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Electromagnetically induced transparency (EIT) has been realized in atomic systems, but fulfilling the EIT
conditions for artificial atoms made from superconducting circuits is a more difficult task. Here we report an
experimental observation of the EIT in a tunable three-dimensional transmon by probing the cavity transmission.
To fulfill the EIT conditions, we tune the transmon to adjust its damping rates by utilizing the effect of the cavity
on the transmon states. From the experimental observations, we clearly identify the EIT and Autler-Townes
splitting (ATS) regimes as well as the transition regime in between. Also, the experimental data demonstrate that
the threshold �AIC determined by the Akaike information criterion can describe the EIT-ATS transition better
than the threshold �EIT given by the EIT theory.
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I. INTRODUCTION

Driving a quantum three-level system with two resonant
electromagnetic fields can induce destructive interference be-
tween different excitation pathways. Known as the electromag-
netically induced transparency (EIT) (see, e.g., Refs. [1,2]),
this important effect can be used to slow down and even
stop or trap optical [3,4] and microwave photons [5,6]. Also,
it has potential applications in single-photon storage [7–10]
and can be used to achieve a quantum transistor by com-
bining it with cavity quantum electrodynamics (QED) [11].
In fact, EIT has been realized experimentally in various
systems, e.g., atomic [12,13] and molecular systems [14,15],
quantum dots [16,17] and whispering-gallery-mode microres-
onators [18]. As one of the most promising systems for
implementing quantum information processing, supercon-
ducting quantum circuits can also be used to demonstrate
quantum-optics phenomena and effects occurring in atomic
systems [19].

Resulting from Fano interference [20] between two field-
induced transitions, EIT creates a transparency window in the
measured absorption or transmission spectrum of the system.
A transparency window can also be created by Autler-Townes
splitting (ATS). Instead of being due to the interference effect,
it is caused by the electromagnetic-pumping doublet structure
in the absorption or transmission spectrum [21]. Because of
the similar transparency windows in the spectrum, EIT has
often been confused with ATS. In the field of superconducting
quantum circuits, there have been some experiments [22–28]
involving either ATS or EIT. Theoretical analyses indicated
that the claimed EIT was actually ATS [29,30]. This is
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because of the difficulty for these superconducting circuits
to satisfy the damping-rate conditions for realizing the EIT in
experiments [30]. Therefore, it remains an unsolved, important
problem to realize EIT in a superconducting quantum circuit.

In this paper, we report an experimental observation of the
EIT in a circuit quantum electrodynamics system consisting
of a transmon qubit and a three-dimensional (3D) waveguide
cavity. The key point is to engineer a tunable effective
environment for the transmon states by utilizing the effect
of the cavity, which is impossible when using an open system
such as an open coplanar waveguide [22,27]. By varying the
magnetic flux in the superconducting quantum interference
device (SQUID) loop to tune the transition frequency between
the ground state and the second excited state of the transmon,
we can adjust the damping rates between transmon states
to reach the EIT regime of the system. Indeed, both our
experimental results and the Akaike information criterion
(AIC) [29] analysis of the measured cavity transmission
spectrum explicitly reveal that the 3D transmon system has
reached the EIT regime in certain situations.

II. EXPERIMENT

The device used is a tunable 3D transmon, where the single
Josephson junction in a conventional 3D transmon [31,32] is
replaced by a SQUID with two identical Josephson junctions.
This symmetric SQUID is fabricated on a silicon substrate
using the standard double-angle evaporation process; the
Al/AlOx/Al junction has an area of 140 nm × 150 nm, the
SQUID loop is of the size 2 μm × 4 μm, and each shunting
capacitor Al pad has an area of 250 μm × 500 μm. These two
Al pads and the cavity constitute a large capacitance shunted to
the SQUID. The charging energy of this transmon is measured
to be EC/h = 412 MHz, which includes the effect of the shunt
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FIG. 1. (a) Schematic diagram of the experimental setup. A
tunable 3D transmon consisting of a symmetric SQUID and a copper
3D cavity is thermally anchored to the mixing chamber, biased with
a static magnetic field. A network analyzer works at 8.219 50 GHz
(the resonant frequency of the 3D cavity when the transmon is in
the ground state |0〉) with a fixed power of −15 dBm at its output
port, corresponding to the average photon number in the cavity to
be ∼0.7. At this frequency, the transmission coefficient T of the
cavity is measured. A microwave source provides the control tone
at ωc = ω21 = 2π × 3.979 50 GHz with various powers. Another
microwave source provides the probe tone at ωp = ω20 − δ with a
fixed power of −50 dBm at the source output. The microwave signals
are combined at room temperature by two splitters and then strongly
attenuated and filtered before reaching the sample. The transmitted
signal through the 3D cavity is amplified at 4 K and room temperature
before received by the network analyzer. (b) The lowest three energy
levels of the transmon driven by a control field (red) and a probe field
(blue). The control field with frequency ωc is in resonance with the
transition between |1〉 and |2〉, and the probe field with frequency
ωp has a detuning δ with the transition between |0〉 and |2〉. The
corresponding driving strengths are �c and �p , respectively.

capacitance. The SQUID behaves as an effective Josephson
junction tuned by the externally applied magnetic field. At
the bias magnetic field where the EIT occurs, the coupling
energy of the effective Josephson junction is measured to be
EJ /h = 7.0 GHz. The 3D cavity has dimensions 40.0 mm ×
21.0 mm × 4.5 mm, with a fundamental eigenmode TE101

of ωcavity/2π = 8.216 90 GHz and a loaded quality factor
QL ≈ 1000. The coupling strength between the first excited
state of the transmon and the cavity mode is g/2π = 173 MHz,
as obtained here via the vacuum Rabi splitting measurement.
The experiment was performed in a BlueFors LD-400 dilution
refrigerator at ∼25 mK [see Fig. 1(a)].

We use |i〉, i = 0,1,2, to denote the lowest three eigenstates
of the transmon with the corresponding energies �ωi [see
Fig. 1(b)], where the transition frequency between states
|i〉 and |j 〉 is ωij = ωi − ωj (i > j ). The cavity acts as
an effective environment for the transmon states and this
effective environment can be engineered to be tunable by

varying the detuning of the transition frequency ω20 from the
cavity frequency via the magnetic field in the SQUID loop.
Notably, our experimental results show that when decreasing
this frequency detuning, the damping rate γ20 between |2〉
and |0〉 can be greatly increased. This is due to the enhanced
dissipation from the cavity as the transition frequency ω20

becomes close to the cavity frequency. Here the cavity is used
to engineer the noise spectrum of the transmon, where the noise
around the cavity frequency can be stronger. Moreover, as can
be seen from the Appendix, the dominating noise channel
for γ20 is due to the flux noise through the SQUID loop.
Because the transmon is detuned from the flux sweet spot
in the present case, its sensitivity to the flux noise is also
increased. To determine the damping rate γ10 (γ20) between
|1〉 (|2〉) and |0〉, various spectroscopy tones with different
strengths have been applied to measure the spectroscopy of the
transmon. While the spectroscopy tone is weak enough (for
this experiment, the spectroscopy tone strength is estimated
to be �p/2π = 0.35 MHz), the nearly intrinsic linewidth
can be obtained. By fitting each peak in the measured
transmission spectrum of the cavity via a Lorentzian, we
obtain the damping rates γ10/2π = 1.76 MHz and γ20/2π =
6.90 MHz. Also, the transition frequencies are measured to
be ω10/2π = 4.391 25 GHz, ω20/2π = 8.370 75 GHz, and
ω21/2π = 3.979 50 GHz. The detuning of ω20/2π from the
cavity frequency is 153.85 MHz.

In the experiment for EIT and ATS, we applied a control
field in resonance with the transition frequency between |2〉 and
|1〉 (i.e., ωc = ω21) and a probe field slightly detuned with the
transition frequency between |2〉 and |0〉 (i.e., ωp = ω20 − δ)
[see Fig. 1(b)]. The corresponding driving strengths of these
two microwave tones on the three-level system are �c and
�p, respectively. While these probe and control tones interact
with the three-level system, they cannot transmit through the
cavity due to the off-resonance with the cavity. Also, because
the cavity mode is only dispersively coupled to the three-
level system, the quantum dynamics of this three-level system
becomes effectively decoupled from the cavity mode in this
dispersive regime.

III. A DRIVEN THREE-LEVEL SYSTEM DISPERSIVELY
COUPLED TO A 3D MICROWAVE CAVITY

As depicted in Fig. 1(b), under the rotating-wave approxi-
mation, the Hamiltonian of the system reads H = H0 + Hint,
with (we set � = 1)

H0 = ωaa
†a + ν10|1〉〈1| + ν20|2〉〈2|,

(1)
Hint = g1(a†|0〉〈1| + a|1〉〈0|) + g2(a†|1〉〈2| + a|2〉〈1|),

where a (a†) is the annihilation (creation) operator of the cavity
mode, ωa is the dispersive frequency of the cavity when the
transmon is in the ground state, ν10 (ν20) is the level difference
between the state |1〉 (|2〉) and the state |0〉, and g1 (g2) is the
coupling strength between the cavity mode and the transition
|1〉 ↔ |0〉 (|2〉). Here we ignore the weak coupling between the
transition |2〉 ↔ |0〉 and the cavity mode because we observed
no vacuum Rabi splitting when ν20 is resonant with the cavity
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frequency, as in Ref. [33]. The driven Hamiltonian is

Hd = − (�c|2〉〈1|e−iωct + �p|2〉〈0|e−iωpt

+ �ma†e−iωmt + H.c.), (2)

where �m is the coupling strength between the cavity mode
and the measurement field with frequency ωm.

The total Hamiltonian of the system can be written as Htot =
H0 + Hint + Hd . In the considered dispersive regime, i.e.,
|g1/�10| � 1, and |g2/�21| � 1, with detunings �10 ≡ ωa −
ν10 and �21 ≡ ωa − ν21, a Fröhlich-Nakajima transformation
can be employed to convert the total Hamiltonian to

Htot = UHtotU
†

= ωaa
†a + ω10|1〉〈1| + ω20|2〉〈2| + Hd

− [g1χ1|0〉〈0| − (g1χ1 − g2χ2)|1〉〈1|
− g2χ2|2〉〈2|]a†a, (3)

where ω10 = ν10 + g1χ1, ω20 = ν10 + ν21 + g2χ2, and the
transformation is U = exp(−V ), with

V = χ1(a†|0〉〈1| − a|1〉〈0|) + χ2(a†|1〉〈2| − a|2〉〈1|). (4)

Here V satisfies Hint + [H0,V ] = 0, which gives rise to
χ1 = −g1/�10 and χ2 = −g2/�21. In Eq. (3), terms up to
the second order are kept due to the small coefficients χ1 and
χ2. Also, the weak two-photon processes are ignored. Be-
cause �p,�m,�c � g1,g2 in our experiment, the interaction
Hamiltonian Hd is approximately unaffected by the unitary
transformation.

By further applying another unitary transformation,

S = exp[−i(ωp − ωc)t |1〉〈1| − iωpt |2〉〈2| − iωmta†a], (5)

the Hamiltonian (3) is converted to

H = S†HtotS − iS†∂tS

= δaa
†a + δ10|1〉〈1| + δ20|2〉〈2| − [g1χ1|0〉〈0|

− (g1χ1 − g2χ2)|1〉〈1| − g2χ2|2〉〈2|]a†a

− (�c|2〉〈1| + �p|2〉〈0| + �ma† + H.c.), (6)

where δa = ωa − ωm, δ10 = ω10 + ωc − ωp, and δ20 = ω20 −
ωp = ω10 + ω21 − ωp. In our experiment, we have ωc = ω21,
so δ10 = δ20 ≡ δ.

The quantum dynamics of the system can be described by
the following Born-Markov master equation:

∂ρ

∂t
= − i[H,ρ] + L[ρ]

= − i[H,ρ] + �10

2
D[|0〉〈1|]ρ + �20

2
D[|0〉〈2|]ρ

+ �21

2
D[|1〉〈2|]ρ + γ

φ

00D[|0〉〈0|]ρ + γ
φ

11D[|1〉〈1|]ρ

+ γ
φ

22D[|2〉〈2|] + κ

2
D[a]ρ, (7)

where D[O]ρ = 2OρO† − O†Oρ − ρO†O, with O = a and
|l〉〈m|, l � m ∈ {0,1,2}. The corresponding coefficient of
D[O]ρ denotes the dissipation rate, including relaxation and
pure dephasing rates. Note that this master equation applies to
both the �- and �-type three-level systems, which correspond
to �10 = 0 and �10 
= 0 in Eq. (7), respectively.

From Eq. (7), we can explicitly write

∂ρ10

∂t
= −(γ10 + iδ)ρ10 + i�cρ20 − i�pρ12,

(8)
∂ρ20

∂t
= −(γ20 + iδ)ρ20 + i�cρ10 − i�p(ρ22 − ρ00),

where γ10 = 1
2�10 + γ

φ

00 + γ
φ

11 and γ20 = 1
2 (�20 + �21) +

γ
φ

00 + γ
φ

22. From Eq. (8), it can be seen that the quantum
dynamics of the three-level system is effectively decoupled
from the cavity mode in the dispersive regime that we
considered. For a weak probe field (�p � �c), which is valid
in both EIT and ATS regimes in our experiment, starting from
the ground state |0〉, the off-diagonal density-matrix element
ρ20 of the three-level system in the steady state can be obtained
from Eq. (8) as

ρ20 = �p

δ − iγ20 − �2
c

δ−iγ10

. (9)

A similar result can also be found in Ref. [34] for the �-type
three-level system.

In a steady state, from Eq. (7), we can obtain

ρ11 = 2C1�p

C1�20 + C2�10
Im(ρ20),

(10)
ρ22 = 2C2�p

C1�20 + C2�10
Im(ρ20),

with the parameters C1 = γ21(�10γ21 − 2�2
c) and C2 =

γ21(�21γ21 − 2�2
c).

IV. EIT IN A TUNABLE 3D CAVITY

Here we apply a readout tone to the cavity at 8.219 50 GHz,
which corresponds to the resonant frequency of the cavity
when the three-level system is in the ground state |0〉. The
measured transmission spectrum T of the cavity depends on
the occupation probabilities of the three-level system given by
T = ρ00T0 + ρ11T1 + ρ22T2, where ρ00 + ρ11 + ρ22 = 1, and
T0, T1 and T2 are the cavity transmission coefficients when the
transmon is in the state |0〉, |1〉 and |2〉, respectively. Because
ρ11 ∝ Im(ρ20) and ρ22 ∝ Im(ρ20), the normalized transmission
coefficient is proportional to Im(ρ20):

T ′ ≡ T − T0

T2 − T0
= T1 − T0

T2 − T0
ρ11 + ρ22 = AIm(ρ20)

(11)

=
A�p

(
γ20 + �2

cγ10

δ2+γ 2
10

)
(
δ − �2

cδ

δ2+γ 2
10

)2 + (
γ20 + �2

cγ10

δ2+γ 2
10

)2 .

In quantum optics, the imaginary part of the complex
susceptibility (Imχ ∝ Im(ρ20)) is measured to demonstrate
the EIT [34], which is directly related to the probe tone
applied to the atomic systems. However, in the circuit-QED
approach for superconducting circuits, the cavity transmission
is usually measured. Because T ′ ∝ Im(ρ20) is obtained in our
experiment, the measured normalized transmission coefficient
T ′ can also demonstrate the EIT in the 3D transmon.

In Fig. 2(a), we show T ′ for different control-field powers,
ranging from −32 to −19 dBm at the source output. By fitting
T ′ in Fig. 2(a) with Eq. (11) at each control-field power, we
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FIG. 2. (a) The normalized transmission coefficient T ′ of the
cavity, where the control field sweeping from −32 to −19 dBm
at source output is applied in resonance with the transition frequency
ω21/2π = 3.979 50 GHz and the probe field with power −50 dBm
at source output has a detuning δ/2π from the transition frequency
ω20/2π = 8.370 75 GHz. The dashed (black) guide lines correspond
to the two peaks in T ′. In order to clearly show the two peaks in the
weak control-field range, we present T ′ in (a) only up to −19 dBm for
the control-field power. (b)–(e) The measured transmission coefficient
T ′ versus the frequency detuning δ/2π (denoted by red open circles)
at different powers of the control field: (b) −31 dBm, (c) −26 dBm,
(d) −20 dBm, and (e) −8 dBm, where the results at −31, −26, and
−20 dBm correspond to the three vertical (white) lines in (a) and the
result at −8 dBm is not shown there. The solid curves are the fitting
results obtained using Eq. (11) when �c/2π = 2.06, 2.88, 5.29,
and 19.7 MHz, respectively. (f) The driving strength �c at each
control-field power (denoted by red open circles), which is obtained
by fitting the measured transmission coefficient T ′ with Eq. (11). The
upper limit of the driving strength �EIT for realizing EIT is indicated
by the dashed line.

obtain the driving strength �c ranging from 2π × 1.74 to 2π ×
6.05 MHz. For example, Figs. 2(b)–2(e) show the fitting of

experimental data with Eq. (11) at some typical control field
powers: −31, −26, −20, and −8 dBm, which correspond to
�c/2π = 2.06, 2.88, 5.29, and 19.7 MHz, respectively. For
a three-level system driven as in Fig. 1(b) by both a control
field and a probe field, the conditions for realizing EIT (i.e.,
to create a dark state with only superposition of |0〉 and |1〉)
are [30] γ20 > 2γ10, and

γ10

√
γ10/(2γ10 + γ20) < �c < (γ20 − γ10)/2.

In our experiment, γ20/2π = 6.90 MHz and γ10/2π =
1.76 MHz (which satisfy γ20 > 2γ10), so the EIT conditions
require that 0.79 MHz < �c/2π < 2.57 MHz. In Fig. 2(f), it
can be seen that part of the applied �c is within the range that
satisfies the EIT conditions.

V. DISCRIMINATING EIT FROM ATS

Below we further analyze our experimental results to see
how the driven three-level system transitions from the EIT to
the ATS regime. When the system is in the EIT regime, since
�c < (γ20 − γ10)/2, one can rewrite Im(ρ20) in Eq. (11) as
the sum of a broad positive Lorentzian and a narrow negative
Lorentzian,

Im(ρ20)EIT = C2
+

δ2 + γ 2+
− C2

−
δ2 + γ 2−

, (12)

where γ± = 1
2 [γ20 + γ10 ± √

(γ20 − γ10)2 − 4�2
c]. Note that

Eq. (12) deviates from the sum of two positive Lorentzians,
indicating that destructive interference occurs in this driven
three-level system. As for raising the bound (γ20 − γ10)/2 by
increasing γ20 in the experiment, it is to have a broader range
of �c to observe the EIT. In the strong ATS regime with
�c  (γ20 − γ10)/2, Im(ρ20) in Eq. (11) is reduced to the sum
of two positive equal-width but shifted Lorentzians:

Im(ρ20)ATS = C2

(δ − δ0)2 + γ 2
+ C2

(δ + δ0)2 + γ 2
, (13)

where γ = (γ20 + γ10)/2, and δ0 = 1
2

√
4�2

c − (γ20 − γ10)2. In
Figs. 3(a)–3(d), where the corresponding driving strengths
are the same as in Figs. 2(b)–2(e), we directly compare our
experimentally observed transmission spectrum with the EIT
model in Eq. (12) and the ATS model in Eq. (13). For a
weak control field, the observed transmission spectrum fits
very well with the EIT model and deviates appreciably from
the ATS model [see Figs. 3(a) and 3(b)]. However, when
the control field has a moderate strength, the transmission
spectrum deviates appreciably from both the EIT and the ATS
models [see Fig. 3(c)]. Furthermore, for a strong control field,
the transmission spectrum fits very well with the ATS model
and deviates drastically from the EIT model [see Fig. 3(d)].
Note that when fitting with the EIT model in this strong
control-field range, T ′ can become negative. This further
indicates that the EIT model cannot ever be applied. These
comparisons clearly demonstrate that a transition from EIT to
ATS occurs when increasing the strength of the control field
applied to the three-level system.

We can qualitatively discriminate EIT from ATS by using
Akaike’s information criterion (AIC) [18,29], which can
identify the most informative model based on relative entropy.
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FIG. 3. (a)–(d) Comparison of the measured transmission coeffi-
cient T ′ (denoted by red open circles) with the results obtained using
Eq. (12), i.e., the EIT model (solid curves), and Eq. (13), i.e., the ATS
model (dashed curves). The powers of the control field are (a) −31
dBm, (b) −26 dBm, (c) −20 dBm, and (d) −8 dBm, which correspond
to �c/2π = 2.06, 2.88, 5.29, and 19.7 MHz, respectively. (e) The
AIC per-point weights for both EIT and ATS models at different
values of the control-field power (i.e., different driving strength
�c). The red open circles (blue solid triangles) correspond to the
per-point weights of the EIT (ATS) model obtained by fitting with
the experimental data. The red (blue) solid curve corresponds to the
theoretical AIC per-point weights obtained with γ20/2π = 6.90 MHz
and γ10/2π = 1.76 MHz, as well as an additional 3% experimental
noise, while the red (blue) dash-dotted curve corresponds to the
theoretical AIC per-point weights obtained without the additional
experimental noise.

The information loss of a given model with k fitting parameters
to the experimental data is quantified by I = N ln(R/N) + 2k,
where N is the number of data points for fitting and R

denotes the fitting residual sum of squares. The per-point AIC
contribution is given by Ī = I/N . In our experiment, each
transmission spectrum contains N = 61 points. By calculating
AIC per-point weights w̄EIT and w̄ATS,

w̄EIT = exp
( − 1

2 ĪEIT
)

exp
( − 1

2 ĪEIT
) + exp

( − 1
2 ĪATS

) , (14)

and w̄ATS = 1 − w̄EIT, one can determine whether the EIT
model [Eq. (12)] or ATS model [Eq. (13)] is the most likely
case for the experimental data. When the control-field driving
strength is small enough (�c < �EIT = 2π × 2.57 MHz), the

system is in the EIT regime and the EIT model can fit the
experimental data extremely well, while the ATS model fits
poorly [see Fig. 3(e)]. When increasing the driving strength
to �c > �EIT, the system transitions from the EIT to ATS
regime. Note that the ATS emerges when the driving strength
�c slightly exceeds �EIT, but the system is still in the
EIT-dominated regime. Thus, the EIT model fits with the
experimental data better than ATS model does. While the
driving strength �c reaches around �AIC = 2π × 4.28 MHz,
either model cannot fit well with the experimental data, so
the system is in the intermediate or transition regime. For
�c > �AIC, when increasing �c, the ATS model fits with
the experimental data increasingly better than the EIT model
does. Therefore, the AIC per-point weights in Fig. 3(e) further
reveals that, for our tunable 3D transmon, EIT and ATS occurs
in the weak and strong driving regimes, respectively, and a
transition occurs between them.

VI. DISCUSSION AND CONCLUSION

Although observed and extensively studied in atomic
systems, EIT as an important quantum-optics phenomenon
has not been observed in macroscopic quantum systems
such as superconducting quantum circuits. This is because
the fulfillment of the conditions for realizing EIT in a
superconducting circuit is much more difficult than in an
atomic system. However, by tuning the transmon with an
external magnetic field, we have successfully reached the
EIT parameter regime of this superconducting circuit. From
the experimental observations, we have also clearly identified
the EIT and ATS regimes as well as the transition regime in
between.

Theoretical studies give a threshold of the control-field
drive strength at the border between EIT and ATS, which
corresponds to �EIT = (γ20 − γ10)/2 = 2π × 2.57 MHz in
our experiment. In Fig. 3(e), the EIT regime and the transition
from EIT- to ATS-dominated regime are clearly shown. By
fitting the calculated per-point weight with the experimental
results, it is estimated that the noise in our experiment is about
3% of the signal. The crossing point of the curves corresponds
to the threshold �AIC = 2π × 4.28 MHz. When �c < �AIC,
the EIT model fits the experimental data better than the
ATS model and vice versa when �c > �AIC. Obviously, the
threshold �AIC is larger than the threshold �EIT determined by
the EIT theory. Indeed, when the driving strength �c is slightly
larger than �EIT, the system starts to transition from the EIT
to the ATS regime, but it is still in the EIT-dominated regime
(i.e., the EIT model describes the system better than the ATS
model). Therefore, our experimental data demonstrate that the
threshold �AIC describes the EIT-ATS transition better than
the threshold �EIT.

Note added. Recently, we became aware of a work by
Novikov et al. [35], which also studies EIT in a similar setup.
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APPENDIX: ONE-PHOTON TRANSITION BETWEEN
STATES |0〉 AND |2〉

In the experiment, we have also measured the one-photon
transition spectroscopy between the eigenstates |0〉 and |2〉
of the 3D transmon at another flux bias, giving EJ /EC =
27.5. Figure 4(a) shows the transition spectroscopy for the
one-photon process between the eigenstates |0〉 and |1〉 of
the transmon as well as the two-photon process between
the eigenstates |0〉 and |2〉. The corresponding transition
frequencies are measured to be ω10/2π = 5.202 GHz and
1
2ω20/2π = 5.014 GHz, respectively. For comparison, the
transition spectroscopy for the one-photon process between
states |0〉 and |2〉 is also shown in Fig. 4(b), with the resonance
exactly at the transition frequency ω20/2π = 10.028 GHz.
Note that these transition frequencies are still far detuned
from the cavity frequency (8.2169 GHz). Moreover, as shown
in Fig. 5, we have measured the Rabi oscillations between
states |0〉 and |2〉 by using a driving field with frequency
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FIG. 4. The transition spectroscopy between states |0〉 and |2〉 of
the tunable 3D transmon at a flux bias giving EJ /EC = 27.5. (a)
One-photon transition process between states |0〉 and |1〉 and two-
photon transition process between states |0〉 and |2〉. (b) One-photon
transition process between states |0〉 and |2〉.
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FIG. 5. The measured Rabi oscillations between states |0〉 and |2〉
of the 3D transmon by using a 10.028-GHz driving field. The black
circles are experimental data and the red curve is an exponentially
damped sinusoidal fit. The Rabi oscillation period is 56.8 ns and the
oscillation decay time is 130.6 ns from the fit.

10.028 GHz. It gives that the Rabi oscillation period is 56.8
ns and the oscillation decay time is 130.6 ns by fitting with
the experiment. These results reveal that one-photon transition
between |0〉 and |2〉 indeed occurs in our 3D transmon system.

The Hamiltonian of the transmon can be written as

H = 4Ec(n − ng)2 − EJ cos ϕ. (A1)

The electric-dipole transition matrix element between eigen-
states |i〉 and |j 〉 of the transmon is proportional to 〈i|n|j 〉, due
to the field-induced time-dependent variation of the charge bias
ng . For the 3D transmon, the charge bias ng is not fixed but
floated, so it can change for a different experimental setup.
In Fig. 6(a), we calculate |〈0|n|1〉|, |〈0|n|2〉|, and |〈1|n|2〉|
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FIG. 6. Electric- and magnetic-dipole transition matrix elements
of the 3D transmon as a function of the ratio EJ /EC . Panels
(a) and (b) correspond to the electric-dipole one-photon transitions
for ng = 0.5 and 0.25, respectively. Panels (c) and (d) correspond
to the magnetic-dipole one-photon transitions for ng = 0.5 and 0.25,
respectively.
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at ng = 0.5. These calculated transition matrix elements are
similar to the results obtained in Ref. [36]. The result of
|〈0|n|2〉| = 0 indicates that no electric-dipole one-photon
transition occurs between states |0〉 and |2〉. When ng 
= 0.5
(e.g., ng = 0.25), |〈0|n|2〉| can be nonzero, but it is much
smaller than |〈0|n|1〉|, especially around EJ /Ec = 16.99 (i.e.,
the ratio given in our experiment for the EIT) [see Fig. 6(b)].
Therefore, the electric-dipole one-photon transition between
|0〉 and |2〉 is still too weak in the case of ng 
= 0.5.

For the 3D transmon used in our experiment, the single
Josephson junction is replaced with a symmetric SQUID with
an effective Josephson coupling

EJ = 2EJ0 cos

(
π�x

�0

)
, (A2)

where EJ0 is the Josephson coupling energy of each junction
in the SQUID. In addition to the static magnetic flux �x , when
a weak time-dependent magnetic flux �a(t) is applied (i.e.,
|π�a(t)/�0| � 1), the Hamiltonian becomes

H (t) = H + I�a(t), (A3)

where

I = 2πEJ0

�0
sin

(
π�x

�0

)
cos ϕ (A4)

is the circulating current in the SQUID loop [37]. The
magnetic-dipole transition matrix element between eigenstates
|i〉 and |j 〉 of the transmon is proportional to 〈i| cos ϕ|j 〉. In
Figs. 6(c) and 6(d), we show the calculated |〈0| cos ϕ|1〉|,
|〈0| cos ϕ|2〉|, and |〈1| cos ϕ|2〉|. At ng = 0.5, while both
|〈0| cos ϕ|1〉| = 0 and |〈1| cos ϕ|2〉| = 0, |〈0| cos ϕ|2〉| is
nonzero [see Fig. 6(c)], indicating that only the magnetic-
dipole one-photon transition between eigenstates |0〉 and |2〉
is allowed in this case. When ng 
= 0.5 (e.g., ng = 0.25),
both |〈0| cos ϕ|1〉| and |〈1| cos ϕ|2〉| become nonzero, but they
are smaller than |〈0| cos ϕ|2〉|. In particular, they are much
smaller than |〈0| cos ϕ|2〉| at EJ /Ec = 16.99 [see Fig. 6(d)].
Because EJ  Ec in the transmon, when the field-induced
time-dependent variation of the charge bias ng is small,
the magnetic-dipole one-photon transition between |0〉 and
|2〉 can become as important as the electric-dipole one-
photon transitions |0〉 → |1〉 and |1〉 → |2〉. This explains the
observation of the one-photon transition between states |0〉 and
|2〉 in our tunable 3D transmon.
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