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Phonon blockade is a purely quantum phenomenon, analogous to Coulomb and photon blockades, in which a
single phonon in an anharmonic mechanical resonator can impede the excitation of a second phonon. We propose
an experimental method to realize phonon blockade in a driven harmonic nanomechanical resonator coupled to
a qubit, where the coupling is proportional to the second-order nonlinear susceptibility χ (2). This is in contrast
to the standard realizations of phonon and photon blockade effects in Kerr-type χ (3) nonlinear systems. The
nonlinear coupling strength can be adjusted conveniently by changing the coherent drive field. As an example,
we apply this model to predict and describe phonon blockade in a nanomechanical resonator coupled to a
Cooper-pair box (i.e., a charge qubit) with a linear longitudinal coupling. By obtaining the solutions of the steady
state for this composite system, we give the conditions for observing strong antibunching and sub-Poissonian
phonon-number statistics in this induced second-order nonlinear system. Besides using the qubit to produce
phonon blockade states, the qubit itself can also be employed to detect blockade effects by measuring its states.
Numerical simulations indicate that the robustness of the phonon blockade, and the sensitivity of detecting it,
will benefit from this strong induced nonlinear coupling.
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I. INTRODUCTION

Quantum mechanics enables many breakthroughs that clas-
sical physics cannot reach. However, due to decoherence, there
exist huge obstacles when quantum theory is applied to macro-
scopic systems. In recent years, nanomechanical fabricating
technologies have achieved tremendous progress and provide
ideal platforms to explore fundamental questions in quantum
mechanics. Many efforts [1–5] have been made to approach the
quantum limits of nanomechanical resonators (NAMRs), for
instance, ground-state cooling [5,6] and preparing nonclassical
states (examples including superposition states [7,8], squeezed
states [9–11], etc.).

In experimental implementations, the fundamental frequen-
cies of NAMRs range from tens of Hz to several GHz, and
as a result, the thermal environment significantly affects the
coherences of mechanical modes. For NAMRs at microwave
frequencies [12], the quantum limit can be approached via
cryogenic means (in the range of ∼mK). If the energies of me-
chanical quanta (phonons) are larger than their thermal energy,
the quantum behavior of mechanical modes might be observed.
However, for mechanical modes of much lower frequencies,
the quantum coherences are fragile to thermal environments.
Usually NAMRs need to be cooled to reach their ground
states via methods such as side-band cooling [13–15] or active
feedback cooling [16,17]. To operate the mechanical motions
effectively, NAMRs are often combined with other systems
to form hybrid systems. Examples include optomechanical
systems [5,18] and quantum electromechanical systems [2,19].
In the quantum regime, NAMRs can be employed in fields
such as quantum information processing [20] and quantum
metrology [21,22].

A. Obstacles for observing robust phonon blockade

Phonon blockade (PB) [23–25] is another purely quantum
phenomenon in which a single phonon in a resonator can
impede the transmission of a second one. Phonon blockade is
an analog of another quantum phenomenon named photon
blockade (see Refs. [26–31] and references therein). The
interest in photon blockade is also motivated for realizing
single-photon sources for quantum-information processing.
Compared with classical states, phonon and photon blockade
states are described by the sub-Poissonian distribution and can
be interpreted as nonlinear quantum scissors [27,32]. Photon
blockade has theoretically been predicted in various systems
and was observed in an optical cavity coupled to a single
trapped atom [33]. However, realizing and observing PB are
still challenging for the following reasons: (1) The key point
for conventional phonon (photon) blockade is the realization
of a large nonlinearity with respect to the decay rate of the
system. However, moving into the strong nonlinear regime
often requires strict conditions which are hard to realize in most
systems. (2) The quantum coherence for NAMRs is very easily
destroyed by any noisy thermal environment. (3) Detecting
PB directly is also challenging: The position displacement for
NAMRs is too tiny to be detected effectively under current
experimental techniques [23,24,34]. Moreover, the zero-point
fluctuations for massive objects will limit the measurement
accuracy.

To date, most of the studies on phonon and photon blockade
are mainly based on nonlinearity (Kerr-type third-order χ (3)

nonlinearity [23,25–27] and second-order χ (2) nonlinear-
ity [30,35,36]) and quantum interference effects [30,37].
Phonon and photon blockade in χ (2) and χ (3) nonlinear systems
both originate from the energy-level shift of multiexcitation
states. To observe the blockade of the second excitation, the
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decoherence rate should be much smaller than the nonlinear
strength. Phonon and photon blockade can also be generated
by utilizing optimal conditions for quantum interference:
transition paths for the multiexcitation states are destructive
and will cancel each other, leading to a small population of the
second excitation. Recently a mechanism called unconven-
tional photon blockade has been predicted [38–42], in which
strong two-qubit entanglement and strong photon antibunching
can be observed via the destructive quantum interference
effect even in the weak nonlinear regime. Reference [37]
theoretically proposes how to realize photon blockade via
quantum interference effects in a quantum-dot cavity (without
any nonlinearity). However, to avoid multiexcited states,
the strengths and relative phases of the drive fields must
be perfectly fixed when employing quantum interference to
prepare blockade states.

B. Summary of our proposal

It should be noted that the nonlinearity can be intrinsic or
induced via ancillary systems [23,25,43]. Phonon blockade
in a Kerr-type nonlinear system has been demonstrated in
Refs. [23–25]. Inspired by these works, our goal in this paper
is to study PB via an effective second-order nonlinear coupling,
which remains unexplored. To obtain a second-order nonlinear
coupling, a NAMR is assumed to be coupled to a Cooper-pair
box (i.e., a charge qubit) [19,44,45] with a linear longitudinal
coupling (σz coupling) [46–48]. As discussed in Refs. [49–52],
coupling a resonator with a superconducting qubit of longitu-
dinal form will induce multiphonon (multiphoton) processes.

It is worth stressing that our system is based on the longi-
tudinal coupling, instead of the transverse coupling assumed
in the Rabi model under the rotating-wave approximation.
Former papers on phonon blockade have been based on the
Jaynes-Cummings model in the dispersive limit (i.e., assuming
large detuning). Our proposal, in which a strong quadratic
coupling between the charge qubit and the NAMR can be
induced by choosing appropriate driving parameters of the
charge qubit, has the following advantages:

(1) The intrinsic and induced effective χ (3) nonlinearities
are usually very weak (about three orders lower of magnitude
than the Jaynes-Cummings coupling strength) [25,28,53,54].
However, in this longitudinal-coupling system, the second-
order nonlinear strength can be much stronger and, as a
result, we can observe robust PB using lower-order nonlinear
interactions.

(2) Besides using the qubit to produce PB states, the qubit
itself can also be employed to detect PB.

(3) Comparing with the direct nonlinear coupling between
a qubit and a NAMR [55], this type of effective coupling
does not require the qubit and the NAMR to be resonant, and
the effective coupling strength can be adjusted by controlling
the strength of the drive field or the longitudinal coupling
strength.

In this paper we first describe the model Hamiltonian in
Sec. II. Then, in Sec. III, we obtain the theoretical results
for steady states and give conditions to observe strong sub-
Poissonian phonon statistics and strong phonon antibunching
in our proposal. In Sec. IV we demonstrate our numerical
results and discuss how to increase the robustness against

different types of noise in this composite system. In Sec. V
we propose a method to detect PB in this setup. Section VI
presents the conclusions.

II. MODEL

A. Hybrid system to generate phonon blockade

The proposed setup is illustrated in Fig. 1. A lossless NAMR
(with a fundamental frequency ω0, an effective length L, and
a mass m) is coupled to a charge qubit by applying a static
voltage V0 through a capacitance C0(x) [56–58]. Around its
equilibrium position x = 0, C0(x) depends on the displace-
ment x of the NAMR, and the distance between the charge
qubit and NAMR is d. The tunneling energy and capacitance
of two Josephson junctions in a superconducting quantum
interference device (SQUID) are EJ and CJ , respectively. The
charge states of the qubit can be precisely tuned by adjusting
the gate voltage Vg and the static voltage V0. The driving
force for the NAMR is induced by a time-dependent current
I (t) = I0 cos(ωf t) and a perpendicular static magnetic field
B0 [23]. The magnetic flux �x through the SQUID loop is
produced by the microwave field in the microwave line. Thus
we express the Hamiltonian of the total system as

Htotal = HQ + HNAMR, (1)

HQ = 2Ec(2ng − 1)σz − EJ cos

(
π�x

�0

)
σx, (2)

HNAMR = �ω0b
†b + �ε(b† + b) cos(ωf t), (3)

where HQ is the Hamiltonian of the charge qubit. In the
neighborhood of the charge-degeneracy point ng = [CgVg +

CJ CJ

Microwave line

g

FIG. 1. Schematic diagram of the coupled system of a NAMR
and a Cooper-pair box working as a charge qubit. The two Josephson
junctions (red rectangles) with tunneling energy EJ and capacitance
CJ form a SQUID loop. The perpendicular static magnetic field
B0, together with the current I (t) through the NAMR, produces the
Lorentz force to drive the NAMR. Here a gate voltage Vg and a static
voltage V0 are applied to the capacitances Cg and C0, respectively.
The microwave line is located right above the charge qubit. The
time-dependent current Ip(t) and static current Is in the microwave
line induce a magnetic flux �x through the SQUID loop.
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C0(0)V0]/(2e) � 0.5, the dephasing noise on the qubit will
be suppressed. The charge qubit can be characterized by
the pseudospin Pauli operators σz = |e〉〈e| − |g〉〈g| and σx =
σ+ + σ− = |e〉〈g| + |g〉〈e|, with |e〉 (|g〉) being the excited
(ground) state for the qubit. Here HNAMR is the Hamiltonian for
the driven mechanical mode of the NAMR, and b† and b are the
phonon creation and annihilation operators, respectively. We
define �ωq = 4Ec(2ng − 1), with Ec = e2/(2C�) being the
charging energy of the qubit with the total capacitance C� =
CJ + C0(0) + Cg [we assume that C0(0) and Cg are much less
than CJ ]. The displacement x of the NAMR gives rise to the
linear modulation of the capacitance between the NAMR and
Cooper-pair box island, that is, C0(x) = C0(0)(1 − x/d). This
leads to the coupling constant

g = 2EcC0(0)V0

ed�
X0, (4)

where X0 = √
�/(2mω0) describes the zero-point fluctuations

of the NAMR. The parameter

ε = �
−1B0I0LX0 (5)

is the driving strength of the Lorentz force for the NAMR,
which is induced by an alternating current at a frequency ωf

and a static magnetic field B0.
The second term in HQ is the Josephson energy. Here

�0 = �/(2e) is the flux quantum. The coupling between the
microwave line and the qubit results from the magnetic flux

�x = M[Ip(t) + Is] (6)

applied through the SQUID loop via the mutual inductance
M. Here Ip(t) = εp cos(ωpt) and Is are the time-dependent
and direct current in the microwave line, respectively. Under
the conditions MIs = �0/2 and Ip(t) � Is, we expand the
Josephson energy to first order as EJ σx sin y ≈ EJ yσx ,
where y = πMIp(t)/�0 � 1. Applying a frame rotating at
a frequency ωp and adopting the rotating wave approximation,

the Hamiltonian of the total system becomes (setting � = 1)

Htotal = 1
2
σz + ω0b

†b + gσz(b
† + b)

+�p(σ+ + σ−) + ε(b†e−iωf t + beiωf t ), (7)

where 
 = ωq − ωp is the drive-excitation detuning and

�p = πEJ MIp(t)

��0
(8)

is the effective Rabi frequency of the drive field.

B. Induced nonlinear qubit-NAMR coupling

To achieve the nonlinear coupling, we set the driving field
for the qubit as red sideband with 
 � 2ω0, as shown in
Fig. 2(a) (black arrows). Moreover, we do not consider the
weak drive ε of the NAMR at the beginning. Performing the
polariton transformation [50,59,60] to Htotal,

H̃ = eSHtotal e
−S, (9)

with S = βσz(b† − b) and β = g/ω0, we obtain

H̃ = 1
2
σz + ω0b

†b + [�pσ+e2β(b†−b) + H.c.], (10)

where H.c. denotes the Hermitian conjugate of the last term in
H̃ . In this shifted oscillator framework, we expand the above
equation to second order in the small parameter β, and we
obtain

H̃ = 1
2
σz + �p(σ+ + σ−) + ω0b

†b

+ 2�p[βσ+(b† − b) + H.c.]

+ 2�p[β2σ+(b† − b)2 + H.c.]. (11)

The second term in Eq. (11) will cause the dynamical energy
shifts for the charge qubit. Defining the shifted energy as


̃ =
√


2/4 + �2
p, (12)

|e,0〉

| ,1〉g

| ,0〉g

|e,1〉

Δ

ω Ω

| ,2〉g
| ,1〉g

| ,0〉g

| ,2〉g |e,0 〉

| ,3〉g

Δ

Ω

| ,3〉g |e,1 〉

| ,1〉g

| ,0〉g

|e,0〉 g+| ,2〉

|e,1〉 g+| ,3〉

(a) (b) ( )c

|e,1〉 g| ,3〉
2λ

6λ

|e,0〉 g-| ,2〉
(d)

FIG. 2. Schematic energy-level diagrams [in (a), (b), and (c)] explaining the occurrence of phonon blockade in our approach. The red
and black arrows represent the drivings for the NAMR and qubit with strengths ε and �p, respectively. (a) The energy shift 
s = 
̃ − 


(blue two-direction arrows) of the energy gap for the qubit is due to the side-band driving. (b) The induced nonlinear strength λ leads to the
transfer between states |e,0〉 ↔ |g,2〉 (|e,1〉 ↔ |g,3〉) with rate

√
2λ (

√
6λ). (c) Due to the energy level splitting between the dressed states

(|e,n〉 ± |g,n + 2〉)/√2, there is no corresponding transition level for a multiphonon being excited. (d) The time evolution of the probabilities
P2g (black curve) and P0e (red curve) demonstrate the Rabi oscillations between the states |g,2〉 and |e,0〉 without considering any decay
channels.
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and expressing the new eigenstates in the basis of the charge
states

|−〉 = cos
θ

2
|g〉 − sin

θ

2
|e〉,

|+〉 = sin
θ

2
|g〉 + cos

θ

2
|e〉, (13)

with tan θ = 2�p/
, we rewrite H̃ as

H̃ = 
̃σ̃z + ω0b
†b + 2λ�p(σ̃+ − σ̃−)(b† − b)

+ 2�pλ
2 sin θσ̃z(b

† − b)2

+ 2�pβ
2 cos θ (σ̃+ + σ̃−)(b† − b)2, (14)

where σ̃z = |+〉〈+| − |−〉〈−|, σ̃+ = |+〉〈−|, and σ̃− =
|−〉〈+|. The driving for the qubit is far detuned with 
 
 �p,
so the rotating angle θ of the new basis is very small, and we
have sin θ � �p/ω0 � 1 and cos θ � 1. The third and fourth
terms in Eq. (14) represent the energy shifts for the qubit and
the NAMR. Assuming that the qubit is approximately in its
ground state (σz = σ̃z = −1, since the sideband driving is far
detuned), the renormalized NAMR frequency can be expressed
by

ω′
0 = ω0 − 4�2

pλ
2

3ω3
0

, (15)

where the second term in this equation describes the eigenfre-
quency shift of the NAMR [57]. In this paper we consider the
resonant case 
̃ = ω′

0 and assume the parameters satisfy the
condition


 � 2ω0 
 max{g,�p} � min{g,�p} 
 ε. (16)

Performing the unitary transformation

U = exp[−i(
̃σ̃z + ω′
0b

†b)t] (17)

of H̃ in Eq. (14), we can neglect the rapid oscillating terms
and obtain the effective Hamiltonian as follows:

H̃ = λ(σ̃+b2 + σ̃−b†2), (18)

where

λ = 2�pg
2

ω2
0

(19)

is the effective nonlinear coupling strength between the states
|g,n + 2〉 and |e,n〉, where the |n〉 are the Fock states of the
mechanical mode. Equation (18) describes a nonlinear process
that the qubit can be excited by the annihilation of two phonons,
or the inverse process as shown in Fig. 2(b).

It should be noted that H̃ in Eq. (18) is the Hamiltonian after
performing the small polariton transformation and rotating the
qubit basis with an angle θ, so the evolution of the density
matrix ρ̃(t), described by H̃ , is also in the rotating frame. In
fact, we are ultimately interested in the dynamics as seen in
the original nontransformed laboratory frame ρ(t). To obtain a
complete description of the system, we also need to apply these
two rotating transformations to the bath-system coupling. In
principle, this can be done by transforming the operators in
the master equation. Only after these two steps we can obtain
the explicit solutions to this system. However, here we have
assumed that both of these two transformations just slightly

rotate the density matrix under the small parameters β and θ , so
ρ̃(t) can be viewed as an approximate solution for ρ(t). For the
collapse operators in the master equation, we can also neglect
the terms of order λ and θ . We find that these assumptions to
be valid by comparing our theoretical and numerical results.

By including the drive of the NAMR, the effective Hamil-
tonian of the system can be expressed as

Heff = λ(b2σ+ + b†2σ−) + ε(b†ei
d t + be−i
d t ), (20)

where 
d = ω′
0 − ωf is the detuning between the renormal-

ized NAMR frequency, given by Eq. (15), and the frequency
ωf of the alternating current I (t). Assuming g = �p = 0.1ω0,
a strong nonlinear coupling with strength λ = ω0/500 can be
achieved. Defining the time-dependent probabilities Pij (i =
0,1,2, . . . and j = g,e) for the states |j,i〉 and setting ε = 0,
we numerically solve the Schrödinger equation governed by
Htotal with the initial state |e,0〉, and plot the results in Fig. 2(d).
We find that the amplitudes of P0e and P2g approximately
exhibit Rabi oscillations with the Rabi frequency

√
2λ.

Thus, under the appropriate red-sideband driving for the
qubit, we realize an effective nonlinear coupling between the
NAMR and the qubit. Different from the direct nonlinear
coupling proposal in Ref. [55], the induced nonlinear coupling
described here should be easier to realize in experiments. In
this work we consider a pseudospin charge qubit coupling with
a NAMR of the longitudinal form just as an example, but the
same coupling also exists between mechanical modes and a
semiconductor quantum dot [59] (or a carbon nanotube [60],
an electronic-spin qubit [61], etc.). Thus, our discussions in
this paper can also be applied to those systems.

III. ANALYTICAL DESCRIPTION
OF PHONON BLOCKADE

Once the effective nonlinear coupling in Eq. (20) is induced,
the ground state is |g,0〉 and the first-excited state is |g,1〉.
However, the second-excited states are the superposition states
of |g,2〉 and |e,0〉 with splitting 2

√
2λ. The energy-level

diagrams for the first few excitation states can be found
analytically, as shown in Figs. 2(b) and 2(c). Hence, when the
NAMR is driven by a resonant force with strength ε (red solid
line in Fig. 2), the first phonon of the NAMR can be easily
generated, while the second phonon can be hardly excited,
since there are no corresponding transmission energy levels
for the second incoming phonon. Thus, the second phonon is
blocked by the first incoming phonon.

However, for a strong driving rate of the NAMR, high
excitation states might become occupied and the blockade
effect will be weaker. Moreover, the decoherences of the
qubit and the NAMR also lead to the deterioration of PB.
In this section we will derive the expression of the second-
order correlation function g2(0) under the low-excitation
approximation, and give the conditions for observing strong
antibunching and sub-Poissonian phonon statistics effects.

First we analyze the steady state of our system by analyzing
non-Hermitian Hamiltonians.
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A. Steady-state solutions of the Schrödinger equation
for the non-Hermitian Hamiltonian

If we assume that the driving strength ε is much smaller
than the effective nonlinear coupling strength λ, then we
can conjecture that the infinite-dimensional mechanical-mode
Hilbert space can be reduced into the two-phonon excitation
subspace. Then we can expand the wave function in the basis
spanned by {|g,0〉,|g,1〉,|e,0〉,|g,2〉} as follows:

|ψ〉 = C0g|g,0〉 + C1g|g,1〉 + C0e|e,0〉 + C2g|g,2〉, (21)

with |Cij |2 = Pij , which is a good approximation to de-
scribe phonon blockade. The validity of this approximation
will be discussed in Sec. IV, e.g., in the analysis of Fig. 4.
With the assumption 
d = 0, the decay of the charge qubit
and the mode loss can be treated by the non-Hermitian
time-independent Hamiltonian

HnH = Heff − i
κ

2
b†b − i

�

2
|e〉〈e|, (22)

where we have assumed that the qubit and the NAMR couple
with the vacuum reservoirs, and the corresponding damping
rates are � and κ , respectively. Substituting the state |ψ〉 and
HnH to the Schrödinger equation, we obtain the equations of
motion for the coefficients in Eq. (21):

i
∂

∂t
C1g = εC0g − i

κ

2
C1g +

√
2εC2g,

i
∂

∂t
C2g =

√
2εC1g − iκC2g +

√
2λC0e,

i
∂

∂t
C0e =

√
2λC2g − i

�

2
C0e. (23)

By setting ∂Cij /∂t = 0 (i = 0, 1, 2 and j = g, e), we obtain
the steady-state solution for each coefficient:

C0e = 2
√

2λ

i�
C2g, (24a)

C2g =
√

2ε

i
(
2κ + 4λ2

�

)C1g, (24b)

C0g = iκ

2ε
C1g −

√
2εC2g. (24c)

For a strong phonon blockade effect, the NAMR is treated
as a two-level system while multiphonon states (n � 2) are
suppressed by the qubit-NAMR nonlinear coupling; so we
assume that

|C2g|2 � min{|C0g|2,|C1g|2}
and |C0g|2 + |C1g|2 � 1. Neglecting C2g in Eq. (24c), we
obtain

|C1g|2 = 4ε2

8ε2 + κ2
, (25)

and according to Eq. (24b), we have

|C2g|2 = 8ε4

(2κ + 4λ2/�)2(8ε2 + κ2)
. (26)

These results will be useful to calculate second-order
correlation function in the following sections.

B. Sub-Poissonian phonon statistics

The sub-Poissonian phonon statistics can be revealed
by measuring the zero-delay-time second-order correlation
function

g2(t,0) = 〈b†(t)b†(t)b(t)b(t)〉
〈b†(t)b(t)〉2

. (27)

We recall that if a given phonon state is described by
g2(t,0) < 1 [g2(t,0) > 1], then it exhibits sub-Poissonian
(super-Poissonian) phonon statistics, which is also sometimes
referred to as phonon antibunching (bunching).

However, here we refer to phonon antibunching and
bunching in a more common way, as defined in Sec. IV B.

Let us denote g2(0) = limt→∞ g2(t,0). Then for the state,
given by Eq. (21), we find that the correlation function g2(0)
can be expressed by the probability amplitudes as follows:

g2(0) � 2|C2g|2
|C1g|4 = 8ε2 + κ2

(2κ + 4λ2�−1)2
. (28)

From Eq. (28) we conclude that, in our second-order
nonlinear system, the effective nonlinear coupling strength
λ and the qubit decay rate � significantly affect the dip of
the sub-Poissonian phonon statistics. If a relatively strong
coupling strength λ is induced and the relation

4λ2

�

 max{2

√
2ε,κ} (29)

is satisfied, strong sub-Poissonian phonon statistics can be
observed in this system with g2(0) � 1.

IV. NUMERICAL DESCRIPTION OF PHONON BLOCKADE

A. Steady-state solutions of the master equation

In this section we numerically study the phonon blockade
effect via the standard master equation approach. Numerical
computations were performed using the Python package
QuTiP [62]. We perform numerical calculations in the Fock
space of the (NAMR) of dimension M = 10, which is much
larger than that assumed in Eq. (21). To verify our analytical
results of phonon blockade in Sec. III, we adopt the original
Hamiltonian Htotal in Eq. (7) (not Heff) to proceed with
our numerical simulations. The Kossakowski-Lindblad master
equation for the reduced density matrix ρ̂(t) of the system reads

dρ̂(t)

dt
= −i[Htotal,ρ̂(t)] + D[σ−,�]ρ̂(t)

+D[σz,�f /2]ρ̂(t) + nthD[b†,κ]ρ̂(t)

+ (nth + 1)D[b,κ]ρ̂(t), (30)

where

D[A,�]ρ̂ = 1
2�(2Aρ̂A† − A†Aρ̂ − ρ̂A†A) (31)

are Lindblad-form terms, and �f is the pure dephasing rate
of the qubit. Recall that � corresponds to the qubit decay rate
and κ is the decay rate of the NAMR. In this proposal, the
NAMR might couple to a thermal reservoir of temperature T

063861-5



WANG, MIRANOWICZ, LI, AND NORI PHYSICAL REVIEW A 93, 063861 (2016)

with thermal phonon number nth = {exp[�ω0/(kBT )] − 1}−1,
where kB is the Boltzmann constant.

B. Quantum signatures for steady-state phonon blockade:
Phonon antibunching and sub-Poissonian phonon statistics

Here we show that phonon blockade in the infinite-time
limit of the dissipative system is also a nonclassical effect be-
cause the generated steady state of the NAMR can exhibit both
phonon antibunching and sub-Poissonian phonon statistics.

To reveal phonon antibunching, we apply the steady-state
second-order correlation function

g2(t,τ ) = 〈b†(t)b†(t + τ )b(t + τ )b(t)〉
〈b†(t)b(t)〉〈b†(t + τ )b(t + τ )〉 , (32)

where τ is the time delay between two measurements.
This function reduces to Eq. (27) for τ = 0. The two-time
correlation function of the steady state of the mechanical mode
is the function of only the time delay as given by

g2(τ ) = lim
t→∞ g2(t,τ ). (33)

Here we refer to phonon antibunching (bunching) for a
phonon steady state only if g2(τ ) > g2(0) [g2(τ ) < g2(0)] for
a delay time 0 < τ , according to the standard definition of
these effects [63]. Phonon antibunching also occurs if g(2)(τ )
has a strict local minimum at τ = 0 [64]. Here we only study
the phonon antibunching of stationary states. Note that such
effect can also be observed for nonstationary cases, but a
modification of this definition would be required [64].

Note that these phonon antibunching and bunching ef-
fects are defined via two-time phonon-number correlations,
while the sub-Poissonian and super-Poissonian statistics are
given via single-time phonon-number correlations. So, these
are different effects and a given state of the NAMR can
be [65] either (1) both sub-Poissonian and antibunched, or
(2) sub-Poissonian and bunched, or (3) super-Poissonian and
antibunched, or (4) super-Poissonian and bunched. In this
paper we focus on case (1). Finally, we stress that sub-
Poissonian statistics and antibunching are purely nonclassical
effects, since they correspond to the violation of classical
inequalities [66]. Thus, the observation of either of these
effects can be a signature of the quantumness of a NAMR.

In current experiments with a charge qubit and a NAMR,
their coupling strength is of orders from tens to hundreds
of MHz, as shown in Refs. [67–69]. Moreover, the quality
factor of a NAMR at microwave frequencies is around 103–105

[6,70]. The decay rate of a charge qubit can reach the order
of 1 MHz [71]. In the following discussion we assume that
the NAMR oscillates at ω0/(2π ) = 1 GHz with quality factor
Q = 5 × 103 [κ/(2π ) = 0.2 MHz]\negthinspace and the
coupling strength with the qubit is g/(2π ) = 80 MHz. Under
the driving rate �p/(2π ) = 100 MHz, the effective nonlinear
coupling strength is λ/(2π ) = 1.28 MHz. Defining the time-
dependent probabilities Pn(t) = Tr[|n〉〈n|ρ̂(t)] for the phonon
number n and mean phonon number 〈n〉 = Tr[b†bρ̂(t)], we
have numerically solved the master equation and the results
are shown in Fig. 3(a). We find that the sum of P0 and P1

is almost one, while P2 is of an extremely low amplitude,
indicating that phonon blockade occurs in this hybrid system.
Moreover, the average phonon number 〈n〉 of the steady state

FIG. 3. (a) Probabilities Pn of measuring n phonons and the
average phonon number 〈n〉 as a function of the evolution time.
(b) Phonon antibunching is revealed by the second-order correlation
function versus the rescaled delay time κτ. Other parameters are:
�/(2π ) = 1 MHz, �f = 0, ε/(2π ) = 0.2 MHz, 
d = 0, and nth = 0.

oscillates around ∼0.44, which is due to the high-order terms,
as shown in Sec. II B. In the following numerical results,
without loss of generality, we adopt the ensemble-average 〈n〉
and P2 of the steady state to calculate g2(0).

In addition to the time-dependent probabilities Pn(t),
other quantum signatures for PB are the phonon inten-
sity correlations with finite-time delays. The delay-time-
dependent second-order correlation functions g2(τ ) are plotted
in Fig. 3(b), from which it can be found that if the time delay
between two measurements κτ is within ∼1, then a phonon
antibunching dip can be observed.

In Sec. III A we assumed that the Hilbert space of the
system is truncated into its subspace spanned by the four states,
given in Eq. (21). This approximation will be not valid if the
higher-energy levels are excited. As shown in Ref. [27], we
use the fidelity of state truncation to estimate the quality of this
effect in a phonon blockade system. With our precise numerical
solution obtained in a larger Hilbert space, the fidelity is the
sum of the steady-state probabilities of the states considered,
which is defined as

F (ρss) = |C0,g|2 + |C1,g|2 + |C2,g|2 + |C0,e|2, (34)
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FIG. 4. The fidelity F , given by Eq. (34), of state truncation vs
(a) the drive strength ε and (b) the effective Rabi frequency �p of
the drive field. The other parameters used here are the same as those
in Fig. 3(a).

where ρss is the steady state of the system. The fidelity F ≈ 1
indicates that we can effectively use these four states to expand
the density matrix of the system, and the analytical results in
Sec. III are valid. Otherwise, if the fidelity F is much smaller
than 1, we can conclude that the higher energy level beyond
these four states are effectively occupied, and it is not enough
to use only these four states to describe the system.

In Fig. 4(a) we plot the fidelity F as a function of the drive
strength ε of the NAMR. With increasing ε, the fidelity F does
not change much (and remains above 0.99) if ε/2π < 0.5 MHz.
However, if we continue increasing the drive strength ε, the
fidelity starts to decrease rapidly. In this case, the nonlinear
effects cannot effectively prevent multiphonon states being
excited. As a result, the phonon blockade effects will be
destroyed.

The relation between the fidelity F and the pump strength
�p of the qubit is shown in Fig 4(b). We find that the
fidelity initially increases rapidly with the pump strength �p.
This is because the nonlinear strength goes up as shown
in Eq. (19). Therefore, blockade effects will be enhanced.
However, when �p/(2π ) increases more than 100 MHz, then
the fidelity starts to decrease. This is because the large detuning
approximation 
 � 2ω0 
 �p, given by Eq. (16), is not valid
any more when �p is too strong. Consequently, the qubit can be
effectively excited and the transitions |g,1〉 ↔ |e,1〉 ↔ |g,3〉
can occur. Thus, multiphonon states are effectively excited.
Moreover, higher-order terms will also deteriorate the fidelity
of truncation, as shown in Sec. II B. It is seen that there is a
trade-off when we want to induce the strong nonlinear coupling
between the NAMR and the qubit while limiting the strength
of the qubit drive to a certain regime.

In Fig. 5 we plot the mean phonon number 〈n〉 and g2(0) ver-
sus the mechanical drive detuning 
d . For a driving force tuned
resonantly with the mechanical mode frequency, we observe
g2(0) � 0.06. Correspondingly, the average phonon number
〈n〉 ≈ 0.44 [according to Eq. (25), the maximum phonon
number of the steady state in the PB system is 〈n〉max � 0.5 as-
suming 2

√
2ε 
 κ]. Thus, the system can work as an efficient

single-phonon source device with a large output of phonons.
When increasing the detuning 
d , g2(0) rises, while the mean
phonon number 〈n〉 decreases, and around 
d � ±√

2λ/2
two small bunching peaks [g2(0) ∼ 5] can be observed due
to resonantly driving the second excited states [see Fig. 2(c)].

FIG. 5. (a) Mean phonon number 〈n〉 and (b) zero-delay time
second-order correlation function g2(0) as functions of the frequency
detuning 
d/(2π ) of the driving force.

C. Discussions on increasing the robustness

Equation (28) indicates that PB strongly depends on the
ratio 4λ2/�. Once the relation Eq. (29) is not valid, phonon
antibunching in this hybrid system might not occur. In Fig. 6(a)
we show how g2(0) depends on � and the nonlinear coupling
strength λ (during the numerical simulations, λ is adjusted by
changing the drive strength). From the results in Fig. 6(a), it
can be found that PB is preserved under the drive strength
�p/(2π ) = 200 MHz [λ/(2π ) = 2.56 MHz, the blue solid
curve in Fig. 6(a)] with g2(0) � 0.07, even when �/2π

increases to 6 MHz. However, when �p/2π decreases to 50
MHz [λ/(2π ) = 0.64 MHz, the red-dashed curve in Fig. 6(a)],
2
√

2ε and κ are comparable to 4λ2/� when �/(2π ) exceeds
∼3 MHz, and phonon antibunching is more fragile to the
rapid decay rate of the qubit. We conclude that the strong
drive strength can increase the robustness of the PB against
the rapid decay of the qubit.

The thermal phonons in the environment can also destroy
PB to some extent. To beat the thermal noise, one can increase
the induced nonlinearity of this PB system, or employ the
NAMR of a high-quality factor. Here we set the quality factor
Q as 5×103 and 5×104, respectively, and plot two curves
describing g2(0) as a function of nth in Fig. 6(b). For Q =

FIG. 6. (a) Dependence of the sub-Poissonian dip g2(0) on the
decay rate of the qubit, for different values of the driving strength
�p/(2π ) = 50 MHz (red dashed curve), �p/(2π ) = 100 MHz (black
dot curve), and �p/(2π ) = 200 MHz (blue solid curve). (b) g2(0)
vs thermal phonon number nth for different values of the quality
factor Q = 5×103 (blue dashed curve) and Q = 5×104 (black solid
curve). The other parameters used here are the same as those
in Fig. 3(a).
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FIG. 7. Steady-state second-order correlation function g2 of the
mechanical mode vs the rescaled delay time κτ, assuming various
values of the pure-dephasing rate �f = 0 (black solid curve), �f =
0.2� (red dot curve), and �f = 2�(blue dashed curve), where � is
the qubit decay rate and κ is the decay rate of the NAMR. Here the
other parameters are the same as those in Fig. 3(a).

5×103, g2(0) is almost ∼2 when the thermal phonon number
increases to nth = 2, indicating that the NAMR is described
by the super-Poissonian distribution due to the thermal noise.
However, under Q = 5 × 104, g2(0) rises much slower with
increasing nth. To observe better PB without being destroyed
by the thermal phonons, we can employ a high-quality factor
NAMR to decouple it from the thermal environment.

So far we have not considered the effect of pure dephasing
of the qubit. In Fig. 7 we show the second-order correlation
function g2(τ ) under different values of the pure dephasing
rate �f . We find that the rapid dephasing rate will destroy
the blockade effects; but even when �f = 2�, g2(0) is still
about 0.5, indicating that the NAMR still exhibits phonon
antibunching. In experimental implementations, to minimize
the dephasing noise, the qubit should be operated around its
degeneracy point, and the dephasing time has been measured
even longer than 500 ns [i.e., �f /(2π ) ∼ 0.3 MHz] as reported
in Ref. [72]. Alternatively, by coupling the mechanical mode
to the SQUID loop, we can also obtain a strong coupling of
a linear longitudinal form, which has been demonstrated in
Refs. [9,55]. With the tunneling energy being in the dominant
position and at the degeneracy point, the dephasing due to
charge fluctuations can also be minimized. Another approach
is to improve the properties of the Josephson junctions and
materials to eliminate excess sources of 1/f noise [73,74]. All
these strategies will increase the dephasing time significantly,
and the effect of pure dephasing of the qubit can effectively be
suppressed.

V. DETECTING PHONON BLOCKADE
BY MEASURING THE QUBIT

Another challenge for phonon blockade is its detection.
In Ref. [23] the authors demonstrated that, in principle, PB
could be measured via the power spectrum of the induced

electromotive force between the two ends of the NAMRs:
the observation of extra peaks in the power spectrum means
the deterioration of PB. Another detecting method has been
shown in Ref. [24]: With the NAMR resonantly coupled with
a microwave resonator cavity, the photons in the cavity will
be entangled with phonons, and they will share the same
dynamics. If detections of photons indicate photon blockade,
we can conclude that the NAMR is in a PB state. In this induced
second-order nonlinear system, the detection might be easier:
energy exchanging via the nonlinear term makes it possible to
obtain the information of the NAMR by detecting the qubit.

For single-PB systems, the most important signature is the
small probability of the incoming second phonon. Under low-
power driving for the qubit and NAMR, the probabilities Pe

and P2(denoting the qubit in its excited state and the NAMR
in the Fock state |2〉), are approximately equal to P0e and
P2g , respectively; that is, Pe � P0e and P2 � P2g. Due to the
effective nonlinear coupling between the NAMR and the qubit,
there is a coherent transition |e,0〉 ↔ |g,2〉 and the relation
between P0e and P2g of the steady states under the weak driving
ε � λ is given in Eq. (24a): P2g is proportional to P0e. Thus
we can measure Pe to estimate the population of the second
phonon being excited, and the sensitivity of this detection is

FIG. 8. (a) Probabilities Pe � |C0e|2 and P2 � |C2g|2 , as defined
in Eq. (21), as a function the zero-delay-time second-order correlation
function g2(0) under the driving strength �p/(2π ) = 100 MHz.
(b) Ratio R = Pe/P2 vs P2. Here we set �p/(2π ) equal to 100
MHz (blue solid curve) and 200 MHz (red dashed curve). The other
parameters used here are the same as those in Fig. 3(a).
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decided by the amount (λ/�)2: for larger (λ/�)2, the smaller
|C2g|2 will lead to a larger probability of the qubit in its excited
state. In Fig. 8 we plot both Pe and P2 as a function of g2(0),
and these quantities are changed by increasing the drive ε.
From Fig. 8(a) it can be found that when strong sub-Poissonian
phonon statistics are observed [g2(0) � 0.07], both P2 and Pe

are of extremely low amplitude. When g2(0) starts to rise, P2

and Pe increase very rapidly. Thus, the observation of the qubit
in its excited state can be a signature of imperfect single PB,
and a higher probability Pe indicates a worse phonon blockade
effect for the NAMR.

In Fig. 8(b) we set the driving strength of the qubit �p/(2π )
equal to 100 and 200 MHz, respectively, and define the ratio
R = Pe/P2 to estimate the sensitivity: a large ratio R means
that this detection is more sensitive. We find that for a stronger
drive, R is always much higher than that of the weaker drive
case. We conclude that the large effective coupling strength
does not only benefit the robustness against environmental
noise, but also increases the sensitivity of the PB measurement.

VI. CONCLUSION

We have shown how to observe phonon blockade induced
by the effective nonlinear coupling between a charge qubit
and an NAMR. This coupling could be realized in the
hybrid system shown in Fig. 1. In this composite system,
phonon blockade effects will occur under resonant driving
for the NAMR. By analyzing the solution of the system
steady states, we have obtained the conditions for strong
phonon antibunching and sub-Poissonian phonon statistics.
Specifically, the ratio 4λ2/� must exceed the phonon decay
rate κ and the driving force strength ε.

In the numerical section we have discussed how to more
efficiently observe phonon blockade in our proposal: (1) A

relatively strong nonlinear coupling λ should be induced,
which can increase the robustness of phonon blockade against
different types of noise. This could be realized by increasing
the strength of the driving field (or the longitudinal coupling
strength); but both driving and coupling strengths should be
controlled within certain regimes to avoid the rapid oscillating
terms from destroying the blockade. (2) The dephasing noise
of the qubit should be suppressed, and the temperature should
be low enough so that thermal phonons are negligible. For
a NAMR oscillating at several GHz, the thermal occupation
number will be about 10−3 at temperatures ∼10 mK, which is
within the capability of dilution refrigerators. (3) The quality
factor Q of the NAMR should be high enough to guarantee that
the mechanical mode decouples from the thermal environment.

Moreover, we have shown how to use the qubit as a
detector to check the imperfections of PB. The numerical
results indicate that the sensitivity of this detection can benefit
from the strong nonlinear coupling between the NAMR and
the qubit. Besides engineering the NAMR into PB states,
the induced second-order nonlinearity in our proposal can
also be used to demonstrate some other quantum effects of
mechanical motions, such as squeezing and superposition
states (Schrödinger catlike states) [8,55]. All parameters in
our proposal are within experimentally accessible regimes, so
it might be an efficient method to observe quantum features of
nanomechanical motions.
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