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Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However, it
is not easy to observe in superconducting quantum circuits (SQCs) because the Rabi frequency of the strong-
controlling field corresponding to EIT is limited by the decay rates of the SQCs. Here, we show that EIT can be
achieved by engineering decay rates in a superconducting circuit QED system through a classical driving field
on the qubit. Without such a driving field, the dressed states of the system, describing a superconducting qubit
coupled to a cavity field, are approximately product states of the cavity and qubit states in the large-detuning
regime. However, the driving field can strongly mix these dressed states. These doubly dressed states, here called
polariton states, are formed by the driving field and dressed states, and are a mixture of light and matter. The
weights of the qubit and cavity field in the polariton states can now be tuned by the driving field, and thus the
decay rates of the polariton states can be changed. We choose the three lowest-energy polariton states with a
A-type transition in such a driven circuit QED system, and demonstrate how EIT and Autler-Townes splitting
can be realized in this compound system. We believe that this study will be helpful for EIT experiments using

SQCs.
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I. INTRODUCTION

Since electromagnetically induced transparency (EIT) was
proposed [1], it has been extensively explored in various
contexts [2-5] using three-level systems. The main feature
of EIT is that the absorption of a weak probe field in a medium
is reduced because of the presence of a strong-control field.
EIT can be used to control the propagation of the weak field
through the medium. It can also be used to greatly enhance the
nonlinear susceptibility in the induced transparency region,
and thus to generate a strong photon-photon Kerr interaction.
Strong photon-photon Kerr interactions have been studied to
realize quantum logic operations such as controlled phase gates
[6], quantum Fredkin gates [7], and conditional phase switches
[8] for photon-based quantum information processing. More-
over, Kerr interactions can be employed to realize quantum
nondemolition detection of photons [9].

Recent studies show that superconducting quantum circuits
(SQCs) are one of the best candidates for quantum infor-
mation processing [10-14]. Meanwhile, these artificial atoms
[10,11,13,15,16] have been employed to study quantum optics
and atomic physics in the microwave domain. For example,
several studies [17-21] have explored population trapping and
dark states in three-level SQCs. EIT was also theoretically
studied for probing the decoherence of a superconducting
flux qubit [22,23] via a third auxiliary state. How to realize
EIT using SQCs has also been theoretically studied using
several different setups [24-26]. Experimentalists showed
Autler-Townes splitting (ATS) [27] using various three-level
SQCs [21,28-36]. However, EIT experiments are difficult to
make using superconducting circuits. The main obstacle is that
the decay rates of the three-level system and the strength of the
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Rabi frequency corresponding to the controlling field cannot
satisfy the condition for realizing EIT [26,37,38].

It is well known that EIT [1] is mainly caused by Fano
interference [39], while ATS [27] is due to the driving-
field-induced shift of the transition frequency. Although the
mechanisms of EIT and ATS are very different, they are not
easy to discern from experimental observations since both of
them exhibit a dip in the absorption spectrum of the weak probe
field. Theoretically, there is a threshold value [26,37,38] to
distinguish EIT from ATS. This threshold value is determined
by two decay rates of the three-level system [26,37,38]. When
the strength of the Rabi frequency of the strong-controlling
field is smaller than this value, EIT occurs, otherwise, it is
ATS. Experimentally, the data should be analyzed by virtue
of the Akaike information criterion [38]. The transition from
EIT to ATS has been experimentally demonstrated in coupled
whispering-gallery-mode optical resonators [40].

Here, instead of three-level superconducting quantum
circuits [22-26], we study EIT and the transition from EIT to
ATS using a driven two-level circuit QED system [12], where
a superconducting qubit is coupled to a single-mode cavity
field and driven by a classical field. The three-level system
used to study EIT is constructed by the three lowest-energy
mixed polariton states, formed by the driving field and the
dressed states of the circuit QED system. The polariton states
are hybridizations of microwave photon and qubit states. Thus,
the decays of the polariton states are determined by the decays
of both the cavity field and the superconducting qubit.

The eigenstates of the circuit QED system are dressed
states of the cavity field and the superconducting qubit. These
states can be approximately reduced to product states of the
uncoupled cavity field and qubit states when the frequencies
of the cavity field and the superconducting qubit are largely
detuned. In this case, the qubit acquires a small frequency
shift due to the microwave field and the Purcell [41] enhanced
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spontaneous decay rate [42] is obtained. Therefore, when the
detuning between the cavity field and the qubit is changed
from zero to a finite value, the decay rates of the eigenstates
of the circuit QED system can also be changed. However,
such tunable decay is not easy to be realized when the sample
is fabricated. Thus, we introduce a classical driving field to
further mix the dressed states. We refer to these doubly dressed
states as polariton states. In solid-state physics, polaritons are
elementary excitations that are half light and half matter. In our
system, the mixture of the driving field and the dressed states
inherits both atomic and photonic properties. The weights of
the photon and qubit states in polariton states can be tuned by
the driving field, and thus the decay of the polariton states can
be controlled. Such polariton states were studied in order to
implement an impedance-matched A system [43—-45], where
the two decay rates from the highest-energy level to the two
lowest-energy levels are identical. However, in our study, we
need to engineer different decay rates of the three-level A
system so that the condition to realize EIT and ATS can be
satisfied. In contrast to the study [24], an extra driving field on
the qubit is introduced to modify the decay rates of the system
studied.

The paper is organized as follows. In Sec. II, we describe a
model Hamiltonian and discuss how the transition frequencies
can be tuned by the driving field. In Sec. III, we study the
selection rules and how to control decay rates of polariton
states by changing the driving field. In Sec. IV, we study
a three-level polariton system to implement EIT and ATS,
and the threshold value to discern EIT and ATS is given.
Numerical simulations with possible experimental parameters
are presented. Finally, further discussions and a summary are
presented in Sec. V.

II. THEORETICAL MODEL AND POLARITON STATES

In this section, we derive polariton states from the model
Hamiltonian and then discuss how decay rates of the polariton
states can be adjusted by an externally applied classical field.

A. Hamiltonian

As schematically shown in Fig. 1, we study a supercon-
ducting two-level system (a qubit system) which is coupled
to a quantized single-mode microwave field and also driven
by a classical microwave field. For concreteness, we assume
that such qubit system is a three-Josephson-junction flux qubit
circuit. The interaction between the qubit and the single-mode
cavity field is described by the well-known Jaynes-Cummings
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FIG. 1. A driven qubit coupled to a resonator mode. Here,
{lg),le)} are the ground and excited states of the qubit, g is the
coupling strength between the qubit and the cavity field, and y, (y.)
is the decay rate of the qubit (cavity field).
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model [46,47]. Thus, the model Hamiltonian of the driven
circuit QED system can be written as
h

1 ;
Hs = 5 @40z + ho, (aTa + 5) + flg(tlrfL +aoy)

+ h[Qo_exp (iwgt) + Q¥o, exp (—iwgyt)]. (1

The first line of Eq. (1) is the Jaynes-Cummings Hamiltonian,
which describes the interaction between the qubit system and
the single-mode cavity field with coupling strength g. Here,
w, and w, denote the frequencies of the qubit and single-mode
cavity field, respectively. Also, a is the annihilation operator
of the cavity field and o_ is the ladder operator of the qubit.
The second line of Eq. (1) describes the interaction between
the qubit and the classical driving field. The parameter 2
represents the interaction strength or Rabi frequency between
the qubit and the classical field with frequency w,;. Without
loss of generality, hereafter we assume that €2 is a real number.

To remove the time-dependent factors, we transform the
Hamiltonian Hg, given in Eq. (1), into a rotating reference
frame by the unitary transformation

U = expl—iwg(0,/2 +a'ay], 2)
so that we can obtain the following effective Hamiltonian:
- h - 4 1 t
Hg = quaz + hé, | a'a + 3 + hgla'o_ 4+ aoy)

+ h[Qo_ + Qo4], (3)
with the detunings &, = w; — wg, &, = w, — wgy, and A =
Wy — @y.

B. Eigenvalues and eigenstates for 2 = 0

For completeness, we first briefly discuss the eigenstates
and eigenvalues when the classical driving field is not applied
to the qubit. In this case, 2 = 0, and the eigenstates of Eq. (3),
for the Jaynes-Cummings Hamiltonian of the qubit and the
single-mode cavity field, are

On . Oy
|4,n) = cos ?|e,n) + sin ?|g,n + 1), 4)
. 9}1 9}1
|—,n) = —sin 7|e,n) + cos ?|g,n + 1), 4)

which mix the qubit states with the states of a single-mode
cavity field. Here, tan6, = —2g+/n + 1/A. We note that
le,n) = |e)|n) (|g,n) = |g)|n)) denote that the qubit is in the
excited |e) (ground |g)) state and the single-mode cavity field
is in the state |n). The states expressed in Eqs. (4) and (5) are
usually called dressed states. Note that we do not distinguish
the dressed states in the rotating reference frame from those in
the original laboratory frame. The eigenvalues corresponding
to Egs. (4) and (5) are

> A2 +4g2(n+1).  (6)

From Eqgs. (4) and (5), it is clear that the eigenenergies
of the Jaynes-Cummings model change with the detuning A
between the qubit and the single-mode cavity field. When
the detuning is very large, the dressed states are approaching
either bare qubit states or the states of the single-mode cavity

. 1 h
Ei, = h, n—i—i + —
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FIG. 2. A schematic energy diagram for the Jaynes-Cummings
model vs the detuning between the qubit and cavity field in the rotating
frame. The eigenstates are denoted by |4,n). In the large-detuning
regime, the coupled states |+,n) are approaching the bare qubit and
photon states. Here, A = &, — @,. The nesting regime, defined by
Wig,0) < Wie,0) < Wje,1) < Wg,1y, as in Refs. [43-45], is between the
two points linked by a line with two arrows. The frequency of the
driving field w, sets the boundary of the nesting regime. The lower
limit is at w1y = 1), Wwhere w; = w, — 3x. The upper limit is
at wig.0) = Wy.0), Where w; = w, — x. Here, x = g*>/A, with g the
coupling strength between the qubit and cavity field. We note that
when the zero-point fluctuation of the cavity field is taken into
account, the energy of the ground state |g)|0) is A /2.

field. That is, they are almost decoupled from each other. The
eigenenergies in Eq. (6) are shown as a function of the detuning
A in Fig. 2, which clearly shows that the qubit and the cavity
field are decoupled from each other when A becomes very
large. Figure 2 also shows that there are some degeneracy
points when A takes a particular value, e.g., E, o = E_ o and
E. o = E_, which will be further discussed in the following
in the large-detuning case.

In the large-detuning case, i.e., g < |A|, Egs. (4) and (5)
can be approximately written as

I+.n) ~ |g.n + 1) — %Jn Flle.n), (7)
|—,n) ~ Ie,n)+§«/n+1|g,n+1>, (8)

where we assume A > 0 for convenience in the following
discussions. We now focus on the five lowest eigenstates of the
Jaynes-Cummings model, i.e., the ground state |g,0) and the
four dressed states |£,0) and |£,1). To simplify the analysis,
we first omit the first order of g/ A. In this case, the four dressed
states can be approximately written as |—,0) = |e,0), |+,0) ~
lg, 1), |—,1) = |e,1), and |+,1) =~ |g,2), which correspond to
the eigenfrequencies E. , /I given by

A
Wig,n) ~ n(@, + x) + E’ C)]
~ ~ A
We,n) %wq—x+n(wr—x)+? (10)
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where x = g?/A is the dispersive frequency shift. From
Eqgs. (9) and (10), we can approximately obtain w0y = w40
at &, = x, and w1y = wjg,1) at &, = 3x. Thus, to operate
in the so-called nesting regime [43-45], where w0y <
Wie,0) < Dje,1) < Wig 1), that is, Eg70 <E_og<E_1<E;p,
the frequency w, of the driving field must satisfy the condition
Wy —3x <wg <wg— X.

C. Eigenvalues and eigenstates for 2 # 0

When a classical driving field is applied to the qubit, i.e.,
Q # 0, it will induce transitions between different states of
|£,n). Thus, the classical driving field lifts the degeneracies
and strongly mixes the states |4,n) with the states |£,n + 1).
That is, the dressed states in Egs. (4) and (5) are mixed again
by the classical field. We refer to these new states as polariton
states because they inherit both atomic and photonic properties.
Below, we will mainly focus on the large-detuning regime.

As schematically shown in Fig. 3 for the large-detuning
case, where the first-order term in the parameter g/(w, — w,)
for the dressed states is omitted, the four lowest states
discussed above Eq. (9) are mixed by the classical field, i.e.,
the qubit is doubly dressed by a single-mode cavity field and
a classical driving field. In the nesting regime, as shown in
Refs. [43-45], a weak driving field, applied to the qubit, can
drastically change the ratio of the contributions from |g,n)

14) (b)
A, Az 3)
.......
Qp wp
—r 2)
1)

FIG. 3. (a) The dressed states of the Jaynes-Cummings mode for
large detuning are mixed further by a driving field applied to the
qubit, which only connects |g,n) and |e,n). In the unnesting regime,
without the driving field, the lowest four levels are approximately
|g,0),]e,0),|g,1),le,1), which are mixed when the driving field is
applied to the qubit. (b) Four polariton states, i.e., energy levels |i)
with (i = 1,2,3,4) expressed in Egs. (11), (12) and Egs. (14), (15),
in which we choose the three lowest-energy levels to study EIT and
ATS in Sec. IV.
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and |e,n) to the final polariton states. This is in contrast to
the unnesting case, where the external qubit drive has no
appreciable effect on the system, as the following analysis
shows.

The classical qubit field only induces transitions between
the states |g,n) and |e,n). Thus, it can only mix the state
|g,0) with |£,0), or mix states |+,n) with states |£,n + 1). In
the large-detuning case, the states |g,0) and |—,0) = |e,0) are
separated by the energy level spacing w,; — x, when the driving
field is not applied. Thus, in the lower boundary of the nesting
regime, when the frequency of the driving field satisfies the
condition wy = w, — x, the driving field induces transitions
between the states |—,0) =~ |e,0) and |g,0) and strongly mix
these two states. These mixed states form new doubly dressed
eigenstates, the so-called polariton states,

) )
1) = —sin51|e,0) +cos5’|g,0), (11)

0, .6
|2) = cos Ele,O) + sin Elg,O). (12)

Here, tan6;, =2Q/(&, — x). The transition frequency
between the state |1) and the state |2) is given by

w71 =‘/(67)q —X)2+4QZ, (13)

with w;; = w; — wj. Likewise, the states |4+,0) ~ |g,1) and
|—,1) ~ |e,1), with original level spacing w, — 3x, can be
mixed by the qubit driving field at the upper boundary of
the nesting regime when w; = w, — 3 x. Thus, these polariton
states (i.e., eigenstates) can be given by

0, O
|3) = —sin E|g,1) + cos ile,l), (14)

O, I
|4) = cos ?|g,1)~|—s1n3|e,l), (15)

with tan6, = 2Q/(—a&, + 3x). The energy splitting between
|4) and |3) becomes

w3 = (@, — 307 +422. (16)

As schematically shown in Fig. 2(b), below we will choose
{11),]12),13)} to form a three-level system. The transition
frequency ws; between the state |3) and the state |1) is given
by

w31 = @& — 3(wg + w21). (17)

In Fig. 4, transition frequencies are plotted as functions of
the qubit driving frequency w, and strength €2 in the rotating
reference frame. Here we use the exact solution of Eq. (3) in the
numerical calculation. In other words, without large-dispersive
approximation, each new eigenstate |i) is the superposition of
five states: |g,0), |e,0), |g,1), |e,1), and |g,2). Figure 4(a)
shows the trend of w,; and w43, and they are consistent with
Eqgs. (13) and (16). First we discuss the 2 = 0 case, in which
the driving field is not applied. The lowest two energy levels | 1)
and |2) are composed of |g,0) and |e,0). The degeneracy point,
where w;; =0, is set by wj.0) = wjg,0), 1.€., Wg = w4 — X,
which is the upper boundary of the nesting regime. Likewise,
the states |4) and |3) are superpositions of the states |g,1) and
le,1). The degeneracy point is set by wj..1y = g 1), 1.€., wg =
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FIG. 4. Transition frequencies w;; vs both the frequency w, and
the strength 2 of the driving field in the rotating reference frame.
Here, w;; = w; — w;. The parameters used here are w, /2w = 5 GHz,
w, /2w = 10GHz, g/27 = 500 MHz, and x /2m = 50 MHz. (a) Two
V-shaped surfaces with the minimum values at w, /27w = 4.95 and
wq/2m = 4.85 GHzrepresent w,; and wy3, respectively. (b) The upper
surface represents ws; and the lower one represents ws;.

wy — 3, which is the lower boundary of the nesting regime.
We note that w43 = w,; in the middle of nesting regime when
@y = 2. It is clear that the frequency wy of the driving field
determines the onset of the nesting regime. When the driving
field is applied to the qubit, i.e., 2 # 0, these degeneracies are
lifted. The larger strength 2 is, the larger w;; and w43 are.

We also show how the frequency and the strength of the
driving field affect the transition frequencies ws; and ws;
in Fig. 4(b). It clearly shows that the upper surface for the
transition frequency ws; approaches that of w3, when the states
|2) and |1) are degenerate. When the driving strength is small,
w31 and w, are mainly determined by @, and x. However, x,
which is determined by g and A in the large-dispersive regime,
can be enhanced by the presence of the higher excited states
[42-45].

III. TRANSITION RULES AND TUNABLE DECAY RATES

A. Transition rules between polariton states

Since the polariton states, formed by the cavity field, driving
field, and the qubit, are mixed photon and qubit states, we can
induce transitions between two of these new states by applying
additional classical fields to either the qubit or the cavity field.
Hereafter we refer to these classical fields as the external fields,
to avoid confusion with the classical driving field applied to
the qubit with coupling strength 2. The transition selection
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rule between these polariton states depends on the manner in
which the external field is applied. For example, the transitions
between the state |e,n) and |g,n) can be induced when the
external field is applied to the qubit. However, those transitions
are forbidden when the external field is applied to the cavity
field. In contrast, the transitions between the state |/,n) and
|l,n — 1), with ] = e or / = g, can be induced by the external
field applied to the cavity field. However, these transitions are
forbidden if the external field is applied to the qubit. Therefore,
the transition matrix elements between two polariton states can
be tuned by varying the applied external field.

When the external field is applied to the qubit, the transition
matrix elements are denoted by

Qij = [{ilo—1j)I. (18)
Similarly, when the external field is applied to the cavity field,
the transition matrix elements are defined as

Ci; = l{ilalj)]I. (19)

Here, |i) and | j) denote the new polariton states, e.g., the states
in Egs. (11), (12) and Egs. (14), (15) in the large-detuning case.
The transition elements between two of the states in Egs. (11),
(12) and (14) can be written as

0, + 6
Cs, = |cos <L> , (20)
2
0, + 0
Cy = sin( + ’) , 1)
2
2 (O
Q= cos” | 7). (22)
Q31 =Q3=Cy =0. (23)

Equations (20)—(23) clearly show that transitions between
the states |3) and |2) or between the states |3) and |1) are
controlled by the driving field applied to the cavity field.
However, the transition between the states |2) and |1) is
dominated by the driving field applied to the qubit. Figure 5
numerically shows how the matrix elements change with
the frequency w, and the strength Q of the driving field.
The nonzero values for Qs,, Qs;, and C;;, as shown in
Figs. 4(b), 4(d), and 4(f), are limited by the first order of g/A
which we omitted in Eqs. (7) and (8). Moreover, the behavior
of Q3,, Q3;, and Cy; is identical to Csp, C3, and Q,;. So, in the
following analysis, we focus on the dominant matrix elements
in the different parameter ranges.

(i) Outside the nesting regime, where w; < w, — 3, the
driving field applied to the qubit has no appreciable affects, and
we have |1) &~ |g,0), |2) = |e,0), |3) ~ |g,1),and |4) = |e,1).
As shown in Figs. 4(a), 4(c), and 4(e), C3, = 0, C3; = Q,; ~ 1.
The lowest three energy levels can be formed into a three-level
system with V-type transitions. That is, one external field is
applied to the cavity field to induce the transition between the
states |3) and |1), while the other one is applied to the qubit to
induce the transition between the states |2) and |1).

(i1) In the nesting regime, where w; — 3% < wq < w; — X,
the driving field applied to the qubit drastically changes the
properties of the polariton states. We take Cjzp, shown in
Fig. 5(a), as an example. The saddle shape of Cs; is consistent
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FIG. 5. Moduli of the transition matrix elements between the state
|i) and the state |j) vs both the strength 2 and the frequency w, of
the driving field. Q;; denotes the transition matrix elements between
the states |7) and | j), induced by an external field applied to the qubit,
while C;; is the one induced by an external field applied to the cavity
field. The sharp change in Q;; and C;; occurs at the boundary of
the nesting regime; when © = 0, this occurs when w, — 3x < wy <
w, — X - Note that the nonzero coupling in (b), (d), and (e) is limited
by the first order of g/A, which we omit in the theoretical analysis.
The parameters are the same as in Fig. 4. Here, the states |i) for
numerical calculations of the transition matrix elements are given by

the exact eigenstates of Eq. (3).

with the boundary of the nesting regime. We first discuss
the weak-driving case, i.e., 2 &~ 0. In this case, we have
[1) =~ |g,0), |2) = |e,0), |3) =~ |g,1), and |[4) ~ |e, 1), and this
is the same with (i). The first sharp transition of C3, occurs
at wje,1) = Wjg,0), When wy = w,; — 3%, and then the state |3)
is changed to |e,1) with the change of the driving frequency
wy through entering the nesting regime, where the transition
Cs,, due to the driving field applied to the cavity, has a sudden
jump from O to the finite value. Then, when changing the
frequency w, of the driving field, when wg = w,; — x, the
state |2) changes from |e,0) to |g,0), while the state |3) can be
approximated to |3) &~ |e,1), and hence the transition matrix
element C3, drops sharply. This is the same for the reverse
trend of the transition matrix element Cs;. It is understandable
that for the transition between the states |2) and |1), the sharp
turning point is at the upper boundary, where w0y = w|,,0y. In
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this condition, we have C3; = 1, Q,; & 1, and C3; & 0 when
the driving field is rather weak, i.e., Q2 & 0, and the system
behaves like a E-type transition where the states |2) and |1)
are linked by the external field applied to the qubit, while the
states |3) and |2) are linked by the external field applied to the
cavity field.

(iii) In the nesting regime, when 2 # 0, with the increasing
of the strength Q2 of the driving field applied to the qubit, the
state |3) becomes a mixing of the states |g, 1) and |e, 1), and the
state |2) becomes a mix of the states |g,0) and |e,0). Thus,
the matrix element Cs;, decreases gradually when increasing
the driving strength . Likewise, the matrix element Cj;
increases when increasing the driving strength Q. If two
external driving fields are applied to the cavity field, then
two transitions between the states |3) and |2), and between the
states |3) and |1), are induced; in this case, we can construct
a three-level system with the A-type transition, which will be
used to study EIT and ATS in the following section. If another
external field is applied to the qubit, then the transition between
the states |2) and |1) can be induced, and the three-level
system now possesses cyclic transitions, or a A-type [48,49]
transition. For natural atoms, A-type transitions do not exist
because the dipole operator possesses odd parity; it can only
connect states with different parities.

EIT only occurs in three-level systems with A-type tran-
sition or three-level systems with the upper driven E-type
transition [37,50]. In the next section, we will focus on a
three-level system with A-type transition and study how EIT
and ATS can be tuned by changing the driving field applied to
the qubit.

B. Tunable decay rates of mixed polariton states

To study EIT, we first study how the classical driving field
can be used to adjust the decay rates of the mixed polariton
states by varying its amplitude and the frequency. The main
idea is to change the ratio of how the cavity field or qubit
contributes to the final mixture. If the cavity field and the
qubit have different decay rates, then the decay rates of the
polariton states vary with the weights of the cavity field branch
and the qubit branch in the polariton states. To discuss the
decay rates of the polariton states, let us assume that the
environment interacting with the system can be described by
bosonic operators. Then the Hamiltonian of the whole system,
including the environment, can be written as

H' = Hs+ Hg + Hy, (24)

where the Hamiltonian Hg is given in Eq. (1). The free
Hamiltonian Hg in Eq. (24) of the environment is given by

Hg =h / dwwb! (w)b(w) + / do'o'ct(@)e(@).  (25)

The interaction Hamiltonian H; in Eq. (24) between the system
and the environment is given by

H; = h[ f dwK (w)b'(w)a + H.c.]

+ |:/ d(u'n(w’)cT(w’)o_ + Hc:| (26)
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We have assumed that the environment of the cavity field is
independent of that of the qubit. Here, b'(w) and ¢f(w’) denote
the creation operators of the environmental bosonic modes of
the cavity field and the qubit, respectively. For simplicity, we
further assume that the spectrum of the environment is flat,
that is, both K(w) and n(w’) are independent of frequency. In
this case, we can introduce the first Markov approximation,

K(w) =y /2n, 27
n(w') = Vv /27, (28)

In the polariton basis, the operators a and o_ of the cavity
field and the qubit can be expressed as

a=Y (ilalj)oi, (29)
ij

o- =) (llo-Im)oi, (30)
Im

where |i), |j), |l), and |m) denote mixed polariton states, which
can be expressed by either the mixture of Egs. (4) and (5), for
the general case, or the mixture of Egs. (7) and (8), for the
large-detuning case. Here, o;; = [i){j|. In the basis of the
mixed polariton states, the interaction Hamiltonian H; can be
rewritten as

H =h / do Y [\/v5/27b (@)o;; + He]
ij
—i—h[dw’ > Jviamcl@)ei; + He. | 1)
ij

with ¢ = yl(ilal| /)17 and ¥ = y,|{ilosj)P. Thus, the
total decay rate y;; from one mixed polariton state |i) to another

one |j) transition is given by
vii = ¥ + v = vellilat )P+ ygltilor D2 (32)

In the large-detuning regime, where the cavity field and the
qubit have very different frequencies, the decay rates, from
one upper state to another lower state, expressed from Eq. (11)
to Eq. (14), can be approximately given by

0, + 0
yai = v sin’ ( ; l>, (33)
0, +6,
Y32 = Yecos’ (%) (34)
)
V21 = Yy cos? (é) 35)

In the large-detuning regime, we also find Y31 = yua2, Y32 = Va1,
v = yeltilalli) P> ~ 0, and y5, = yj3 ~ 0.

Figure. 6 shows how the decay rates y;; change with the
frequency and strength of the driving field, plotted for the
mixed polariton states. The decay rates are proportional to
the square of the transition matrix elements. Therefore they
have similar features for the dependence on the frequency and
strength of the driving field. This can be seen by comparing
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FIG. 6. Decay rates y;; vs both the frequency and strength of the
driving field. Here, we set I's; = y31 + y32 & y.. We have chosen
Yq/2m =1 MHz, y. /27 = 20 MHz.

Fig. 5 with Fig. 6. We define the total decay rate of the state |3)
as I's; = y31 + y32. We find that I'3; is hardly influenced by
the driving field in the large-detuning case, except that there
is a slight jump at the lower bound of the nesting regime.
This is consistent with Eqs. (33) and (34), i.e., I'3; & y,. In the
nesting regime, the decay rates y3; and y3, change significantly
when varying €2; the decay rate y»; is slightly decreased
when €2 is increased. We find y3; = y3, when Q is taken as
a particular value. This is an impedance-matching condition
[43], in which the two decay rates from the highest-energy
level |3) to the two lowest-energy levels |1) and |2) are the
same, and microwave photons are down converted efficiently
through Raman transitions due to impedance matching [45].
Instead of using the impedance-matching condition, below we
mainly study how EIT can occur in a chosen three-level system
by using proper decay rates through adjusting the driving field.

PHYSICAL REVIEW A 93, 063827 (2016)

IV. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY AND AUTLER-TOWNES SPLITTING

A. Linear response of a A system

We now study the EIT effect in a A configuration atom
interacting with two classical fields, as shown in Fig. 3(b). The
transition between the states |3) and |2) is linked by a strong
external field with frequency w,, hereafter called the control
field. A probe field with frequency w), is applied to induce
the transition between the states |3) and |1). The presence of
a strong driving field dramatically modifies the response of
the system to the weak probe field. As shown, for example,
in Ref. [5], the response of the probe field is analyzed using a
semiclassical approach through the master equation.

The master equation for the reduced density matrix operator
p of the three-level system can be given by [5]

) i V3l nn 4 A A A A
o= —ﬁ[Him,;O] + 7[2013,0031 — 6316130 — 06316713]
V32 na N A A A
+ > [26230632 — 6326230 — p632623]
V21 (s A N N PN
+ 7[2012;0021 — 6216120 — p621612]. (36)

Here, we have neglected the energy-conserving dephasing
processes of the three-level system. Also, y;; is the spontaneous
decay rate from |i) to |j), which coincides with Eq. (32).
Note that compared to Ref. [5], we have taken into account
the spontaneous decay from |2) to |1). For natural atoms,
|2) — |1) transition is forbidden, and thus the dephasing rate
of |2) dominates. However, in our compound system, we
assume radiative decays of qubit and cavity are larger than
dephasing processes [43—45]. Hj, describes the interaction of
the three-level system with the control and probe fields in the
interaction picture. In this system, Hj, can be given as

h . .
Hip = —5(9p|3><1|e—m" +Q.13)(2le”"4" + H.e), (37)

where Q. and 2, are the Rabi frequencies of the control and
probe fields. We define the detunings as A = w3 — w, and
Ay = w3 — w.. The master equation of the three-level system
in Eq. (36) can be solved using perturbation theory for the
different orders of the strength of the probe field. We use
the steady-state solution of the three-level system and assume
that the three-level system is almost in the ground state, i.e.,
p11 ~ 1. Then, we find the linear susceptibility of the probe
field, X(l)(—w,,,a),,) & p3;. Omitting a multiplication factor,
xP(—w,,w,) can be given as [37,38]

-
: A - (38
-0+ 20— 5) — %

X(l)(_wpswp) =

Here, 6 = A — A, is the two-photon detuning. The total
decay rate I'3; of the state |3) is defined as

31 = y31 + v32. (39)

Equation (38) is the starting point for the discussions of the
difference between EIT and ATS as in Refs. [26,37,38,40].
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Note that in Eq. (38), if we take into account the dephasing
processes of states |3) and |2) with rates y3¢eph and ¥2geph, and
neglect the spontaneous decay from |2) to |1) in the master
equation, then the coherence decay rates are '3} = y3; +
V32 + Vadeph» 1'32 = Y31 + V32 + V3deph + Vadeph, and yp; =
V2deph- These are the definitions used in Refs. [5,22,38].

B. Difference between EIT and ATS

To shed light on the difference between EIT and ATS,
we follow the spectral decomposition method as used in
Refs. [5,38,40,51,52]. For simplicity, we assume that . is
resonant with wsp, i.e., A, = 0. The imaginary part of the
linear susceptibility x characterizes the absorption, which can
be decomposed into two resonances,

X+ X—
, 40
5—8++8—8_> 40

Im(x) = Im(

where x+ = £(6+ —iy21/2)/(64+ — 6-). The poles of the
denominator are given by

T3+ 1/ 1 5
e Q2 (T — ) 41
i 7 AL 4( 31 — Y21) (41)

8y =

Equation (41) gives the threshold value for EIT,
Q| = 5IT31 — a1l (42)

(1) When |2.| > |I'31 — y211/2, i.e., the strong-controlling
field case, ATS occurs. The final spectrum of Im(y) is
decomposed of two positive Lorentzians with equal linewidths.
They are separated by a distance proportional to €2, [37,38].

(i) When [2.| < |T's; — v211/2, EIT occurs. The major
characteristic of EIT is that the absorption spectrum is
composed of one broad positive Lorentzian and one narrow
negative Lorentzian. Both are centered at § = 0. They cancel
each other and result in the reduction of absorption to the probe
field [37,38].

For the ideal three-level system with A-type transitions, the
transition between |2) and |1) is forbidden, and thus y,; = 0,
which is easy to find in natural atomic systems. However, y» is
usually nonzero in artificial atomic systems. Thus, to observe
an absorption dip with a nonzero value of y,;, we must require
21 <K I'31, otherwise the dip in the absorption spectrum is
absent [5].

C. EIT and ATS in polariton system

We now turn to study how the EIT and ATS can be realized
in polariton systems by adjusting the driving field when the
states |1), |2), and |3) in Eq. (37) are replaced by polariton
states. As shown above, in the nesting regime, when 2 # 0,
the polariton system can be used to construct an effective
three-level system with A-type transitions by three polariton
states |1), |2), and |3), expressed in Eqgs. (11), (12), and (14).
Below, we show how a A-type transition can be formed by
these three polariton states. Let us assume that both a strong-
control field A/ cos(w.t) and a weak probe field A/p cos(wpt)
are applied to the polariton system through the cavity mode
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with the frequency w, (w,) and the amplitude A, (A;)) of the
control (probe) field. Under the rotating-wave approximation,
the Hamiltonian between the cavity mode and the two external
fields can be written as

h ‘ ‘
Heive = —E(Apafe"”ﬂ' + Acafe ™™ £ He).  (43)

Here, the coupling strength A, (A,) between the controlling
(probing) field and the cavity field is proportional to the
amplitude A/, (A’p) of the control (probe) field.

Similar to the three-level systems for demonstrating EIT
and ATS, we now assume that the control field is used to
induce the transition between the states |3) and |2) with the
Rabi frequency 2., while the probe field is used to induce
the transition between the states |3) and |1) with the Rabi
frequency €2,. Then in the mixed polariton state basis, using
Egs. (20) and (21), the relation between 2. (£2,) shown in
Eq. (37), and A, (A,) shown in Eq. (43), is

[Q2:] ~ ACs, 44)

[2,] ~ A,Cs. 45)

Figure 5 shows that the transition matrix element C3, decreases
while Cs; increases in the nesting regime, when the strength 2
of the driving field is increased. Both of them are in the range
of Oto 1.

Now we turn to study the threshold of EIT set by Eq. (42)
in the polariton system. With the help of Egs. (33)—(35), we
obtain

31 =y31+ v32 = Ve (46)

)
Y21 = ¥, cos® (é) (47)

It is clear that the driving field can hardly affect I'3;, as shown
inFig. 6(c). For EIT in a A system [5], y»; should be negligible,
and this requires y, > y,. Therefore, in order to achieve EIT
in our polariton system, the Rabi frequency of the controlling
field should satisfy the condition

Ve
Q| < =. 48
2] < 5 (48)
To investigate EIT and ATS in our polariton system, we now
choose w; /2w = 4.9 GHz, y./2r = 20 MHz, and y, /27 =
1 MHz in the following. In Table I, we show explicitly how

TABLE I. Numerical calculations for the matrix elements and
transition frequencies. Here we choose w,/27 = 4.9 GHz in the
middle of the nesting regime. The units of 2, w,;, and w3, are in
2w MHz. Other parameters are the same as in Fig. 4.

Q Csy Cs 0 Qn QOn Cy wy w3 Type

0 0 1 1 0 0.1 0.1 54 5050 8
10 037 093 0.96 0.1 0.1 59 5047 A,A
20 0.62 0.77 0.89 0.1 0.09 66 5037 A,A
A, A
A, A

30 077 0.64 0.82 0.1 0.08 78 5023
40 0.85 053 0.76 0.1 0.08 89 5007

(=Nl
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FIG. 7. (a) The imaginary part of the susceptibility, Im(y),
vs the strength of the driving field @ and the two-photon de-
tuning §, when the ATS condition is satisfied. Here, we have
chosen w; /2w = 4.9 GHz, y. /27 =20 MHz, y,/2n = 1 MHz, and
A./2m = 30 MHz, while the rest of the parameters are identical to the
ones in Fig. 4. The control field frequency is w./2w = 5.037 GHz,
which is resonant with w3, for the /2w = 20 MHz case. (b) The
spectral decomposition of Im(x) at resonance, i.e., A, = 0. Here,
the blue solid curve corresponds to the absorption spectrum. The
red-dotted and the black-dashed curves correspond to two Lorentzian
profiles. (c) The real part of x characterizing the refractive properties
at resonance.

the transition matrix elements and energy level spacing change
with €2 in the nesting regime.
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FIG. 8. (a) The imaginary part of the susceptibility, Im(x), vs
the strength of the driving field 2 and the two-photon detuning 8,
when the EIT condition is satisfied. Here, we have chosen w, /27 =
49 GHz, y./2n =20MHz, y, /27 = 1 MHz,and A. /27w = 5 MHz,
while the rest of the parameters are identical to the ones in Fig. 4. The
control field frequency is w. /2w = 5.037 GHz, which is resonant with
w3, for the Q/2m =20 MHz case. (b) The spectral decomposition
of Im(x) at resonance, i.e., A, = 0. Here, the blue solid curve
corresponds to the absorption spectrum. The red-dotted and the
black-dashed curves correspond to two Lorentzian profiles. (c) The
real part of yx at resonance, which characterizes the refractive
properties.

In Figs. 7 and 8, we set the frequency w. /27w = 5.037 GHz
of the controlling field, which is resonant with w3, when
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Q/2mr = 20 MHz, as shown in Table I. From Egs. (44) and
(48) and Table I, we can find that the polariton system satisfies
the ATS condition (EIT condition) when A./27w = 30 MHz
(A;/2m =5 MHz) for y./2m =20 MHz, y,/27 =1 MHz,
with the value of €2/27 in the range 10 to 40 MHz. However,
we find that ATS and EIT also depend on the strength 2 of
the driving field. We plot /27 = 10,20,30,40 MHz cases
separately in Figs. 7 and 8, in which the parameters are
consistent with Table I.

When the ATS condition is satisfied for A, /2r = 30 MHz,
Fig. 7(a) shows how the absorption spectra through Im()
varies with the strength Q of the driving field. Figure 7(b)
shows the variations of spectral decomposition of Im(y)
with two-photon detuning § at resonance with two positive
Lorentzian shape spectra. Figure 7(c) shows the variations
of the real part, Re(x), of the susceptibility x with §.
Clearly, when varying €2, the absorption spectra can have
two symmetric or asymmetric peaks. The asymmetries are
mainly caused by the nonzero detuning between w, and ws;,
i.e., Ay # 0 in Eq. (38), because we have assumed that the
frequency w./2m = 5.037 GHz of the controlling field, which
is resonant with w3, only when /27 = 20 MHz. In other
values of €2, the controlling field is nonresonant with ws;,
which decreases when 2 is increased, as shown in Fig. 4(b)
and Table I. Therefore, the windows of two peaks disappear
for a given w, when Q2 becomes very large. We emphasize that
the windows with two peaks can always be found for a given
2 by varying the frequency w,.

Figure 8 shows how the imaginary and real parts of the
susceptibility x vary with the strength €2 and the two-photon
detuning § when the EIT condition is satisfied for A./2mw =
5 MHz. The two asymmetric peaks in the spectrum in Fig. 8(a)
are also due to the nonzero detuning between w, and ws;.
Figure 8(a) also shows that the transparency windows not only
depend on the strength A, of the control field but also depend
on the strength Q2 of the driving field. When the strength 2
of the driving field becomes very strong, the transparency
windows disappear even when the EIT condition ., < y,./2
is satisfied for a given w.. As for ATS, we can always find
transparency windows by changing w. for a given 2 when
the EIT condition is satisfied. Figure 8(b) clearly shows that
the reduction of absorption is caused by the cancellation of
positive and negative Lorentzian profiles. Compared with ATS
in Fig. 7(b), the transmission window is sharper and the width
is less than I'5;, which is due to interference effects [5]. The
real part Re(), characterizing refractive properties shown in
Fig. 8(c), varies much more rapidly in the transparency window
compared to that in Fig. 7(c).

Note that Ref. [38] analyzes the threshold for EIT and ATS
only for the case for A, = 0. If A, becomes large, the Raman
model has to be taken into account. In the Raman model, the
spectral decomposition becomes one broad Lorentzian at the
center § = 0 with another narrow Lorentzian at § = A, [53].
This is different from both EIT and ATS.

V. DISCUSSIONS AND CONCLUSIONS

We studied how to achieve EIT and ATS in a driven
superconducting circuit QED system. Without the driving
field, the system is reduced to the Jaynes-Cummings model.
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EIT based on the dressed states of the Jaynes-Cummings model
was studied in Ref. [24]. In contrast to Ref. [24], where the
decay rates cannot be changed once the sample is fabricated,
we introduce an additional driving field to form a three-level
system to study EIT and ATS. That is, the three-level system
for EIT and ATS is formed by polaritons, which is the doubly
dressed qubit states through a cavity field and a classical
driving field. It is known that the polaritons are a hybridization
of the states of both the qubit and the cavity field, and thus
their decay rates include both contributions of the cavity field
and the qubit. The qubit and the single-mode cavity field have
independent decay rates, and also the weights of the cavity field
state and the qubit state in the polaritons can be adjusted by the
driving field. Thus, the decay rates of the chosen three-level
system can be adjusted by the driving field. Therefore, it is easy
to find a parameter regime to realize EIT and also demonstrate
the transition from EIT to ATS.

In particular, we have provided a detailed study of how EIT
and ATS can be demonstrated in a so-called nesting regime
[43] by varying the driving field, when the qubit and the cavity
field are in the large-detuning regime. We find that the driving
field can also be used to control windows between the two
peaks of EIT or ATS. Sometimes, we can only find a peak and
cannot find a windows even when the EIT and ATS conditions
are satisfied for a given frequency of the control field. This is
because the driving energy structure of the chosen three-level
system is changed by the driving field; when the frequency
of the control field is largely out of resonance with the two
addressed energy levels, the two peaks become one peak and
then the transparency window disappears. To observe a dip
in the absorption spectrum for both EIT and ATS, it is also
required that the qubit decay rate is negligibly small compared
with the cavity decay rate.

Finally, we would like to mention that our proposed three-
level system can also possess A-type, E-type, and V-type
transitions by using different configurations of the external
fields applying to the driven circuit QED system. Thus, this
system provides a very good platform to demonstrate various
atomic and quantum optical phenomena. For a single artificial
atom, the decay rates are intrinsic properties and are very
hard to control. However, our compound system can be
manufactured by tailoring the qubit and cavity decay. This
can be helpful in guiding future experimental observation of
EIT in driven circuit QED systems. The parameters for the
numerical calculations are taken from accessible experimental
data; thus our proposal should be experimentally realizable
with current superconducting quantum circuits.

Note added. Recently, an experiment observed EIT in a
SQC system [54].
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