
�σ̄x +

∑
i=1,2

ωia
†
i ai

+ g(a†
1a2 + a

†
2a1) + σ̄z

∑
i=1,2

Gi(a
†
i + ai), (1)

where ai (a†
i ) denotes the annihilation (creation) operator for

the ith resonator, g is the coupling constant between the two
resonators due to the hopping capacitor C, and Gi is the
coupling strength between the ith resonator and the qubit.
Here we assume that g � Gi , which justifies the use of the
rotating-wave approximation (RWA) in Eq. (1). The Pauli spin
operators σ̄z and σ̄x are defined in the basis of the two quantum
states of the qubit and ω and � are the energy bias and
tunable qubit gap, respectively. In experiments, both ω and �
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can be controlled independently via external parameters. For
example, in a flux qubit [65–68], � can be tuned by applying an
external flux though the superconducting quantum interference
loop, while ω can be adjusted by controlling the flux though
the qubit loop.

Note that we assume that the interresonator coupling
g is much smaller than the qubit-resonator couplings Gi .
Moreover, these couplings can be strong but not ultrastrong,
to justify the application of the RWA. However, the RWA is
not valid in the ultrastrong coupling regime, where at least
one of the couplings Gi is comparable to or larger than the
corresponding resonator frequency ωi . In such a case, due to
the counterrotating terms, photon blockade effects are usually
significantly changed compared to the standard blockade
under the RWA (see Refs. [59,69]). For example, Ref. [69]
showed that multiple antibunching-to-bunching transitions can
be observed when increasing the resonator-qubit coupling
strength in the standard (i.e., transverse) Rabi model. These
transitions lead to the vanishing and reappearance of photon
blockade due to the presence of the counterrotating terms,
which modify the nonlinearity of the energy spectrum and
can cause two-photon cascade decays. We expect that similar
effects can be observed in our model if the interresonator and
qubit-resonator coupling constants are increased.

In the qubit basis, we can write the Hamiltonian in Eq. (1)
as

H0 = 1

2
ωqσz +

∑
i=1,2

ωia
†
i ai + g(a†

1a2 + a
†
2a1)

+
∑
i=1,2

[Gx,iσx(a†
i + ai) + Gz,iσz(a

†
i + ai)], (2)

where the coupling constants Gx,i = −Gi sin θ and Gz,i =
Gi cos θ describe, respectively, the transverse and longitu-
dinal couplings between the qubit and the resonators, with
tan θ = �/ω, and ωq = √

ω2 + �2 is the transformed qubit
eigenfrequency.

In a typical picture of a circuit-QED system, the interaction
between cavities and artificial atoms is transverse, which
can be simplified to Jaynes-Cummings-type models under
the rotating-wave approximation. Another alternative layout
for circuit-QED is based on the longitudinal qubit-cavity
interaction [70–73]. The Hamiltonian in Eq. (2) describes
a qubit with both transverse and longitudinal couplings to
the resonators. In such an artificial system, multiphoton Rabi
oscillations between a single resonator and a qubit have
been predicted in Ref. [63]. In the following discussion,
by considering a more general case with two resonators
coupled with a qubit, we will analytically obtain the effective
Hamiltonians for arbitrary multiphoton processes between the
two resonators and the qubit.

We apply two coherent driving fields for the two resonators
with strengths ε1 and ε2, respectively, as shown in Fig. 1. Under
the rotating-wave approximation, the corresponding driving
Hamiltonian is

Hd =
∑
i=1,2

(εia
†
i e

−iωd,i t + ε∗
i aie

iωd,i t ) (3)

and the total Hamiltonian for the system can be expressed as

Hs = H0 + Hd. (4)

The two driving fields might have a phase difference θ . By
assuming that ε1 = |ε1|e−iθ/2 and ε2 = |ε2|eiθ/2, we will in
Sec. IV B show that both the relative phase θ and the drive
strength |εi | have significant effects on the photon distribution
statistics of the output fields.

B. Multiphoton processes

To explicitly demonstrate multiphoton processes between
the qubit and the two resonators, we first introduce the two
supermodes via their annihilation operators

A+ = G1a1 + G2a2

G
, (5a)

A− = G2a1 − G1a2

G
, (5b)

where G =
√

G2
1 + G2

2 = G1

√
1 + β2 and the commutation

relation between Ai and A
†
j is [Ai,A

†
j ] = δij . We define β =

G1/G2 as the ratio of the coupling strengths. The detuning
between the resonator fundamental frequencies should satisfy
the relation

ω1 − ω2 = g(β2 − 1)/β. (6)

Assuming that the two drives are of the same frequency
ωd,i = ωd , we express Hs in Eq. (4) in terms of A+ and A− as
follows:

Hs = 1

2
ωqσz +

∑
i=±

�iA
†
i Ai + Gzσz(A

†
+ + A+)

+Gxσx(A†
+ + A+) +

∑
i=±

εi(A
†
i e

−iωd t + H.c.), (7)

where the renormalized eigenfrequencies �± and the driving
strengths ε± for the supermodes A± are presented in Table I
and

Gz = G cos θ, (8a)

Gx = −G sin θ (8b)

are the longitudinal and transverse coupling strengths between
the qubit and the supermode A+, respectively. From Eq. (7) we
find that the supermode A− decouples from the qubit. Let us
apply the frame rotated by the unitary polariton transformation
exp[−λσz(A

†
+ − A+)], with λ = Gz/�+ [62,74], and use the

commutation relation

[A+,f (A+,A
†
+)] = ∂f (A+,A

†
+)

∂A+
,

where f (A+,A
†
+) can be expanded in a power series of

the operators A+ and A
†
+. Then the total Hamiltonian
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TABLE I. Parameters and eigenstates of the two supermodes A+ and A−, according to the Hamiltonian in Eq. (14).

Parameter or eigenstate Supermode A+ Supermode A−

Eigenfrequencies �+ = ω1 + g

β
, �′

+ = �+ − 4G2
x

3�+ �− = ω2 − g

β

Driving strengths ε+ = βε1+ε2√
1+β2

ε− = ε1−βε2√
1+β2

First-excited states |ψ1+〉 = β|10〉+|01〉√
1+β2

|ψ1−〉 = |10〉−β|01〉√
1+β2

Second-excited states |ψ2+〉 = β2|20〉+√
2β|11〉+|02〉

1+β2 |ψ2−〉 = |20〉−√
2β|11〉+β2|02〉
1+β2

Effective nonlinear coupling couples with the qubit decouples from the qubit

becomes

Hs = 1

2
ωqσz+

∑
i=±

�iA
†
i Ai

+Gx{σ+[A†
+f (λ) + f (λ)A+] + H.c.}

+
∑
i=±

εi(A
†
i e

−iωd t + H.c.) − 2λε+σz cos(ωdt), (9)

where f (λ) = exp[2λ(A†
+ − A+)]. For weak driving strengths

ε1,2 and a small Lamb-Dicke parameter λ � 1 [75], 2λε+ is a
much smaller parameter. Therefore, the last term in H̃s can be
neglected.

Let us now show how to realize multiphoton processes by
setting ωq � n�+, with n being the order of the photon-qubit
transitions. By expanding the third terms in Eq. (9) in terms
of the small parameter λ and keeping only the resonant terms,
we obtain the corresponding Hamiltonian for the n-photon
processes,

Hn = Gx

∞∑
m=1

[B1(m,n)σ+A
†m
+ Am+n

+ + H.c.]

+Gx

∞∑
m=0

[B2(m,n)σ+A
†m
+ Am+n

+ + H.c.], (10)

where the coefficients Bi(m,n) are expressed as

B1(m,n) = e−2λ2 (−1)m+n(2λ)2m+n−1

(m − 1)!(m + n)!
, (11a)

B2(m,n) = e−2λ2 (−1)m+n−1(2λ)2m+n−1

m!(m + n − 1)!
. (11b)

From Eq. (10) we conclude that, in principle, arbitrary
multiphoton processes between the qubit and one supermode
of the two resonators can be induced in this circuit-QED
system. However, for a small parameter λ, the rates of n-photon
transitions, which are determined by B1(m,n) and B2(m,n),
decrease rapidly with increasing m and n; so higher-order
photon-qubit transitions have slower rates and therefore can be
overwhelmed by the rapid oscillation terms and decoherence
channels.

In experiments, the interaction in a circuit-QED system
can easily enter the strong-coupling regime [76–78]. For two
superconducting resonators oscillating at frequency ωi/2π =
2.5 GHz with Gi = 0.06ωi and by setting θ = π/4, the
rates for the two-photon (n = 2) and three-photon transitions

(n= 3) between the qubit and the supermode A+ are �2/2π �
18 MHz and �3/2π � 1.1 MHz, respectively.

Here we assume that the qubit should be operated around
its optimal point (but not exactly at this point), so the
dephasing noise of the qubit is the dominant decoherence
channel. As reported in Ref. [79], for a flux qubit operated
around the optimal point (the flux bias is �b ∼ 1 × 10−3�0,
with �0 being the flux quantum), the dephasing rate was
measured to be about 6 μs−1 (the corresponding dephasing
rate �f /2π � 1 MHz). The quality factor Q of a supercon-
ducting resonator can easily exceed 104 [80] (i.e., the decay
rate γ /2π � 0.25 MHz). Thus, the rate for the two-photon
(three-photon) transitions exceeds (is comparable to) all the
decoherence rates in current experimental implementations
and it is possible to observe quantum coherent phenomena
due to these multiphoton processes.

III. ANALYTICAL RESULTS

A. Photon blockade in two resonators

In this section we will demonstrate the single-photon
blockade in the two resonators, which can be induced by
the two-photon processes. By setting ωq � 2�+ 
 Gx and
neglecting the last term, we expand Eq. (9) to first order in λ

and obtain

Hs
∼= 1

2
ωqσz +

∑
i=±

�iA
†
i Ai + Gxσx(A†

+ + A+) + 2λGx

× [σ+(A†2
+ − A2

+) + H.c.] +
∑
i=±

εi(A
†
i e

−iωd t + H.c.).

(12)

The effective Hamiltonian for the third term can be
expressed as 4G2

x/3�+σzA
†
+A+, which can be viewed as the

dispersive coupling between the qubit and the supermode A+
[81]. In this paper we find that the qubit remains effectively
in its ground state, so this term will only renormalize
the eigenfrequency of the supermode A+ to �′

+ = �+ −
4G2

x/3�+. Assuming ωq = 2�′
+ and performing the unitary

transformation

U = exp

{
−iωdσzt − i

∑
i=±

ωdA
†
i Ait

}
, (13)
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we obtain the following time-independent Hamiltonian by
neglecting the fast-oscillating terms in Hs :

Heff = 1

2
�+σz +

∑
i=±

�iA
†
i Ai

+�(σ+A2
+ + σ−A

†2
+ ) +

∑
i=±

εi(A
†
i + Ai), (14)

where � = −2λGx , �+ = �′
+ − ωd is the frequency de-

tuning between the supermode A+ and the drive field, and
�− = �+ + �2 with

�2 = 4G2
x

3�+
− g(1 + β2)

β
(15)

is the frequency difference between these two supermodes,
which can be obtained from the parameters in Eq. (6) and
Table I. The third term in Eq. (14) describes the quadratic
coupling between the supermode A+ and the qubit, while
the supermode A− decouples from the qubit. Moreover, the
supermode A+ (A−) is driven with strength ε+ (ε−) and
detuning �+ (�−).

As shown in Table I, the ground state of the system is |g〉 ⊗
|ψ0〉 = |g〉|00〉 and the first-excited states for the supermodes
A+ and A− are the single-photon entangled states

|ψ1±〉 = G1|10〉 ± G2|01〉√
G2

1 + G2
2

. (16)

Without the nonlinear coupling of the resonators with the
qubit, the second-excited states for the supermodes A+ and
A− become |ψ2+〉 and |ψ2−〉, respectively, which are defined
by

|ψ2±〉 = G2
1|10〉 ± G1G2|10〉 + G2

2|01〉
G2

1 + G2
2

. (17)

However, due to the effective nonlinear coupling, the second
excited states for supermode A+ are the two dressed (as marked
by the subscript d) states

|�d,±〉 = |g〉|ψ2+〉 ± |e〉|00〉√
2

(18)

with energy splitting 2
√

2�, as shown in Fig. 2. As a
consequence, the energy levels of supermode A+ become
anharmonic. It should be noted that ε± can conveniently be
adjusted by changing the pumping strengths ε1 and ε2, as
presented in Table I. Hence, under the condition �− 
 ε−
or ε− � 0, the supermode A− cannot be driven effectively.
Meanwhile, if the supermode A+ is resonantly driven with
strength ε+, the state |ψ1+〉 will be occupied and the first
photon can enter the two resonators. However, the two-photon
state |ψ2+〉 can hardly be excited due to the nonexistence
of available states. Thus, for the two resonators, the two-
photon states |20〉, |02〉, and |11〉 will be of extremely low
probabilities. Similar to the case in Refs. [28,82], the Hilbert
space of this composite system is only spanned by the vacuum
and single-photon states. These two resonators behave as a
qubit with the ground and excited states being |ψ0〉 = |00〉
and |ψ1+〉, respectively.

FIG. 2. Lowest energy levels for the Hamiltonian in Eq. (14). The
supermode A+ couples with the qubit with quadratic form, while the
supermode A− decouples from the qubit. The frequency difference
between these two supermodes is �2. When �2 = 0, these two modes
are degenerate. The effective drives for the supermodes A+ and A−
are ε+ and ε−, respectively, as shown in Table I.

B. Input-output relations for the three ports

We consider the input and output ports as sketched in Fig. 1.
At the outer edges, each resonator is capacitively coupled
to two semi-infinite transmission lines [64]. By combining
one transmission line of each resonator as port 3 [83], we
achieve three input and output ports. Here we discuss the
first-order correlation features of the output field from these
three channels. The second-order correlation functions will be
discussed in Sec. IV C.

The corresponding boson operators for the input and output
modes of the ith port are denoted by bin,i and ci , respectively.
According to the input-output relations, the input, output,
and intraresonator fields are linked through the boundary
conditions [83–85]

c1 = bin,1 + √
κ1,1a1, (19a)

c2 = bin,2 + √
κ2,1a2, (19b)

c3 = bin,3 + √
κ1,2a1 + √

κ2.2a2, (19c)

where κi,j is the photon escape rate from the resonator i to its
j th line [64,83]. With the intrinsic loss rate κin,i of the resonator
i, the total loss rate for this resonator can be expressed as
γi = κin,i + κi,1 + κi,2. Without loss of generality, we assume
that the decay rates of all the channels for each resonator are
the same, i.e., κin,i = κi,j = γi

3 for i,j = 1,2. Moreover, the
input fields bin,i of the three ports are all independent quantum
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vacuum noises and satisfy the Markov correlation relations

〈bin,i(t)b
†
in,j (t ′)〉 = δ(t − t ′)δij , (20)

so all the normally ordered cross correlations between the
intraresonator and input field are zero and the correlations
of output fields at each port can be expressed only with
the resonator operators. The average output photon numbers
collected through the three ports, which are proportional to the
first-order correlation functions with the zero-time delay, can
be expressed as

N1 = 〈c†1c1〉 = γ1

3
〈a†

1a1〉, (21a)

N2 = 〈c†2c2〉 = γ2

3
〈a†

2a2〉, (21b)

N3 = 〈c†3c3〉 = γ1〈a†
1a1〉 + γ2〈a†

2a2〉
3

+
√

γ1γ2(〈a†
1a2〉 + 〈a†

2a1〉)
3

. (21c)

We will apply these input-output relations, in particular, in
Sec. IV C.

IV. NUMERICAL RESULTS

A. Time-dependent solutions of the master equation

In this section we numerically demonstrate that single-
photon blockade can occur in our system even assuming ampli-
tude and phase damping as described by the master equation.
Numerical computations of the time-evolution solution of the
master equation were performed using the PYTHON package
QuTiP [86,87].

With �f (�) denoting the pure dephasing (decay) rate of
the qubit, the evolution of the reduced density operator ρ(t)
is governed by the standard Lindblad-Kossakowski master
equation

dρ(t)

dt
= −i[H,ρ(t)] + �D[σ−]ρ(t)

+ �f

2
D[σz]ρ(t) +

∑
i=1,2

γiD[ai]ρ(t), (22)

where the Lindblad superoperator D, acting on ρ(t) with a
given collapse operator B, is defined by D[B]ρ = BρB† −
1
2 (B†Bρ − ρB†B). For simplicity, we assume that all the
parameters are dimensionless. By setting β = 1, we choose
the two resonators with the same frequency ωi = 2500 and the
same coupling strength Gi = 0.06ωi . As a result, the effective
quadratic coupling strength is � = 18. We apply two coherent
drives with the unbalanced strengths ε1 = 0.95 and ε2 = 1 for
the two resonators. As a result, the two supermodes A+ and
A− are driven resonantly with the strengths ε+ = 1.38 and
ε− = −0.035, respectively (which can be calculated via the
relations shown in Table I).

First, we consider that the two supermodes are degenerate,
i.e., �2 = 0. According to Eq. (15), we obtain the direct
coupling strength between the two resonators to be equal to

FIG. 3. Time evolutions of the probabilities for the system
described by H = Hs (shown with solid curves) and H = Heff

(marked with symbols) in the (a) nondissipative and (b) dissipative
cases. The initial state is |0,0〉|g〉. (a) Without considering any
decay channels, the time evolution of the probabilities P (0,0) and
P (ψ1+) exhibit the Rabi oscillations between the states |0,0〉 and
P (ψ1+). (b) Decay of the probabilities assuming the decoherent
rates � = �f /2 = γ1 = γ2 = 1. We find that the sum of P (0,0) and
P (ψ1+) is almost equal to 1 for all the evolution times. Thus, this
sum can be considered as a fidelity measure of optical state truncation
resulting in photon blockade. Here we consider that the two modes
are degenerate, i.e., �2 = 0.

g = 6. Defining the probabilities

P (n1,n2) = 〈n1,n2|ρ(t)|n1,n2〉,
P (k)(n) = 〈nk|ρ(t)|nk〉,
P (ψ1+) = 〈ψ1+|ρ(t)|ψ1+〉

for the Fock states |n1,n2〉 and |nk〉 (the Fock states of the kth
resonator) and the Bell state |ψ1+〉, we numerically simulate
the original Hamiltonian H = Hs in Eq. (4) and the effective
Hamiltonian H = Heff in Eq. (14), respectively. The time-
dependent evolutions are plotted in Figs. 3(a) and 3(b) for the
nondissipative and dissipative cases, respectively.

It can be seen that the dynamical evolutions governed by
Heff (the curves marked with symbols) and Hs (the solid
oscillating curves) match well in both the nondissipative and
dissipative cases, indicating that the approximations adopted to
derive the effective Hamiltonian are valid. Since � 
 ε+ and
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FIG. 4. (a) Two-resonator photon-number probabilities P (n1,n2)
and (b) photon-number probabilities P (k) of the resonator k = 1 and
2 for the output steady state (i.e., for t → ∞) for the same parameters
as in Fig. 3(b). It can be found that the multiphoton states are hardly
excited.

γ1,2 
 ε−, only the first excited state |ψ1+〉 of the supermode
A+ can be excited effectively. Therefore, the Hilbert space of
two resonators is truncated into a two-level system due the
quadratic coupling. In Fig. 3(a) we find that the amplitudes
of P (0,0) and P (ψ1+) approximately exhibit qubitlike Rabi
oscillations without the consideration of any decay channel.

In Fig. 3(b) we consider the dissipative case and find
that the sum of P (0,0) and P (ψ1+) is almost equal to 1,
so the multiphoton probabilities P (n1,n2) with n1 + n2 � 2
are of extremely low amplitudes. In this case, the two
resonators behave as a single qubit. In Fig. 4 we plot the
probabilities for photon states (n1,n2) and the photon-number
distribution of each resonator for the original Hamiltonian
H = Hs when t → ∞. We find that, for each resonator, only
a single-photon state can be excited. For the two resonators,
the probabilities of multiphoton states are all smaller than
5 × 10−3, while the states P (0,0), P (0,1), and P (1,0) are
effectively occupied. This phenomenon can be explained
as single-photon two-resonator blockade; that is, only one

photon can be detected in these two resonators during two
zero-time-delay measurements.

Note that we describe the dissipative dynamics of our
system by the standard master equation under the Markov
approximation and assume weak couplings among all sub-
systems: the qubit, each resonator, and the environment. To
capture the non-Markovian effects on the photon blockade,
one can use, e.g., the effective Keldysh action formalism [88],
as recently applied in a similar physical context in Ref. [89].
Moreover, to study photon blockade in our system in the
ultrastrong or deep strong-coupling regimes, the generalized
master equation can be applied within the general formalism
of Breuer and Petruccione (see Sec. 3.3 in Ref. [90]). This
generalized master equation was derived in detail for a circuit-
QED system in Ref. [91]. In that approach all subsystems (in
our case, the qubit and two resonators) would dissipate into
a single entangled channel. This is in contrast to the standard
master equation, as analyzed here, where we assume separable
dissipation channels for each subsystem.

In the following sections we focus on the steady-state
solutions of the master equation, i.e., ρss ≡ limt→∞ ρ(t), by
adopting the time-independent Hamiltonian H = Heff and
using a shifted inverse power method implemented in Ref. [87].

B. Phase-space description of photon blockade

To visualize the nonclassical properties of the fields gener-
ated in our superconducting circuit, we apply the phase-space
formalism of Cahill and Glauber [92]. This formalism enables
a complete description of the dynamics of any quantum system
in terms of quasiprobability distributions (QPDs) and thus
without applying operators and their corresponding calculus
(as in the standard quantum-mechanical formalisms of, e.g.,
Schrödinger and Heisenberg).

The Cahill-Glauber s-parametrized QPD W (s)(α), for s ∈
[−1,1], of a given single-mode state ρ can be defined via its
Fock-state representation as follows [92]:

W (s)(α) =
∞∑

k,l=0

〈k|ρ|l〉〈l|T (s)(α)|k〉, (23)

given in terms of the operator T (s)(α), which can be defined
via its Fock-state elements

〈l|T (s)(α)|k〉 = c

√
l!

k!
yk−l+1zl(α∗)k−lLk−l

l (xα), (24)

where xα = 4|α|2/(1 − s2), y = 2/(1 − s), z = (s + 1)/(s − 1),
c = (1/π ) exp[−2|α|2/(1 − s)], and Lk−l

l are the associated
Laguerre polynomials [93]. The real and imaginary parts of
the QPD argument α are usually identified as the canonical
position and momentum, respectively. It is seen that this
s-parametrized QPD is a generalization of the Wigner W

function for s = 0, the Husimi Q function for s = −1, and
the Glauber-Sudarshan P function in the limiting case for
s = 1.

The generalization of these single-mode QPDs for the
multimode case is straightforward. However, for brevity,
we will not present this generalization here, but will focus
on the QPDs given by Eq. (23) for the single-mode (i.e.,
first-resonator) reduced output states.
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FIG. 5. Single-resonator quasiprobability distributions W (s) with the parameter (a) s = 0 (corresponding to the Wigner function),
(b) s = 1/2, and (c) s = 0.54 for the steady-state solutions ρ(1)

ss = Tr2(ρss) of the first resonator as a function of its canonical position
Re(α1) and momentum Im(α1). The corresponding plots for the second resonator for ρ(2)

ss = Tr1(ρss) are very similar to these and thus are not
presented here. The other parameters used here are the same as those in Fig. 3(b). The negativity of the QPD shown in (c) clearly reveals the
nonclassical character of the state generated via photon blockade. We note that the parameter s = 0.54 was chosen to be slightly larger than
the nonclassical depth s0 = 0.537 of the state (or more precisely, of the corresponding perfectly truncated qubit state). Thus, the QPD shown
in (c) is nonpositive, as indicated by the blue region.

In Fig. 5 we plotted the s-parametrized QPDs for (a) s = 0
(which corresponds to the Wigner function), (b) s = 1/2,
and (c) s = 0.54 for a given choice of parameters of our
system. These plots are tomographic projections of the QPDs,
where their negative regions are marked in blue, as shown
in Fig. 5(c) for some values of the canonical position Re(α1)
and momentum Im(α1) of the first resonator. The negative
regions of a given QPD reveal the nonclassical character of
the generated state. For a precise definition of nonclassicality
as well as its measures and witnesses see, e.g., Refs. [94,95]
and references therein. It can be seen that only the QPD shown
in Fig. 5(c) explicitly shows the nonclassicality of the analyzed
state. This nonclassicality cannot be easily concluded by
analyzing, e.g., the non-negative Wigner function in Fig. 5(a).

The Cahill-Glauber formalism enables us to define mea-
sures of nonclassicality (or quantumness) of a quantum system.
These include the nonclassical depth τ [96] (for a recent review
see Ref. [95]). This measure can be defined as the minimum
amount of Gaussian noise (quantified by the parameter s)
required to destroy the nonclassicality or, equivalently, to
change the negative function P ≡ W (1) into a non-negative
W (s0), i.e.,

W (s0)(α) = min
s

c′
∫

exp

(
−2|α − β|2

1 − s

)
W (1)(β)d2β � 0,

(25)

where s0,s ∈ [−1,1) and c′ = 2/π (1 − s). The Lee nonclas-
sical depth τ for a given state ρ corresponds to this minimal
Cahill-Glauber parameter s0 as follows:

τ (ρ) = 1
2 (1 − s0). (26)

Recently, it was shown that the nonclassical depth for a qubit
state, defined by the vacuum and single-photon states, is given
by [95]

τ (ρ) = 〈1|ρ|1〉2

〈1|ρ|1〉 − |〈0|ρ|1〉|2
. (27)

Thus, if a perfect qubit state could be generated by photon
blockade, then its nonclassicality can be exactly given by

Eq. (27). However, in our system we predicted the generation
of only effective imperfect qubit states, which have a minor
contribution from the Fock states with a larger number of
photons. Specifically, the contribution of such terms is less than
5 × 10−3, as show in the inset of Fig. 4(a). Such imperfections
of an effective qubit state result in its nonclassical depth to be
only approximately given by Eq. (27).

For the system parameters chosen in Fig. 5, the nonclassical
depth is τ (ρ̄(1)

ss ) = 0.23, which corresponds to s0 = 0.537,
where ρ̄(1)

ss is the single-resonator generated state ρ(1)
ss =

Tr2(ρss), which is artificially truncated to the qubit Hilbert
space. The nonclassical depth for the state ρ(1)

ss , which is
calculated numerically with a high precision in a higher-
dimensional Hilbert space, is only slightly larger than that
obtained for the qubit truncated state ρ̄(1)

ss .

C. Nonclassical photon-number correlations in photon blockade

Here we analyze nonclassical photon-number correlations
of the stationary output fields generated in our superconducting
system. We will show that the output signals in all the three
ports can exhibit both sub-Poissonian photon-number statistics
and photon antibunching under appropriate conditions.

Let us define the time-delay second-order correlation
function of the output field of the steady state as

g2i(τ ) = lim
t→∞

〈c†i (t)c†i (t + τ )ci(t + τ )ci(t)〉
〈c†i (t)ci(t)〉〈c†i (t + τ )ci(t + τ )〉

, (28)

where τ is the time delay between two measurements. At
τ = 0, the second-order correlation function of the three output
ports can be expressed as

g21(0) = N−2
1 〈a†

1a
†
1a1a1〉, (29a)

g22(0) = N−2
2 〈a†

2a
†
2a2a2〉, (29b)

g23(0) = 1

9N2
3

∑
j,k,m,l=1,2

√
γiγkγmγl〈a†

j a
†
kamal〉. (29c)
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FIG. 6. Two-time second-order correlation functions g21(τ ) (red
dashed curve), g22(τ ) (blue dotted curve), and g23(τ ) (black solid
curve) as functions of the delay time τ for ports 1, 2, and 3. These
three second-order correlation functions are much smaller than 1
and show dips at zero-time delay τ = 0. These dips reveal strong
sub-Poissonian photon-number statistics, since g2i(τ = 0) ≈ 0, while
the increase of g2i(τ ) with increasing τ from τ = 0 reveals photon
antibunching. The parameters used here are the same as those in
Fig. 3(b).

Several previous studies on photon (phonon) block-
ade equate the concepts of photon antibunching and
sub-Poissonian photon-number statistics. However, we treat
these two effects distinctly according to their standard defi-
nitions. Specifically, for stationary fields, photon antibunch-
ing (bunching) means that g2i(τ ) > g2i(0) [g2i(τ ) < g2i(0)],
that is, a local minimum (maximum) around the zero-time
delay [94,97]. The sub-Poissonian (super-Poissonian) photon
statistics only indicates that g2i(0) < 1 [g2i(0) > 1]. Thus,
sub-Poissonian statistics does not imply photon antibunching
and vice versa [98]. Note that both photon antibunching
and sub-Poissonian statistics are key features for an ideal
single-photon source. We will show that both of these two
purely nonclassical effects can be observed in our proposal.

As discussed in Sec. III A, given that only states |00〉, |10〉,
and |01〉 are of high probabilities, while the two-photon states
|20〉, |02〉, and |11〉 are of extremely low probabilities, we will
observe single-photon blockade in two resonators: A single
photon in one resonator not only can blockade the second
photon in this resonator, but can also blockade another photon
from being excited in another resonator. Consequently, once
the photon escapes from the two resonators the system can be
reexcited. As a result, the photon distribution from ports 1 and
2 are both sub-Poissonian and the cross correlation between
two resonators displays the anticorrelation. Moreover, in the
following sections, we will show that the field from port 3
also exhibits both sub-Poissonian statistics and antibunching.
Thus, a single photon can be emitted from ports 1 and 2 or,
alternatively, from port 3.

In Fig. 6 the time-delay second-order correlation functions
g2i(τ ) of the steady state of the output port i are plotted, from
which we find that g2i(τ ) � 1 and all show dips at τ = 0,
indicating that the output microwave fields from the three
ports exhibit both sub-Poissonian photon-number statistics and
photon antibunching.

In Fig. 7 we plot the computed values of log10[g2i(0)] and
Ni changing with θ and �+. Here we assume that the drives
for the two resonators are of the same strength, while the
phase difference between the two microwave drives is θ , i.e.,
ε1 = ε∗

2 = exp(iθ/2), and the corresponding driving strengths
for the supermodes A+ and A− are ε+ = 2 cos(θ/2) and ε− =
2i sin(θ/2), respectively. It is obvious that ε+ (ε−) decreases
(increases) with increasing |θ | in the regime [0,π ]. Since the
resonators 1 and 2 are identical, the modes a1 and a2 share
the same dynamics and thus we only plot g21(0) and N1. In
particular, due to γ1/γ2 = β = 1, for port 3 we have

N3 ∝ 〈A†
+A+〉,

g23(0) ∝ 〈A†
+A

†
+A+A+〉/〈A†

+A+〉2,

so the photon statistics of the output field from port 3 is
determined only by the properties of the supermode A+ under
these conditions.

In Figs. 7(a)–7(d) we consider that the two supermodes are
degenerate with �2 = 0. Around �+ = 0 (i.e., the drive for
the supermode A+ is resonant), both g21(0) and g23(0) show a
dip at θ = 0. However, with increasing |θ |, the driving strength
ε− for the supermode A− goes up, leading to its eigenstates
|ψi−〉 being effectively excited. It can easily be verified that
mode a1 satisfies

〈ψi−|a†
1a1|ψi−〉 �= 0, (30a)

〈ψj−|a†
1a

†
1a1a1|ψj−〉 �= 0, (30b)

while for supermode A+,

〈ψi−|A†
+A+|ψi−〉 = 0, (31a)

〈ψj−|A†
+A

†
+A+A+|ψj−〉 = 0, (31b)

where i � 1 and j � 2. Thus, the eigenstates of the supermode
A− being effectively excited lead to the increase of both output
photon number N1 and second-order correlation function
g21(0). However, their contributions to N3 and g23(0) vanish
according to Eqs. (31a) and (31b). In Figs. 7(a) and 7(b) it
can be found that, compared with g23(0), g21(0) is much more
sensitive to the changes of θ : Even though θ is a slightly
biased from 0, the photon statistics of the output field from
port 1 will not be sub-Poissonian anymore. In Fig. 7(c) we
find that, around �+ = 0, the average photon number N1 from
port 1 increases with |θ |. At θ = ±π , the drive strength for
the supermode A− and the photon number in resonator 1 both
reach their maxima. However, the field from port 1 is not
sub-Poissonian anymore. The photon output N3 from outport
3 vanishes at θ = ±π , as shown in Fig. 7(d), for two reasons:
First, the drive strength ε+ for the supermode A+ decreases
to zero; second, there is no contribution from the eigenstates
|ψj−〉 of the supermode A−.

In Figs. 7(e)–7(h) we plot the nondegenerate case with
�− − �+ = 10. By comparing with the degenerate case, we
find that both g21(0) and g23(0) display the sub-Poissonian
behavior in a wider range of θ . In this case, despite the
increasing θ , the driving strength ε− for the supermode A−
is still far off-resonance around �+ = 0, as shown in Fig. 2.
Therefore, the states |ψi−〉 cannot be effectively excited, so
their contributions for the mode a1 are negligible. Only the
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FIG. 7. Average photon escape rate N1 (N3) and the second-order correlation function g21(0) [g23(0)] from port 1 (port 3) versus the drive
detuning �+ and the phase difference θ for (a)–(d) the degenerate case (�2 = 0) and (e)–(h) the nondegenerate case (�2 = 10). Experiments
could adjust the coupling capacity C between the two resonators, to change the frequency separation between the two supermodes. In the plot
of the second-order correlation function g2i(0), the solid black closed loops in (a), (b), (e), and (f) correspond to log10[g2i(0)] = −1 and the
points inside the loops indicate that the output fields exhibit a strong sub-Poissonian character. It can be found that, in both degenerate and
nondegenerate cases, g21(0) and g23(0) can display dips around �+ = 0 and θ = 0. The other parameters used here are the same as those in
Fig. 3(b).

driving ε+ for the supermode A+ affects N1 and g21(0). Due
to the nonlinear coupling between the supermode A+ and the
qubit, only the state |ψ1+〉 can be excited effectively. Compared
with the degenerate case in Fig. 7(a), g21(0) in Fig. 7(e) is less
sensitive to the phase difference θ . In Fig. 7(g) we find that,
around �+ = −10, the photon number N1 from port 1 is very
large, owing to the resonant driving of the supermode A−.
Since there is no nonlinear coupling between the supermode
A− and the qubit, multiphoton states for the supermode A− are
excited. Although the output photon number N1 is large, the
second-order correlation function g21(0) is not sub-Poissonian.

Finally, we want to discuss another interesting phe-
nomenon. Specifically, if the direct coupling g between the
two resonators vanishes (i.e., the capacitor C is removed),
the two supermodes A+ and A− are still nondegenerate and
the frequency difference is only determined by the dispersive
coupling strength, as shown in Eq. (15), i.e., �2 = 4G2

x/3�+.
In this case, even when only one resonator is under a
resonantly coherent drive (for example, ε1 = 1 and ε2 = 0),
the phenomenon of single-photon outputs from ports 1, 2, and
3 still exists under the condition

�2 = 4G2
x/(3�+) 
 ε−, (32)

which can easily be realized in experiments. Thus, by employ-
ing only one coherent drive and one auxiliary qubit without

any direct coupling between two resonators, the single-photon
outputs also exist in all three output channels.

D. Entanglement relation between the two cavities

To analyze the entanglement between the resonators, we
use the logarithmic negativity to measure the entanglement,
which is given by [99]

Ec = log2[2NE(ρ12) + 1], (33)

where the negativity NE(ρ12) quantifies the entanglement of
the two-resonator steady state ρ12, which can be expressed as

NE(ρ12) =
∣∣∣∣ρT1

12

∣∣∣∣ − 1

2
. (34)

Here T1 denotes the partial transpose of the density matrix
ρ12 with respect to the resonator 1 and ||ρT1

12 || is the trace
norm of ρ

T1
12 . The logarithmic negativity Ec is an entanglement

monotone, which can be used to quantify the entanglement
between the two resonators (i.e., the entanglement between
signals from ports 1 and 2). In Fig. 8 we adopt the parameters
with θ = 0 and �2 = 10 and plot the dependence of Ec on the
ratio β. In this case, only the first excited state |ψ1+〉 of the
supermode A+ can be effectively driven. Note that |ψ1+〉 is a
maximally entangled state (i.e., the triplet state) when β = 1.
As shown in Fig. 8, we find that the output fields from ports 1
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FIG. 8. Logarithmic negativity Ec versus the coupling ratio β.
Here we set θ = 0 and �+ = 0. Other parameters are the same as
those of the nondegenerate case in Fig. 7. The vertical dashed line is
at β = 1.

and 2 are entangled and the logarithmic negativity Ec reaches
its maximum value when β = 1. We find that the entanglement
between fields from these two ports has a close relationship
with the single-photon blockade effects, which originates from
optical state truncation (or the nonlinear quantum scissors).
That is, the states of the two cavities are truncated to a qubit,
with the single-photon Bell triplet state |ψ1+〉 being the first-
excited state.

V. CONCLUSION

In this paper we demonstrated that it is possible to achieve
single-photon outputs in a circuit-QED system based on
both longitudinal and transverse couplings. We obtained the
effective Hamiltonians and the rates for multiphoton processes
and found that the effective nonlinear coupling between one
of the supermodes and the qubit can lead to photon blockade
effects.

We note the multiphoton processes can also be induced
in the hybrid superconducting system with only longitudinal
coupling, which has been shown in our previous study [100].
In this work we found that the second-order nonlinearity can
be about one order of magnitude stronger. Moreover, the drive
for the qubit is not needed in the present case.

We have analyzed photon blockade in phase space by apply-
ing the Cahill-Glauber s-parametrized QPDs. This approach
enabled us not only to show the nonclassical character of the
states generated via photon blockade, but also to determine
the degree of nonclassicality of the states, using the Lee
nonclassical depth.

Moreover, we considered two different output channels
for the fields: those from the individual resonators and the
joint channels of both resonators. It was found that all
three output fields display photon antibunching and a sub-
Poissonian photon-number distribution. Thus, our proposal
can be used to work as multioutput single-microwave-photon
devices. Afterward, by analyzing the steady-state solutions,
we discussed the degenerate and nondegenerate cases of the
two supermodes. In the degenerate case, the second-order
correlation function g21(0) of port 1 is much more sensitive
to the increase of the drive strength ε− for the supermode A−
than in the nondegenerate case. For the joint output 3, due to no
contribution from the eigenstates of the supermode A−, g23(0)
is more robust against the increase of ε− than that of g21(0) in
both degenerate and nondegenerate cases. We also found that
the state truncation of two-resonator modes will lead to the
entanglement between two resonators.

Compared with the dispersive and resonant microwave-
photon blockade known from previous studies, our proposal
has the following two advantages: First, the excited state of
the system still retains a photonic nature (i.e., this is a pure
single-photon Fock state rather than a polariton state); second,
the strong nonlinearity makes it possible to increase the single-
photon output rate.

It should be stressed that, to obtain multioutput channels, we
considered two resonators in this paper, but these results can
also be applied to the simple single-resonator case. We believe
that our proposal can be helpful in designing single-photon
sources in the microwave regime.
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