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We propose a simple setup for the conversion of multipartite entangled states in a quantum network with
restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent
under local operations and classical communication, but most importantly does not require full access to the states.
It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed
quantum computation and quantum communication in extended networks. In order to show the basic working
principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent
four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the
gate can be incorporated into extended graph state networks and can be used to generate variable entanglement
and quantum correlations without entanglement but nonvanishing quantum discord.
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I. INTRODUCTION

Entanglement between two or more particles is an ele-
mentary resource for a variety of quantum communication
and computing tasks [1–5]. Recently, sophisticated quantum
network architectures relying on resources with different
entanglement structures among the nodes of a network have
been proposed for distributed quantum communication and
computing [6–8]. In order to make full use of the nodes of a
network, it is important to identify and to prepare the optimal
shared resource for a given task, as well as to understand
the equivalence relations among different entangled resource
states and the inequivalent classes of entanglement.

Progress in the general study of multipartite entanglement
was stimulated by the finding that entangled states of three
qubits cannot be converted into each other by local operations
and classical communication (LOCC) [9,10]. While for bipar-
tite pure states there is only one class of states under LOCC, the
situation changes dramatically for more qubits. For example,
for four parties, Greenberger-Horne-Zeilinger (GHZ) states
[11], W states [9,12,13], cluster states [3,4], and Dicke states
[14] come from inequivalent entanglement classes [15,16].

This classification has led to a series of efforts to find
methods and schemes to prepare and characterize these states
in different physical setups [17], ranging from photonics [5]
and nuclear magnetic resonance [18] to ion traps [19,20] and
superconducting circuits [21,22]. Studies have also focused
on forming complete toolboxes of physically realizable oper-
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ations and gates to manipulate, expand, and fuse entangled
states of a certain type to form larger states of the same
type such that entangled networks can be formed [23–43].
In parallel to this work, there has also been much interest in
the use of entangled states in quantum information processing
tasks, especially in finding tasks for which the states from
one entanglement class may be more efficient than one from
another class. For example, cluster states and graph states are
universal resources for quantum computing [3,4], GHZ states
have been proposed as resources for achieving consensus in
distributed networks without classical postprocessing [44],
and W states have been proposed as resources for leader
election in anonymous quantum networks [44] and asymmetric
telecloning [45]. From a network perspective, the qubits are
distributed to the nodes where the users have access only
to a limited number of qubits. Typically they make use of
classical communication channels to perform individually or
collectively an assigned task [44–46]. In some cases, two nodes
of a network may be close enough to each other such that
joint operations can be carried out with a small overhead in
communication, as shown in Fig. 1. Such a scenario could
also describe the case where a node of a network is also
the node of another network and holds two or more qubits
belonging to different networks. This nonlocal node could
manipulate qubits from different networks for the purpose
of fusing those networks into a larger merged network. This
and similar tasks are of considerable importance as they
help us understand how to efficiently exploit multipartite
entanglement for quantum communication protocols and how
to design practical applications.

Recent work has focused on the transformation of different
types of entangled states into each other by local one- and
two-qubit operations while allowing classical communication
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FIG. 1. (a) Quantum network with restricted access. (b) We
consider a nonlocal conversion gate that operates on qubits from two
local nodes of the network and enables the conversion of different
types of multipartite entangled states for quantum networking
applications. While we focus on four-qubit entangled states in our
study, the overall principle could be extended to larger more complex
networks due to the operating range of the conversion gate.

among all the nodes. For example, Kiesel et al. [47] demon-
strated that a four-partite symmetric Dicke state can be used
to prepare a W state among three parties if one of the parties
in the network projects their qubit onto the computational
basis. The initial symmetric Dicke state can be used in certain
quantum versions of classical games, whereas the final W state
cannot be used [48,49]. On the other hand, the final W state
can be used for asymmetric telecloning of a qubit [45]. Along
the same lines, another interesting work is that of Walther
et al. [50], who showed that by the application of appropriate
generalized measurements on a tripartite GHZ state, one can
obtain a state whose fidelity to a tripartite W state approaches
one when the probability of success approaches zero. Tashima
et al. [31], on the other hand, have proposed a series of optical
gates that can prepare W states of arbitrary size by accessing
only one qubit of the W state. They also introduced a scheme
in which two parties sharing a pair of Bell states can prepare
tripartite W states and expand them to larger sizes with the
help of ancillary qubits, again by accessing only one qubit in
the network [31,32,35].

In this work we go beyond those concepts by introducing a
scheme that uses bilocal operations to enable the preparation of
resource states in a network that are inequivalent under LOCC,
but crucially does not require full access to all of the resource
state’s constituent elements. We call the operations bilocal,
as they involve a nonlocal two-qubit gate and local one-qubit
operations. Here the two qubits operated on by the nonlocal
gate need to be in close proximity, whereas the other qubits do
not. This is in contrast to a fully nonlocal operation that would
require all qubits to be in close proximity for it to be applied.
Our scheme employs a flexible linear optical conversion gate.
The gate can be used to generate variable entanglement, as well
as quantum correlations without entanglement captured by
the quantum discord. While we focus on four-qubit entangled
states in our study, e.g., cluster, GHZ, and Dicke states, the
overall principle can be extended to larger and more complex
networks due to the flexible operation of the gate. We highlight
this extension briefly in our work.

The paper is organized as follows. In Sec. II we describe the
principles of the nonlocal gate used in our conversion scheme
and highlight its overall range of operation. We also show how

FIG. 2. Nonlocal gate using linear optics. The gate is used in our
restricted-access network scenario to convert between different types
of entanglement structures.

it can prepare states that either are entangled or have nonzero
discord. In Sec. III we show that the gate can be used to convert
a four-qubit cluster state into other four-qubit entangled states
by operating nonlocally on only two qubits. In Sec. IV we
show some examples of incorporating the nonlocal gate in an
extended graph state network. Finally, in Sec. V we provide a
brief summary and outlook.

II. NONLOCAL GATE FOR PHOTONIC STATE
CONVERSION

Let us start by introducing the nonlocal two-qubit gate
for photonic state conversion. The gate shown in Fig. 2 is
composed of two polarizing beam splitters (PBSs) and four
half-wave plates (HWPs). At the most basic level it functions
as a tunable polarization-dependent beam splitter (PDBS).
However, its advantage over the standard PDBS already used in
experiments [32,51,52] is that as the operation of the individual
components can be adjusted easily, the configuration is far
more flexible and readily implemented experimentally. This is
in direct contrast to a bulk PDBS, whose operation is set once
fabrication has been completed and cannot be changed. The
flexibility of this tunable PDBS complements well the work
on a tunable polarization-independent beam splitter [53]. In
this section we consider the individual components of the gate
in order to derive the necessary expressions to demonstrate its
working principles and range of operation. We then discuss
how it can be used to generate entanglement and more general
quantum correlations.

A. Working principle of the conversion gate

The conversion gate is shown in Fig. 2. Its successful
operation is based on postselection such that one photon
is detected in each of the output modes, labeled 5 and 6.
The Kraus operator E0 of the gate transforms the input state
ρin = |ψin〉〈ψin| according to

ρin → E0|ψin〉〈ψin|E†
0

ps

, (1)

where ps = Tr(E0|ψin〉〈ψin|E†
0) is the success probability.

Here the action of the HWPs in modes 3 and 4 for the
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polarization degree of freedom of one photon is given by

|H 〉j → cos(2θl)|H 〉j + sin(2θl)|V 〉j ,
|V 〉j → sin(2θl)|H 〉j − cos(2θl)|V 〉j .

(2)

where j = 3,4 labels the modes of the HWPs and l = 1,2
labels the HWPs. When the input state is |HV 〉j , the action of
the HWPs in modes 3 and 4 is given by

|HV 〉j →
√

2 cos(2θl) sin(2θl)|2H 〉j
− [cos2(2θl) − sin2(2θl)]|HV 〉j
+

√
2 sin(2θl) cos(2θl)|2V 〉j , (3)

where we have used the definition |HV 〉j for one horizontal
polarized photon and one vertical polarized photon in the
same mode j and |2H 〉j (|2V 〉j ) for two horizontal (vertical)
polarized photons in mode j . In addition, the first PBS
applies the unitary transformations |H 〉1 → |H 〉4, |H 〉2 →
|H 〉3, |V 〉1 → |V 〉3, and |V 〉2 → |V 〉4 and the second PBS
applies similar transformations |H 〉3 → |H 〉6, |H 〉4 → |H 〉5,
|V 〉3 → |V 〉5, and |V 〉4 → |V 〉6. By combining all the unitary
operations of the HWPs and PBSs, the Kraus operator of the
nonlocal gate can be written as

E0 = (α1 − β1)|HH 〉56 12〈HH | + (α2 − β2)|V V 〉56 12〈V V |
+μ1|HV 〉56 12〈HV | − μ2|V H 〉56 12〈HV |
+μ1|V H 〉56 12〈V H | − μ2|HV 〉56 12〈V H |, (4)

where αl = cos2(2θl), βl = sin2(2θl), μ1 = cos(2θ1) cos(2θ2),
and μ2 = sin(2θ1) sin(2θ2). The Kraus operator E0 corre-
sponds to a successful gate operation with probability ps ,
where each of the output ports (modes 5 and 6) has one
photon. It is clear that by tuning the rotation angles of
HWP1 and HWP2, the gate acts as a tunable PDBS, enabling
the construction of different Kraus operators. This makes it
possible to perform different tasks using this simple linear
optical construction.

B. Entanglement generation

We now show some basic examples that demonstrate the
entangling power of the conversion gate and its PDBS ability.
In Fig. 3 we show the success probability and a range of states
with different amounts of entanglement generated by tuning
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FIG. 3. (a) Success probability for the input state |ψin〉 = |+〉|+〉
for the conversion gate operating with HWPs as polarization rotators
at angles θ1 and θ2. (b) Entanglement generated from this input as
quantified by the concurrence.

the angles θ1 and θ2, as quantified by the concurrence [54].
Here the input state is |ψin〉 = |+〉|+〉, where |+〉 = (|H 〉 +
|V 〉)/√2. Applying the Kraus operator E0 of Eq. (4) on this
input state yields

E0|ψin〉 = 1
2 [(α1 − β1)|HH 〉 + (α2 − β2)|V V 〉
+

√
2(μ1 − μ2)|�+〉], (5)

where |�+〉 = (|HV 〉 + |V H 〉)/√2.
First, in order to prepare the Bell state |�+〉 from the state

space of the output in Eq. (5) we need to set α1 − β1 = 0 and
α2 − β2 = 0 by rotating the angles of the HWPs in modes
3 and 4 as θ1 = (2k + 1)π

8 and θ2 = (2n + 1)π
8 , respectively,

for k and n taking non-negative integer values. The success
probability is maximized when μ1 − μ2 = cos 2(θ1 + θ2) =
∓1, leading to θ1 + θ2 = mπ/2 for some integer m. These
three equations are satisfied simultaneously when (2k + 1)π

8 +
(2n + 1)π

8 = mπ
2 . This can be reformulated to k + n + 1 =

2m, implying that k + n should be an odd number. In other
words, when k is even n is odd and vice versa. Thus the solution
we are looking for is μ1 = −μ2 = ±1/2, resulting in E0 =
±|�+〉〈�+|. Consequently, the Kraus operator E0 prepares
the output state ρout = |�+〉〈�+| with the success probability
ps = 1/2. In order to give an idea of the robustness of the
success probability to variations in the optical components,
as in an experimental implementation, we performed a Monte
Carlo simulation, varying the angles θ1 and θ2 of the wave
plates around their ideal values. We set a range of variation
for the angles of ±10% from the ideal value. Performing 5000
runs (to reach asymptotic behavior), we find an average success
probability of ps = 0.509 ± 0.010, which clearly shows that
the success probability is quite robust to realistic perturbations.

Similarly, we see from Eq. (5) that if we were able to set
μ1 − μ2 = 0 and α1 − β1 = ±(α2 − β2) this would prepare
the Bell state |	±〉 = [|HH 〉 ± |V V 〉]/√2. For the former
equality, we find θ1 + θ2 = (2m + 1)π

4 for non-negative inte-
ger numbers m. The latter equality is satisfied when 4θ2 =
4θ1 + 2nπ and 4θ2 = 4θ1 + (2k + 1)π , respectively, for plus
and minus signs. It is easy to show under these conditions
that the case with the plus sign gives α1 − β1 = α2 − β2 = 0,
which is not desirable. On the other hand, the case with the
minus sign leads to θ1 = (m − k)π

4 and θ2 = (m + k + 1)π
4 ,

for which α1 − β1 = −(α2 − β2) is always satisfied. The
above implies that we can prepare only the state |	−〉
with the success probability ps = 1/2. In this case, we
obtain α1 = β2 = μ1 = μ2 = 0 and α2 = β1 = 1, leading to
E0 = |HH 〉〈HH | − |V V 〉〈V V | and the output state ρout =
|	−〉〈	−| with success probability ps = 1/2. A Monte Carlo
simulation with a ±10% variation on the wave plate angles
gives a success probability of ps = 0.481 ± 0.021.

It is clear that starting with the input state |ψin〉 = |+〉|+〉
[or |ψin〉 = |−〉|−〉, where |−〉 = (|H 〉 − |V 〉)/√2], the pro-
posed gate can prepare a range of states with various amounts
of entanglement as shown in Fig. 3, including separable and
maximally entangled states, by simply setting the rotation
angles of HWP1 and HWP2 correctly. It is also noted that
the output state resulting from the input state |ψin〉 = |+〉|−〉
or |ψin〉 = |−〉|+〉 can be obtained from the input state |ψin〉 =
|+〉|+〉 by locally compensating for the phase shift in either
mode 5 or 6.
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C. Discord generation

We now give a brief example of how the conversion gate
can be used to generate quantum correlations different from
entanglement. Here the quantum discord [55–57] allows the
quantification of nonclassical correlations that exist between
quantum systems even when the entanglement is zero. Re-
cently, it was shown that discord can be used as a resource
for various types of quantum protocols that are useful in a
quantum network scenario, including remote state preparation
[58], encoding information that only coherent interactions
can extract [59], and verification that untrusted parties can
implement entanglement operations [60]. Discord represents
the quantum component of correlations between two systems
A and B and is defined as δ(A|B) = I (A,B) − J (A|B), with
I (A,B) and J (A|B) given by

I (A,B) = S(ρA) + S(ρB) − S(ρAB),
(6)

J (A|B) = S(ρA) − min
{�b}

∑
pbS(ρA|b),

where S(ρ) is the von Neumann entropy S(ρ) = −Trρ log2ρ,
ρA = TrBρAB , ρB = TrAρAB , {�b} is a positive-operator-
valued measure on system B, and pb = Tr[ρ�b] is the
probability of obtaining a measurement outcome b that leaves
A in the conditional state ρA|b. In general, the discord is not
symmetric, δ(A|B) �= δ(B|A), but if it is nonzero with respect
to measurements on at least one system, then nonclassical
correlations exist. In addition, when the entanglement is zero
and the discord is nonzero with respect to measurements on
one or both systems A and B [δ(B|A) �= 0 or δ(A|B) �= 0],
then there are quantum correlations present that are not due
to entanglement. In order to show that the conversion gate
generates such quantum correlations from initial product states
without entanglement we input the state ρin = 1

21 ⊗ |+〉〈+|.
In Fig. 4(a) the success probability is shown as the angles θ1

and θ2 of the gate are modified. In Fig. 4(b) the corresponding
entanglement generated by the gate is shown, as quantified by
the concurrence.

In Figs. 4(c) and 4(d) we give the discords δ(A|B)
and δ(B|A) generated in the output state with respect to
measurements performed on the second and first qubit in
the conversion gate, where A corresponds to the first qubit
in output mode 5 and B corresponds to the second qubit
in output mode 6. When θ1 = 0 and θ2 = π/3 [point (i)]
or θ1 = π/3 and θ2 = 0 [point (ii)] the output state from
the gate has no entanglement in Fig. 4(b), but interestingly
has nonzero discord [see in Fig. 4(c)]. The output state
for these points is 5

7 |H 〉〈H | ⊗ |φ〉〈φ| + 2
7 |V 〉〈V | ⊗ |+〉〈+|,

where |φ〉 = (2|H 〉 − |V 〉)/√5 and has a discord of δ(A|B) 	
0.082. The success probability is 0.438 and a Monte Carlo
simulation with a ±10% variation on the wave plate angles
gives ps = 0.446 ± 0.023. This way the conversion gate can
also be used to generate states with quantum correlations that
are not due to entanglement and may be used for various
quantum tasks in a network scenario [58–60], most notably as
resources in quantum cryptography [61].

III. STATE CONVERSION

One of the powerful features of the nonlocal gate is the
ability to convert quantum states belonging to one type of
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FIG. 4. Generation of nonclassical correlations by the conversion
gate that are not due to entanglement. (a) Success probability of
the conversion gate. Here points (i) and (ii) correspond to the
output state 5

7 |H 〉〈H | ⊗ |φ〉〈φ| + 2
7 |V 〉〈V | ⊗ |+〉〈+|, where |φ〉 =

(2|H 〉 − |V 〉)/√5. Points (iii) and (iv) correspond to the output
state 1

21 ⊗ |+〉〈+|. (b) Entanglement generated as quantified by the
concurrence. (c) Discord generated with respect to measurements
performed on the second qubit. (d) Discord generated with respect to
measurements performed on the first qubit.

state into another that is not LOCC equivalent. Starting with a
four-qubit linear cluster state given by

|C4〉 = 1
2 (|HHHH 〉 + |HHV V 〉 + |V V HH 〉 − |V V V V 〉),

we will show how the action of the conversion gate shown in
Fig. 2 on two qubits of the state ρin = |C4〉〈C4| will prepare
various LOCC inequivalent states, such as a four-qubit GHZ
and Dicke state, as well as into two bipartite maximally
entangled states, i.e., a product of Bell states. In general,
applying E0 given in Eq. (4) on the second and third qubits of
|C4〉, we find the general output

E0|C4〉 = 1
2 [(α1 − β1)|HHHH 〉 − (α2 − β2)|V V V V 〉
+μ1|HHV V 〉 + μ1|V V HH 〉
−μ2|HV HV 〉 − μ2|V HV H 〉], (7)

which by tuning the different coefficients enables the gen-
eration of a variety of states as described in the following
sections. In Fig. 5 we show a selection of output states that can
be obtained by operating the conversion gate on qubits 2 and
3 of the cluster state together with their success probabilities.

A. Transforming the cluster state into a GHZ state

In order to obtain a four-qubit GHZ state |GHZ4〉 =
(|HHHH 〉 + |V V V V 〉)/√2 from |C4〉 we should design
the evolution operator such that it discards the |HHV V 〉
and |V V HH 〉 components of |C4〉 and flips the minus sign
in front of the |V V V V 〉 component. This can be achieved
with an operation element with components |HH 〉〈HH |
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FIG. 5. Success probability for nonlocal state conversion from
the linear cluster state |C4〉 to various four-qubit entangled states. See
Table I for the labeled states and their success probabilities.

and |V V 〉〈V V |. Thus, for the output state in Eq. (7) to be
|GHZ4〉, we should set αj and βj such that (α2 − β2) =
−(α1 − β1) and μj = 0. The latter equality is satisfied for
(θ1,θ2) = [mπ

2 ,(2n + 1)π
4 ] or (θ1,θ2) = [(2n + 1)π

4 ,mπ
2 ] for

non-negative integers m and n. Substituting these in the former
equality leads to α1 − β1 = ±1 and α2 − β2 = ∓1. Choosing
these coefficients yields the Kraus operator of the evolution
given by

E0 = ±(|HH 〉〈HH | − |V V 〉〈V V |), (8)

which achieves the task of transforming |C4〉 to |GHZ4〉 (up to a
global phase) with a success probability of ps = 1/2. A Monte
Carlo simulation with a ±10% variation on the wave plate
angles gives a success probability of ps = 0.457 ± 0.027.

B. Identity operator: Keeping the cluster state intact

If we do not wish to convert |C4〉 to any other state but
keep it intact, while still using the nonlocal gate (for practical
reasons rerouting the photons may not be a straightforward
procedure), we see from Eq. (7) that in order to obtain E0 = 1
the coefficients μ2 = 0 and α1 − β1 = α2 − β2 = μ1 = ±1
are to be satisfied for ps = 1. The former equality has the
solutions (θ1,θ2) = (mπ

2 ,nπ
2 ), with m and n as non-negative

integers. We find αj − βj = 1 and μ1 = (−1)n+m from which
we obtain θj = kπ and θj = (2k + 1)π

2 , respectively, for even
and odd m. Then the output state of Eq. (7) will be equivalent
to |C4〉 if n + m is an even number with a success probability
of ps = 1. With a ±10% variation on the wave plate angles,
ps = 0.909 ± 0.056. In this case, the Kraus operator for the
successful transformation is the desired identity operator

E0 = |HH 〉〈HH | + |V V 〉〈V V |
+ |HV 〉〈HV | + |V H 〉〈V H |.

C. Transforming the cluster state into two Bell states

With a proper choice of the coefficients, we can disentangle
the four-qubit entanglement in the cluster state to prepare two
Bell states, one shared between modes 2 and 3 and the other
between modes 1 and 4. Note that only the photons in modes 2

and 3 enter the conversion gate. It is easy to see that among all
possible settings of the coefficients the setting α1 − β1 = α2 −
β2 = 0 and μ2 = −μ1 leads to the desired transformation.
Imposing these conditions results in

E0|C4〉 = μ1

2
(|HHV V 〉 + |V V HH 〉

+ |HV HV 〉 + |V HV H 〉)
= μ1|�+〉14|�+〉23. (9)

Thus, if we can find the angles satisfying the above expressions
for the coefficients, the desired task will be accomplished
with the success probability ps = μ2

1. Here we note that the
operation required is the same as the one of the first example
given in Sec. II B. Thus, substituting the angles for this example
into the expressions given in Sec. II B gives μ1 = −μ2 =
±1/2. The success probability is ps = μ2

1 = 1
4 . With a ±10%

variation on the wave plate angles, ps = 0.270 ± 0.017. The
Kraus operator that performs this task is

E0 = 1
2 [|HV 〉〈HV | + |V H 〉〈HV |
+ |V H 〉〈V H | + |HV 〉〈V H |].

D. Transforming the cluster state into a Dicke state

Finally, we show that the nonlocal gate can be used to
convert the linear cluster state |C4〉 into the four-qubit Dicke
state

∣∣D(2)
4

〉 = 1√
6

(|HV V H 〉 + |V HHV 〉 + |HV HV 〉

+ |V HV H 〉 + |HHV V 〉 + |V V HH 〉). (10)

Consider rotating the polarization of the qubits in this state
locally via the operation σz ⊗ σx ⊗ σzσx ⊗ 1 to give the
following state:

∣∣D′(2)
4

〉 = 1√
6

(|HHHH 〉 + |V V V V 〉 − |HHV V 〉

− |V V HH 〉 + |HV HV 〉 + |V HV H 〉). (11)

It is now clear that if we can set β2 − α2 = α1 − β1 =
−μ1 = μ2 in Eq. (7), the coefficients will be equal and
the final state will be locally equivalent to a Dicke
state. From μ1 = −μ2 we find θ1 − θ2 = (2k + 1)π

4 , which
leads to the relations sin 2θ1 = (−1)k cos 2θ2 and cos 2θ1 =
(−1)k+1 sin 2θ2. Using these relations in α2 − β2 = μ1, we
obtain 5 sin4 2θ2 − 5 sin2 2θ2 + 1 = 0, whose roots satisfy
sin2 2θ2 = (5 ± √

5)/10. Using the expression for sin2 2θ2 in
sin2 2θ1 + sin2 2θ2 = 1, which is derived from the equality
α2 − β2 = β1 − α1, we find sin2 2θ1 = (5 ∓ √

5)/10. Then
setting sin2 2θ1 = (5 ± √

5)/10 gives sin2 2θ2 = (5 ∓ √
5)/10

and leads to α1 − β1 = ∓1/
√

5 and α2 − β2 = μ1 = μ2 =
±1/

√
5. Inserting these values for the coefficients in Eq. (7),

we arrive at

E0|C4〉 = ∓ 1

2
√

5
[|HHHH 〉 + |V V V V 〉 − |HHV V 〉

− |V V HH 〉 + |HV HV 〉 + |V HV H 〉]

= ∓
√

6

2
√

5

∣∣D′(2)
4

〉
, (12)
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TABLE I. Success probability for nonlocal state conversion from
the linear cluster state |C4〉 to a four-qubit GHZ state, a Dicke state,
and two Bell states. The angle θ± is found from the relation sin 2θ± =√

(5 ± √
5)/10.

Converted state θ1 θ2 ps

(i) cluster state 0 0 1
π/2 π/2 1

(ii) GHZ state 0 (π/2) π/4 1/2
π/4 0 (π/2) 1/2

(iii) Dicke state θ+ θ− 3/10
θ− θ+ 3/10

(iv) two Bell states 3π/8 π/8 1/4
π/8 3π/8 1/4

implying that we can convert |C4〉 into |D(2)
4 〉 with a success

probability ps = 3/10. The Monte Carlo simulation with a
±10% variation on the wave plate angles gives a success
probability of ps = 0.303 ± 0.013. The Kraus operator for
the successful transformation is given by

E0 = ∓ 1√
5

(|HH 〉〈HH | − |V V 〉〈V V | − |HV 〉〈HV |

− |V H 〉〈V H | + |V H 〉〈HV | + |HV 〉〈V H |).

IV. NONLOCAL GATE IN A MULTIQUBIT NETWORK

We now briefly discuss the integration of the nonlocal
gate in a multiqubit network in the form of a graph state.
Graph states can be used for a wide variety of quantum

networking purposes, including in quantum communication
and distributed quantum computation [4,62]. In this setting
an important task is to “rewire” the network by changing the
entanglement structure in order to carry out a specific protocol
between selected parties. From the previous section it is clear
that the nonlocal gate can convert a cluster state into a number
of entangled states with different entanglement structures, as
summarized in Table I. We now show that, as a result, the
nonlocal gate enables the rewiring of a graph state network.

Consider the initial cluster state as part of a multiqubit graph
state, as depicted in the first step of Fig. 6(a). Here the cluster
state is shown in its canonical graph state form, where vertices
correspond to qubits in the state 1√

2
(|H 〉 + |V 〉) and solid edges

correspond to the application of a controlled-Z (CZ) operation
between the vertices: CZ = |H 〉〈H | ⊗ 1 + |V 〉〈V | ⊗ σz. The
dashed edges represent CZ gates applied between the qubits
shown and other qubits in the total graph state (not shown).
The canonical cluster state can be converted into the state
|C4〉 with local operations H ⊗ 1 ⊗ 1 ⊗ H, where H is the
Hadamard operation. Once these local operations have been
performed, the nonlocal gate is then applied. Here, there are
four rewiring cases.

(a) Rewiring into a star cluster. The nonlocal gate is applied
between qubits 2 and 3 for the cluster state |C4〉 to become a
GHZ state. This state is equivalent to the star cluster state
shown in step 2 of Fig. 6(a) under local operations H ⊗ 1 ⊗
H ⊗ H. Once these bilocal operations have been performed,
CZ operations are then applied to connect the star cluster state
into the total graph state, as shown in step 3. This rewires the
network. Note that one can choose any qubit to be the central
node of the star cluster in step 2 (1 is applied to the central

FIG. 6. Nonlocal gate used in a multiqubit network taking the form of a graph state. Here vertices are qubits initialized to the state
1√
2
(|H 〉 + |V 〉) and edges correspond to the application of a controlled-Z (CZ) operation between the vertices: CZ = |H 〉〈H | ⊗ 1 + |V 〉〈V | ⊗ σz.

In the first step of each panel, a linear cluster state has local operations H ⊗ 1 ⊗ 1 ⊗ H applied (H is the Hadamard operation) to take it from its
canonical graph state form to the state |C4〉. It is then converted into various four-qubit entangled states using the nonlocal gate, as summarized
in Table I. In the second step of each panel, these states are then connected to the rest of the graph representing the network via CZ gates (and
local operations). See the text for details. The dashed edges represent CZ gates applied between the qubits shown and other qubits in the total
graph (not shown). (a) Cluster state converted into a star graph (locally equivalent to the GHZ state), which is then connected to the rest of the
graph of the network. (b) Cluster state remaining intact as a cluster state and is connected to the graph (after local operations). (c) Cluster state
converted into two two-qubit graph states (each locally equivalent to a Bell state). (d) Cluster state converted into a Dicke state and connected
to the graph to form a hybrid quantum network. Here the red dashed edges signify that the state is entangled and are not CZ operations.
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node and H to the outer nodes), giving four possible rewiring
configurations. It is also interesting to note that the star cluster
state and linear cluster state are not equivalent under local
operations and classical communication [62], making the use
of the nonlocal conversion gate necessary in order to rewire
the network in this case.

(b) Keeping the initial wiring. The nonlocal gate is applied
between qubits 2 and 3 of the cluster state |C4〉, which remains
as |C4〉. This state is equivalent to the linear cluster state
shown in step 2 of Fig. 6(b) under local operations H ⊗ 1 ⊗
1 ⊗ H. Once these local operations have been performed, CZ

operations are then applied to connect the linear cluster state
into the total graph state. This keeps the initial wiring of the
network.

(c) Rewiring into two graphs. The nonlocal gate is applied
between qubits 2 and 3 of the cluster state |C4〉, which becomes
a product of two Bell states. Each of these states are equivalent
to a two-qubit graph state, as shown in step 2 of Fig. 6(c), under
local operations 1 ⊗ Hσx . Once these local operations have
been performed, CZ operations are then applied to connect
the graph states into the total graph state. This rewires the
network.

(d) Rewiring into a hybrid network. The nonlocal gate
is applied between qubits 2 and 3, and the corresponding
local operations are performed, for the cluster state |C4〉 to
become a Dicke state |D(2)

4 〉. This state is shown in step 2
of Fig. 6(d), where the internal entanglement connections of
the Dicke state (not CZ gates) are represented by dashed red
edges. CZ operations are then applied to connect each qubit of
the Dicke state individually into the total graph state. This is
a standard method for encoding qubits into graph states [4].
The operations produce a hybrid network of a graph state and
a Dicke state that may be more efficient for certain distributed
protocols, such as in telecloning and quantum secret
sharing [41].

V. CONCLUSION

In this work we proposed a simple and powerful linear
optical quantum gate that can be used to prepare entanglement
or to observe states without entanglement but nonzero discord.
In addition, we showed how to convert a four-qubit linear
cluster state into a series of relevant multipartite entangled
states, such as a four-qubit GHZ state, a Dicke state, and two
bipartite maximally entangled states, by acting on only two
qubits. The gate can perform a range of nonlocal operations
based on its functionality as a tunable polarization-dependent
beam splitter. As a result, it can be used to implement
various different types of fusion operation in a number of
quantum state expansion schemes [23,24,32]. Indeed, recent
work has also shown how to scale quantum networks by
fusing small multipartite entangled states containing four-
qubit entanglement [63]. Thus, by placing the gate in either
a large-scale quantum network [6] or small-scale on-chip
network [64], we envisage that it could play an important role
in efficiently preparing and converting other types of larger
multipartite entangled states where there may be restricted
access to a given resource.
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