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Circuit analog of quadratic optomechanics
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We propose a superconducting electrical circuit that simulates a quadratic optomechanical system. A
capacitor placed between two transmission-line (TL) resonators acts like a semitransparent membrane, and
a superconducting quantum interference device (SQUID) that terminates a TL resonator behaves like a movable
mirror. Combining these circuit elements, it is possible to simulate a quadratic optomechanical coupling whose
coupling strength is determined by the coupling capacitance and the tunable bias flux through the SQUIDs.
Estimates using realistic parameters suggest that an improvement in the coupling strength could be realized,
to five orders of magnitude from what has been observed in membrane-in-the-middle cavity optomechanical
systems. This leads to the possibility of achieving the strong-coupling regime of quadratic optomechanics.
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I. INTRODUCTION

Optomechanics is the study of interactions between optical
and mechanical degrees of freedom [1–3]. It has been a
burgeoning field in recent years, with various theoretical
proposals and experimental realizations (e.g., sideband cooling
of mechanical oscillators to quantum ground states [4–6] and
normal-mode splitting [7–9]). In these works, the interaction
Hamiltonian is linear in the displacement of the mechanical
oscillator. Another type of interaction, which is quadratic
in the displacement of the mechanical oscillator, has also
been demonstrated [10–13], stimulating other theoretical
proposals [14–18]. In particular, quadratic optomechanics
opened up the possibility of quantum nondemolition (QND)
measurements [19] of the mechanical oscillator’s energy
eigenstates. However, it has been suggested [20] that a strong
quadratic coupling strength is required to resolve a single
mechanical quantum.

Meanwhile, the field of circuit quantum electrodynamics
(cQED) emerged as a promising candidate for future quantum
information processing [21–26]. Josephson-junction-based
devices together with transmission-line (TL) resonators have
proved effective in the manipulation and the readout of
superconducting qubits. Also, cQED has drawn attention
as an analog system for probing various quantum phenom-
ena [27–30]. In particular, superconducting quantum inter-
ference devices (SQUIDs) can implement tunable boundary
conditions in circuits. With this principle, SQUIDs have been
employed as a method for introducing in situ tunability to
circuits [31–35], demonstrating physical effects that had not
previously been observed, e.g., the dynamical Casimir effect
(DCE) [36–39]. Other theoretical proposals for analog circuit
realizations include Hawking radiation [40], entanglement
of superconducting qubits using DCE [41], and the twin
paradox [42]. Also, an all-circuit realization of standard linear
optomechanics has recently been proposed [43].
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In this paper, we present a superconducting electrical
circuit, illustrated in Fig. 1, that simulates a quadratic op-
tomechanical system. The system consists of two resonators,
denoted as resonator A and resonator B, each corresponding
to the optical cavity and the mechanical oscillator of quadratic
optomechanics. The coupling capacitor and the SQUIDs
forming resonator A correspond to a fixed semitransparent
membrane and movable optical cavity ends, respectively. By
synchronizing the motion of the movable cavity ends, which is
accomplished by applying opposite flux variations through the
SQUIDs of resonator A, a relative displacement of the fixed
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FIG. 1. (Color online) Schematic design of an analog circuit for
quadratic optomechanics. Resonator A, described by the annihilation
operator ân and the mode frequency ωn, consists of two capacitively
coupled SQUID-terminated TL resonators. Resonator B, described
by the annihilation operator b̂m and the mode frequency �m, is
a TL resonator. Resonator A and resonator B provide optical and
pseudomechanical degrees of freedom, respectively. The current
distribution of resonator B is chosen to be antisymmetric to en-
sure opposite flux variations ±δ�̂ext through the SQUIDs forming
resonator A.
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membrane with respect to the cavity center is generated. Due to
this parametrically induced frequency shift of resonator A, the
position quadrature of resonator B couples quadratically to the
photon number of resonator A in a certain regime. Although
the physics underlying cavity quadratic optomechanics and
our circuit proposal is intrinsically different, the interaction is
of the same form.

The remaining part of this paper is outlined as follows:
Section II reviews the basic principles of quadratic optome-
chanical systems [10–13] that are employed in our discussion.
In Sec. III, we investigate the mode frequencies and the mode
structures of specific circuit models to find a circuit analog of
optical and mechanical elements. In Sec. IV, the quantization
procedure of the system as well as Hamiltonian formulation
of our analog quadratic optomechanical system is presented.
In Sec. V, we suggest that the proposed circuit is realizable,
potentially giving rise to a large improvement in the quadratic
coupling strength compared to cavity-optomechanical sys-
tems. The summary of our results follows in Sec. VI.

II. REVIEW OF QUADRATIC OPTOMECHANICS

Quadratic optomechanical coupling was first demonstrated
in Ref. [10]. This system consists of an optical cavity
partitioned by a semitransparent membrane. The basic idea
of this system is that the mode frequency of the cavity ωcav as
a function of membrane displacement ξ from the cavity center
has local extrema, where the first-order derivatives ω′

cav(ξ )
vanish. To be specific, defining v as the speed of light inside
the cavity, the mode frequencies ωcav(ξ ) = kv satisfy [11]

cos (kd − δ) = |r| cos (2kξ ), (1)

where d is the total length of the cavity, δ is the overall phase,
and r is the reflectivity of the membrane which is close to
unity. Choosing the extremum point ξ = 0 as the center of
oscillation, the Hamiltonian is written in the form

Ĥ = �ωcav(0)â†â + ��b̂†b̂ − �gâ†â(b̂† + b̂)2, (2)

where � is the mechanical oscillation frequency of the
membrane and g = �ω′′

cav(0)/4m� is the quadratic coupling
strength (m is the mass of the membrane). Here, â and b̂ denote
the annihilation operators for the optical mode of the cavity
(photon) and the mechanical mode of the membrane (phonon),
respectively.

This system distinguishes itself from the standard lin-
ear optomechanical system [1–3] in several respects: (i)
since the cavity ends remain fixed and the membrane
possesses a mechanical degree of freedom, experimen-
talists can circumvent the difficulty of combining high-
finesse cavities with mechanical degrees of freedom;
(ii) neglecting fast-oscillating terms, the quadratic cou-
pling part of the Hamiltonian â†â(b̂† + b̂)2 reduces to
2â†âb̂†b̂, which enables QND phonon-number measure-
ments [19] of the mechanical oscillator, since [Ĥ ,b̂†b̂] = 0;
(iii) by choosing the membrane displacement ξ such that the
first-order derivative does not vanish, the system returns to the
linear optomechanics regime.

In general, the position-squared sensitivity ω′′
cav of the cavity

frequency of Ref. [10] is too small to achieve the QND phonon-
number readout [12]. Using the parameters L = 6.7 cm,

r = 0.999, λ = 532 nm, m = 50 pg, and �/2π = 100 kHz,
in Ref. [10],

ω′′
cav = 16π2c

Lλ2

√
2(1 − r) ≈ 2π × 18 kHz nm−2,

and the ratio of the quadratic coupling strength g to the
mechanical mode frequency � is given by

g

�
= �ω′′

cav

4m�2
= 9.4 × 10−13. (3)

In Ref. [13], an angular degree of freedom, i.e., tilt of
the membrane, was introduced as a method of increasing
the quadratic coupling strength. If the system is perfectly
symmetric, transverse modes of the cavity (for example,
TEM{20,11,02}) are degenerate. On the other hand, when this
system has an asymmetry, either due to a tilt of the membrane
or an imperfection of the cavity, the mode degeneracy is lifted
to give additional local extrema of the cavity frequency with
larger values of the second-order derivatives ω′′

cav. This may
increase ω′′

cav by three orders of magnitude.
From the parameters in Ref. [13], �/2π = 100 kHz,

m = 50 pg, and ω′′
cav/2π = 10 MHz nm−2, the ratio of the

coupling strength g to the mechanical oscillation frequency �

is estimated as

g

�
= �ω′′

cav

4m�2
= 5.3 × 10−10. (4)

Still, the coupling strength is very small compared to the mode
frequencies of the cavity and the mechanical oscillator.

In general, it has been an experimental challenge in cavity-
optomechanical systems to reach a quadratic coupling strength
high enough to achieve QND measurements of the phonon
number [15,20]. As an alternative approach for exploring
quadratic optomechanics, Bose-Einstein condensate (BEC)
systems have previously been proposed and demonstrated
[44–47]. Here, we look for an analog in cQED to possibly
realize strong quadratic coupling strengths.

III. CIRCUIT MODEL

In this section, we discuss how optical and mechanical
elements can be mapped onto circuit elements. The eigenmode
equation (1) that we observe in the standard fixed “membrane-
in-the-middle” optical system is the same as our “capacitor-
in-the-middle” TL resonator configuration in Sec. III A. In
Sec. III B, we look at how SQUID-terminated TL resonators
can introduce a variable length of the resonator, which offers
tunability of the resonance frequency. Section III C combines
the two principles to simulate a movable membrane in the
middle of the resonator whose position can be adjusted by an
external flux.

A. Capacitively coupled resonators

We first discuss capacitively coupled TL resonators, as
depicted in Fig. 2. We define �α(x,t) ≡ ∫ t

−∞ V α(x,t ′) dt ′
as the flux field, and cα(x) and 
α(x) are the characteristic
capacitance and inductance per unit length at position x and
time t of a TL resonator (α = L,R). Then, the Lagrangian
of the system can be expressed in terms of the Lagrangian
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FIG. 2. (Color online) Two capacitively coupled TL resonators expressed as a lumped-element circuit. The TL resonators on the left and
the right are labeled with α = L and R, respectively. Each TL resonator can be modeled as an infinite number of LC circuits, each with
node capacitance cα

k �x and node inductance 
α
k �x (1 � k � Nα). In the continuum limit, the discrete node flux �α

k (t), node capacitance per
unit length cα

k , and node inductance per unit length 
α
k converge to continuous functions inside each TL resonator �α(x,t), cα(x), and 
α(x),

respectively. In the middle, there is a capacitor Cc which couples the two TL resonators. If both TL resonators are uniform and homogeneous,
this capacitor can be thought of as a partially transparent membrane (shown in blue) giving rise to a linear transformation between the wave
amplitudes of different regions.

density [48,49] L = ∫ dR

−dL
L dx, with

L =
{

cL(x)

2
[∂t�

L(x,t)]2 − 1

2
L(x)
[∂x�

L(x,t)]2

}
(−x)

+
{

cR(x)

2
[∂t�

R(x,t)]2 − 1

2
R(x)
[∂x�

R(x,t)]2

}
(x)

+ Cc

2
[∂t�

R(x,t) − ∂t�
L(x,t)]2δ(x).

Here, δ(x) is the one-dimensional Dirac delta function and
(x) is the Heaviside step function. Also, Cc is the capacitance
of the capacitor between the two TL resonators. Applying the
Euler-Lagrange equation of motion [50]

∂L
∂�α

− ∂

∂x

∂L
∂x�α

− ∂

∂t

∂L
∂t�α

= 0 (α = L, R), (5)

we obtain the partial differential equation for x �= 0

∂

∂x

[
1


(x)
∂x�(x,t)

]
− c(x)∂tt�(x,t) = 0, (6)

subject to the boundary conditions at x = 0,

Cc[∂tt�(0+,t) − ∂tt�(0−,t)] = 1


(0+)
∂x�(0+,t), (7)

Cc[∂tt�(0−,t) − ∂tt�(0+,t)] = − 1


(0−)
∂x�(0−,t). (8)

Without loss of generality, we let f (x) ≡ f L(x)(−x) +
f R(x)(x) (f = �,c,
). Note that adding Eqs. (7) and (8)
yields the current-conservation relation at the boundary

1


(0+)
∂x�(0+,t) = 1


(0−)
∂x�(0−,t).

We consider the special case where both ends of the TL
resonators are grounded. We further assume that the TL
resonators are homogeneous, having identical characteristic

capacitance and inductance per unit length c(x) = c0, 
(x) =

0. In this case, our problem reduces to solving the partial
differential equation for x �= 0 (v0 ≡ 1/

√

0c0)

∂xx�(x,t) − 1

v2
0

∂tt�(x,t) = 0, (9)

which is the massless Klein-Gordon wave equation [50],
subject to the four boundary conditions

Cc[∂tt�(0+,t) − ∂tt�(0−,t)] = 1


0
∂x�(0+,t), (10a)

Cc[∂tt�(0−,t) − ∂tt�(0+,t)] = − 1


0
∂x�(0−,t), (10b)

�(−dL,t) = 0, (10c)

�(dR,t) = 0. (10d)

We look for a solution of the form �(x,t) = u(x)ψ(t),
using separation of variables. The wave equation then yields
two independent ordinary differential equations

u′′(x) + k2u(x) = 0,

ψ̈(t) + ω2ψ(t) = 0, (11)

where k is a constant, and ω = kv0. The boundary conditions
in our case depend only on x, and we only need to solve the
ordinary differential equation for u(x). The general solution for
u(x) is a linear combination of e±ikx , with different amplitudes,

u(x) =
{
Aeikx + Be−ikx (x < 0),
Ceikx + De−ikx (x > 0),

as illustrated in Fig. 2. The boundary conditions (10a) and
(10b), which correspond to a capacitive coupling, yield a
linear, “fixed-membrane”-like transformation between the
wave amplitudes: (

B

C

)
=

(
r it

it r

)(
A

D

)
, (12)
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where r and t are the effective reflectivity and transmissivity
arising from the capacitive coupling. Here,

r = i ωc
2ω

1 + i ωc
2ω

, t = −i

1 + i ωc
2ω

, (13)

and ωc ≡ (
√


0/c0Cc)−1 is the characteristic frequency of
the capacitive coupling. Note that the reflectivity and trans-
missivity satisfy |r|2 + |t |2 = 1. This transformation (12) is
equivalent to the transformation matrix between the field
operators mentioned in Ref. [37].

Increasing the capacitance Cc amounts to increasing trans-
missivity and reducing reflectivity; decreasing Cc, on the other
hand, enhances reflectivity while suppressing transmissivity.
In the limit Cc → 0, the reflectivity approaches unity, corre-
sponding to open-ended (i.e., completely decoupled) boundary
condition at x = 0.

The boundary conditions (10c) and (10d), which corre-
spond to grounded ends, result in the total reflection of waves
at the ends of the TL resonators. This produces a “mirrorlike”
transformation between wave amplitudes:

Ae−ikdL + BeikdL = CeikdR + De−ikdR = 0. (14)

Equation (12) in tandem with Eq. (14) impose a constraint
on the allowed frequencies of the system, on the form of an
optical cavity with a fixed membrane in the middle:

ωc

ωn

= tan

(
ωndL

v0

)
+ tan

(
ωndR

v0

)
(15a)

or, equivalently,

cos (knd − δn) = |rn| cos (2knξ ), (15b)

where kn = ωn/v0. Here, n is used to label the discrete modes
and we have introduced the total length of the cavity d =
dL + dR, the displacement ξ = (dL − dR)/2 of the capacitor
from the center, and the phase angle δn, which satisfies

cos δn = −|rn|, sin δn = |tn|.
Note that Eq. (15b) is identical to the eigenmode equation (1)
of cavity quadratic optomechanics. Equation (15b) makes
it possible to expand the normal-mode frequencies in the
displacement parameter ξ ,

ωn(ξ ) = ω(0)
n + ω(2)

n ξ 2 + ω(4)
n ξ 4 + O(ξ 6), (16)

where the expansion coefficients are given by (n = 0,1,2, . . .)

ω(0)
n = πv0

d
[n + mod(n + 1,2)]

− 2v0 cos −1
(∣∣r (0)

n

∣∣)
d

mod(n + 1,2),

ω(2)
n = − (−1)n

d

ω(0)
n ωc

v0
,

ω(4)
n = (−1)n

d

ω(0)
n ω3

c

12v3
0

[
1 + 4

(
ω(0)

n

)2

ω2
c

]
.

Here, mod(n + 1,2) is the modulus function that returns 1
for even values of n, and 0 for odd values of n. Note
that the expansion coefficient for the first and the third
order is zero, i.e., ω(1)

n = ω(3)
n = 0. Therefore, we observe a

quadratic dependence of normal-mode frequencies ωn on the
displacement parameter ξ , up to third order.

In the rest of our discussion, we use the third-order
expansion ωn(ξ ) ≈ ω(0)

n + ω(2)
n ξ 2 as an approximate analytic

expression. To quantify the validity of this approximation,
we introduce a new parameter called a validity extent. The
third-order approximation is accurate to 99% in the range
|ξ | � ξn∗, where ξn∗ is given by

ξn∗ ≡ v0

4

√
ω

(0)
n ω3

c + 4
(
ω

(0)
n

)3
ωc

(12 × 10−2)1/4. (17)

Thus, the region of ξ where this third-order approximation
holds is larger for lower modes and stronger capacitive
coupling, and smaller for higher modes and weaker capacitive
coupling.

The numerical values of the normal-mode frequencies as
a function of the displacement parameter ξ , for different
values of the capacitive coupling, are shown in Fig. 3. For
the completely decoupled case (dotted curves), there is a
degeneracy of mode frequency at points where the dotted
curves intersect each other. On the other hand, when a
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FIG. 3. (Color online) Normal-mode frequencies of the first six
modes (n = 0 to 5, bottom to top), calculated from Eq. (15a). The four
panels show the mode frequencies, as a function of the location of
the capacitor, for decreasing coupling strengths: (a) ωc = 10−1 v0/d ,
(b) ωc = v0/d , (c) ωc = 10 v0/d , (d) ωc = 102 v0/d . The dotted
lines are the normal-mode frequencies for the completely decoupled
case (Cc = 0 or ωc → ∞). The regions inside the dashed boxes are
zoomed in Fig. 4.

033835-4



CIRCUIT ANALOG OF QUADRATIC OPTOMECHANICS PHYSICAL REVIEW A 91, 033835 (2015)

−0.1 −0.05 0 0.05 0.1

13

14

15

16

17

ωc = 10 v0/d

−0.1 −0.05 0 0.05 0.1

13

14

15

16

17

ωc = 102 v0/d

−0.1 −0.05 0 0.05 0.1

7

8

9

10

−0.1 −0.05 0 0.05 0.1

7

8

9

10

−0.1 −0.05 0 0.05 0.1
2

3

4

−0.1 −0.05 0 0.05 0.1
2

3

4

N
or

m
al

-m
od

e
fr

eq
u
en

ci
es

ω
n
d
/v

0

Displacement ξ/d

(a) (b)

(c) (d)

(e) (f)

FIG. 4. (Color online) Enlargement (with the same scale) of the
dashed boxes in Figs. 3(c) and 3(d). Here, (a), (c), (e) and (b), (d),
(f) correspond to the dashed boxes in Figs. 3(c) and 3(d), from top to
bottom, respectively. The dashed lines are plotted with Eq. (16) up to
third order in ξ , and the vertical markers ❘ on each dashed line show
the 99% validity range of this approximation, obtained from Eq. (17).

capacitive coupling is present between two TL resonators, the
degeneracy is lifted to give independent modes.

Figure 3(a) corresponds to the strong capacitive-coupling
limit, where Cc → ∞ or ωc → 0. This corresponds to a
perfectly transparent membrane inside a cavity where the
displacement of the membrane has no effect on the mode
structure. The curves attain more curvature as the capacitive-
coupling strength decreases (Cc → 0 or ωc → ∞) and, as in
Fig. 3(d), eventually approach the dotted curves (decoupled
case).

It is clearly seen in Fig. 4 that Eq. (16) fits well with
the numerical values in Fig. 3 in the vicinity of ξ = 0. The
range of ξ where this approximation is valid varies between
different coupling strengths. If the capacitive coupling is weak,
the second-order coefficient ω(2)

n has a large absolute value,
which results in a stronger dependence of the normal-mode
frequencies on ξ . At the same time, the range of ξ where the
approximation holds becomes shorter. For a strong capacitive
coupling, however, the normal-mode frequencies are less
sensitive to variations in ξ , with small expansion coefficients,
and the validity range for the approximation is longer.

Following the normalization procedure using Sturm-
Liouville theory of differential equations, which for example
is employed in Refs. [51,52], it is possible to express the mode

function un(x) as follows:

un(x) = Nn

{
(−x)

sin [kn(x + dL)]

cos (kndL)

+(x)
sin [kn(x − dR)]

cos (kndR)

}
, (18)

where

Nn =
[

2
(
1 + v0

ωcd

)
dL
d

sec 2(kndL) + dR
d

sec 2(kndR) + ωc
k2
nv0d

]1/2

(19)

are the normalization constants chosen to satisfy

c0

∫ dR

−dL

un(x)um(x) dx + Cc(�un)(�um) = C�δnm,

1


0

∫ dR

−dL

u′
n(x)u′

m(x) dx = 1

Lm

δnm. (20)

Here, (�um) ≡ um(0+) − um(0−) is the discontinuity of the
mode functions at x = 0, C� ≡ c0d + Cc is the total capac-
itance of the system, and Lm ≡ (ω2

mC�)−1 is the effective
inductance for different modes [52]. The flux can be expressed
in terms of the mode functions as �(x,t) = ∑∞

n=0 un(x)ψn(x).
Figure 5 shows the mode functions for the few lowest

modes. For the perfectly symmetric case [Fig. 5(i), ξ = 0],
two nearby modes (n = 0 and 1, for instance) approach
each other as the capacitive coupling decreases, and coalesce
into a single mode in the end. In general, the (2n)th and
(2n + 1)th global mode of the system condense into one
forming a twofold degeneracy (represented as intersections
between dashed curves in Fig. 3), and these degenerate
modes correspond to the local uncoupled modes for both TL
resonators.

For the asymmetric case [Fig. 5(ii, iii), ξ �= 0], as the
capacitive coupling decreases, a global mode of the system
reduces into a local uncoupled mode of either one of the two
TL resonators; the spatial mode function is nonzero for one
TL resonator and zero for the other TL resonator. A global
mode reduces to a local uncoupled TL resonator mode with the
closest mode frequency [ωα

k = 2πv0
dα

(k + 1
2 ), k = 0,1,2, . . .].

Our discussion on capacitively coupled TL resonators leads
to the possibility of using electrical circuit elements to realize
an optical cavity with a semitransparent membrane inside.

B. Tunable resonator

In this section, we look into the mode structure of a
SQUID-terminated TL resonator, which will be termed as
a tunable resonator. This system has been used in the
realization of the DCE [36–39] and in a circuit analog of
linear optomechanics [43].

We consider the configuration described in Fig. 6. The
fluxes across the Josephson junctions �J1 and �J2, and the flux
threading the SQUID loop �ext satisfy the fluxoid quantization
relation [53]

�J1 − �J2 = �ext (mod �0), (21)

where �0 ≡ h/2e is the magnetic flux quantum. We assume a
symmetric SQUID configuration, with EJβ = EJ0 and CJβ =
CJ/2 (β = 1,2). In this case, the SQUID behaves like a single
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FIG. 5. (Color online) Normal-mode functions of two capaci-
tively coupled TL resonators as a function of the position y inside the
resonator for characteristic frequencies of the capacitive coupling:
(a) ωc = 10−1 v0/d , (b) ωc = 10 v0/d , (c) ωc = 103 v0/d , and
displacements of the capacitor: (i) ξ = 0, (ii) ξ = 0.1 d , (iii) ξ =
−0.3 d . The capacitive coupling is decreased from (a) to (c), and
the asymmetry is increased from (i) to (iii). In each panel, the four
curves represent the first four normal modes (n = 0,1,2,3) of the
system from bottom to top. For clarity, the vertical axes are displaced
for different modes. The coordinate describing the position in the
resonator is shifted with y = x + dL in such a way that y = 0 and
d correspond to both ends of the resonator, i.e., x = −dL and dR,
respectively. The position of the capacitor y = d/2 + ξ is marked
with vertical dashed lines.

Josephson junction with effective capacitance CJ and flux-
dependent Josephson energy

EJ(�ext) = 2EJ0

∣∣∣∣cos

(
π

�ext

�0

)∣∣∣∣ . (22)

We define �J ≡ (�J1 + �J2)/2 as the flux across the SQUID.
In our system, this flux is related to the flux of the TL
resonator �(x,t) as �J = −�(0,t). With these parameters,
the Lagrangian density L of the system is given by the
following [48,49]:

L =c(x)

2
[∂t�(x,t)]2 − 1

2
(x)
[∂x�(x,t)]2

+
{

CJ

2
[∂t�(x,t)]2 + EJ(�ext) cos

[
2π

�(x,t)

�0

]}
δ(x)

(0 < x < d). Here, c(x) and 
(x) are the characteristic ca-
pacitance and inductance per unit length of the TL resonator,

Φ(x, t), c(x) (x)

Transmission LineSQUID

0

ΦJ1

ΦJ2

Φ0
1Δx

Φ1

c1Δx

2Δx
Φ2

c2Δx

NΔx
ΦN

cNΔx

· · ·

· · ·

Φext

x
0 d

CJ1, EJ1

CJ2, EJ2

Aeikx

Be−ikx

FIG. 6. (Color online) SQUID-terminated TL resonator ex-
pressed as a lumped-element circuit. The SQUID consists of two
Josephson junctions on a loop through which an external flux �ext

is applied. Each junction in the SQUID has the capacitance and the
Josephson energy CJβ and EJβ (β = 1,2), respectively. The flux across
each junction is denoted as �J1 and �J2. One side of the SQUID is
grounded, and the opposite side is connected to a TL resonator with
characteristic capacitance per unit length c(x) and inductance per
unit length 
(x) in the continuum limit. �(x,t) is the flux of the TL
resonator at position x and time t .

respectively. The Euler-Lagrange equation of motion (5) yields
the partial differential equation (6) for x > 0, as in Sec. III A.
The boundary condition at x = 0 is given by

0 = CJ∂tt�(0,t) − 1


(0)
∂x�(0,t)

+
(

2π

�0

)
EJ(�ext) sin

[
2π

�(0,t)

�0

]
.

We consider the ground-ended TL resonator. Assuming that
the TL resonator is uniform, i.e., c(x) = c0 and 
(x) = 
0, our
problem reduces to solving the massless Klein-Gordon wave
equation (9) for x > 0, subject to the boundary conditions

0 = CJ∂tt�(0,t) − 1


0
∂x�(0,t) + 1

LJ
�(0,t), (23a)

0 = �(d,t). (23b)

Here, we have made an assumption that the phase across
the SQUID is small, 2π�(0,t)/�0 
 1, and expanded the
sine function to second order in 2π�(0,t)/�0. This amounts
to replacing the cosine potential with an effective inductor [52],
whose inductance

LJ ≡ 1

EJ(�ext)

(
�0

2π

)2

= 1

2EJ0

∣∣ cos
(
π �ext

�0

)∣∣
(

�0

2π

)2

(24)

can be adjusted by the external flux. We also define LJ0 as
the effective inductance LJ for zero external flux. i.e., LJ =
LJ0|sec (π�ext/�0)|. Let us assume for now that the external
flux �ext is constant in time and leave out the flux dependence
for notational convenience.

The separation of variables �(x,t) = u(x)ψ(t) gives two
ordinary differential equations (11) with a constant k = ω/v0

(v0 ≡ 1/
√


0c0). The general solution for u(x) is given by

u(x) = Aeikx + Be−ikx (0 < x < d). (25)
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The normal-mode frequencies of the system are determined
by Eqs. (23a) and (23b). The equation for the normal-mode
frequency is given by

tan

(
ωnd

v0

)
= − ωn/v0

1 − (ωn/ωJ)2

LJ


0
, (26)

where n is used to label the discrete modes. Here, ωJ ≡
1/

√
CJLJ is the plasma frequency of the SQUID. We define

the ratio of the mode frequency of the system to the plasma
frequency of the SQUID as ηn ≡ ωn/ωJ.

If we only excite modes which oscillate much slower than
the plasma frequency of the SQUID, i.e., ηn → 0, then Eq. (26)
can be written as

tan (knd) = −kn�d, (27a)

where kn = ωn/v0 and �d = LJ/
0 is the length of the
TL resonator whose total inductance equals to the effective
SQUID inductance LJ. If we further assume that this length
is short compared to the mode wavelength ε ∼ k�d 
 1,
Eq. (27a) can be rewritten as

tan [kn(d + �d)] = O(ε3). (27b)

The analytic expression for the mode frequencies obtained
from Eq. (27b) is

kn = nπ

d + �d
(n = 1,2,3, . . .). (28)

This means that, up to second order in ε, �d can be interpreted
as an additional effective length of the TL resonator introduced
by the SQUID. This effective length can be tuned with the
external flux �ext.

Figure 7 shows the comparison of the numerical result
of Eq. (26) and the analytical expression from the effective
length interpretation (28) for several orders of magnitude
of CJ and LJ0. The numerical values of the normal-mode
frequencies show a substantial deviation from the analytical
result for large values of LJ0 and CJ. This is due to the fact
that the plasma frequency of the SQUID decreases for larger
values of the effective inductance LJ0 and capacitance CJ,
which undermines our assumption that ηn → 0. In general, the
discrepancy between the numerical and the analytical results
is larger for higher-n modes, and for values of �ext closer
to half-integer multiples of a flux quantum (e.g., ±0.5 �0,
±1.5 �0, etc.). Thus, it is safe to use low values of LJ0 and CJ

in order to use Eq. (28) in our discussion.
However, there is a disadvantage of using too small

values of CJ and LJ0: the normal-mode frequencies become
insensitive to variations in the external flux, as can be seen
in Fig. 7. That is, the validity of the analytical expression
comes at the expense of the tunability of the system. Thus,
it is important that we find the optimal range of LJ0 and CJ,
suitable to specific cases. If the external flux is not too close to
half-integral multiples of �0, the numerical values agree well
with the analytical expression as long as CJ � 10−1 c0d, and
LJ0 � 10−2 
0d. In this regime, the analytical expression (28)
is valid.
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FIG. 7. (Color online) Normal-mode frequencies of the SQUID-

terminated resonator as a function of the external flux �ext, for (a)
LJ0 = 
0d , (b) LJ0 = 10−1 
0d , (c) LJ0 = 10−2 
0d and (i) CJ = c0d ,
(ii) CJ = 10−1 c0d , (iii) CJ = 10−2 c0d . The three lines of each panel
correspond to the first three modes (n = 1,2,3), from bottom to
top. The numerical values of the normal-mode frequencies obtained
from Eq. (26) (solid line), and the analytical result from Eq. (28)
(dashed line) are compared. The three markers � in the [(c), (ii)]
panel, which are the fundamental-mode frequencies for �ext/�0 =
{0.32, 0.38, 0.44}, correspond to the mode functions depicted
in Fig. 8.

The normal-mode functions of the system un(x) are given
by

un(x) = Nn

sin [kn(x − d)]

cos (knd)
(0 < x < d), (29)

where

Nn =
⎡
⎣ 2

(
1 + CJ

c0d

)
sec 2(knd) + LJ


0d

1+η2
n

(1−η2
n)2

⎤
⎦

1/2

are the normalization constants chosen to satisfy

c0

∫ d

0
un(x)um(x) dx + CJun(0)um(0) = C�δnm,

1


0

∫ d

0
u′

n(x)u′
m(x) dx + 1

LJ
un(0)um(0) = 1

Lm

δnm.

Here, the total capacitance of the system C� = c0d + CJ, and
the effective mode inductances Lm ≡ (ω2

mC�)−1 are defined
in the same way as in Sec. III A.

The fundamental mode function u1(x) for certain values of
�ext is illustrated in Fig. 8. Here, the mode function is zero
at the end without the SQUID (x = d), but is nonzero at the
other end with the SQUID (x = 0). If we continuously extend
the mode function to x < 0, an x intercept takes place. This
point, which arises from the shift of mode frequencies due to
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FIG. 8. (Color online) The n = 1 mode functions of the SQUID-
terminated resonator system, under the condition of LJ0 = 10−2 
0d ,
CJ = 10−1 c0d , and (a) �ext = 0.32 �0, (b) �ext = 0.38 �0, (c)
�ext = 0.44 �0 {marked with � in Fig. 7[(c), (ii)]}. The real mode
functions (x > 0, blue line) are distinguished from the virtual mode
functions (x < 0, red line) by the real end (x = 0, dashed line) of the
SQUID-terminated resonator. The effective length �d obtained from
Eq. (27a) is marked with vertical dotted lines. The panels on the left
correspond to the shaded areas of the panels on the right. It is seen
that the x intercept of each panel is in good agreement with �d .

the presence of the SQUID, can be interpreted as the virtual
end of the TL resonator.

The distance between the real end (x = 0) and the virtual
end (x intercept) can be interpreted as an additional virtual
length of the resonator. Note that this definition of virtual
length in Fig. 8 is in accordance with the effective length �d

in Eq. (27a), which is defined as the effective inductance of the
SQUID divided by the characteristic inductance per unit length
of the TL resonator. The virtual length becomes longer if we
increase the external flux; it becomes shorter as we decrease
the external flux. Also, under small variations in �ext, this
change in virtual length can be approximated as linear [43]:

�d
(
�0

ext + δ�ext
) ≈ �d (0) + �d (1)δ�ext, (30)

with the expansion coefficients given by

�d (0) =
(

�0

2π

)2 1


0EJ0
,

�d (1) = 1

2

(
�0

2π

)
1


0EJ0
tan

(
π

�0
ext

�0

)
. (31)

Therefore, under valid assumptions, the SQUID-terminated
TL resonator can be thought of as a cavity whose total length
can be linearly tuned with the external flux. Hereafter, we call
this configuration a tunable resonator.

(a)

r, t

(b)

Δd

Cc

Φext

FIG. 9. (Color online) Schematic diagram of the analogy of (a)
a semitransparent membrane and (b) a movable mirror in electrical
circuits.

C. Capacitively coupled tunable resonators

Now that we have a semitransparent membrane (optics) and
a movable mirror (mechanics) for electrical circuits, we move
to the discussion of combining these elements to generate the
desired coupling of mechanical and optical degrees of freedom.
The outline is described in Figs. 9 and 10.

From the analogy illustrated in Fig. 9, it is natural to think
of capacitively coupled tunable resonators, which look like
Fig. 10[(a), up], in realizing Fig. 10(b). In Fig. 10(a), two
homogeneous and uniform SQUID-terminated TL resonators
are capacitively coupled to each other with a capacitor Cc

in-between at x = 0.
Following the convention of the previous sections, we

assume that the characteristic capacitance and inductance per
unit length of both TL resonators are c0 and 
0, and that all
the Josephson junctions have equal capacitance CJ/2 and the
Josephson energy EJ0. Also, we assume that the total length
of the system is d, with each tunable resonator ranging over
(− d

2 ,0) and (0, d
2 ).

Motivated by Fig. 10, it is expected that the tunable
resonators L and R can be considered as one-sided cavities
of effective lengths dL = d/2 + �dL and dR = d/2 + �dR,
where �dα is the additional effective length [Eq. (27a)], arising
from the flux threading each SQUID �α

ext (α = L, R). Also, the
capacitive coupling should operate as a semitransparent optical
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0
x

−d/2 d/2

Cc

Tunable Resonator L Tunable Resonator R

ΦL
ext = Φ0

ext + δΦext ΦR
ext = Φ0

ext − δΦext

r, t

Δd

r, t

Δd Δd

(a)

(b)

FIG. 10. (Color online) Combining the principles shown in
Fig. 9, an analog circuit [(a), up] of the system of [(a), down] can
be designed to give the quadratic coupling of optomechanics. The
motion of the virtual ends of the tunable resonators is synchronized
so as to maintain the total effective length of the resonator unchanged.
Therefore, in the comoving frame with the effective cavity, (b) is
equivalent to a cavity consisting of fixed mirrors with a semitranspar-
ent membrane moving inside [(a), down].

membrane connecting two one-sided cavities of effective
lengths dL and dR.

The Lagrangian of the system can be written as

L = Ltl + Lc + LL
s + LR

s , (32)

where Ltl is the Lagrangian of the TL resonators, Lc is the
Lagrangian of the capacitor in the middle, and Lα

s is the
Lagrangian of the SQUID (α = L,R), each given by

Ltl =
∫ d/2

−d/2

{
c0

2
[∂t�(x,t)]2 − 1

2
0
[∂x�(x,t)]2

}
dx,

Lc = Cc

2
[∂t�(0+,t) − ∂t�(0−,t)]2,

Lα
s = CJ

2
[∂t� (sα,t)]2 − Lα

J

2
[�(sα,t)]2

(sL = −d/2, sR = d/2). Here, we assumed that the system is in
the phase regime where the fluxes across the SQUIDs are small
2π�(sα,t)/�0 
 1, and replaced the nonlinear potential with
effective flux-dependent inductors with inductances

Lα
J ≡ 1

2EJ0

(
�0

2π

)2 ∣∣∣∣sec

(
π

�α
ext

�0

)∣∣∣∣ .

It can be shown that detailed calculations using the Euler-
Lagrange equation of motion and Sturm-Liouville theory of
differential equations yield the intuitive result

ωc

ωn

= tan

[
ωn

v0

(
d

2
+ �dL

)]

+ tan

[
ωn

v0

(
d

2
+ �dR

)]
+ O(ε3), (33)

which is the eigenmode equation for capacitive coupling
[Eq. (15a)], with effective cavity lengths on the sides given
as dL = d/2 + �dL and dR = d/2 + �dR. Note that Eq. (33)
is obtained under the assumption that the mode frequency
is much lower than the plasma frequency of the SQUID
(ηα

n → 0). Also, the additional effective lengths of the SQUIDs
are taken as small parameters ε ∼ k�dL, k�dR 
 1. This
equation makes it possible to expand the normal-mode
frequencies with respect to the total effective length of the
system

D = dL + dR = d + �dL + �dR,

and the difference in the effective lengths

ξ = dL − dR

2
= �dL − �dR

2
,

using Eq. (16).
In the configuration of Fig. 10[(a), up], the fluxes �L

ext and
�R

ext through the SQUIDs are set to have the same bias flux
�0

ext. On top of the equal-bias fluxes, a small variation of the
same magnitude δ�ext is added in the opposite direction, i.e.,

�L
ext = �0

ext + δ�ext,

�R
ext = �0

ext − δ�ext. (34)

This results in a simultaneous movement of the virtual ends
in the same direction. Here, the magnitude of the variation
|δ�ext| should be small enough compared to the magnetic
flux quantum �0 to ensure that the effective lengths of the
TL resonators �dL and �dR change linearly with the flux
displacement. In this regime, Eq. (30) is applicable and the
additional effective length of each tunable resonator can be
written as

�dL = �d (0) + �d (1)δ�ext,

�dR = �d (0) − �d (1)δ�ext, (35)

with the expansion coefficients (31). Now, the total effective
length of the system is a constant,

D = d + �dL + �dR = d + 2�d (0), (36)

and the displacement parameter is linear in the flux variation

ξ = �dL − �dR

2
= �d (1)δ�ext. (37)

Thus, up to third order in δ�ext, the normal-mode frequency
becomes (n = 0,1,2, . . .)

ωn ≈ ω(0)
n

[
1 − (−1)n

ωc(�d (1))2

v0D
δ�2

ext

]
, (38)
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where the overall constant is given by

ω(0)
n = πv0

D
[n + mod(n + 1,2)] − 2v0 cos −1

(∣∣r (0)
n

∣∣)
D

mod(n + 1,2). (39)

Here, |r (0)
n | is the absolute value of the effective reflectivity corresponding to the mode n,

∣∣r (0)
n

∣∣ = ωc/2ω(0)
n√

1 + (
ωc

/
2ω

(0)
n

)2
, (40)

to zeroth order in δ�ext.
From the Sturm-Liouville theory of differential equations, the mode functions un(x) (n = 0,1,2, . . .) should satisfy the

orthonormality relation

c0

∫ d/2

−d/2
un(x)um(x) dx + CJun

(
−d

2

)
um

(
−d

2

)
+ Cc(�un)(�um) + CJun

(
d

2

)
um

(
d

2

)
= C�δnm,

1


0

∫ d/2

−d/2
u′

n(x)u′
m(x) dx + 1

LL
J

un

(
−d

2

)
um

(
−d

2

)
+ 1

LR
J

un

(
d

2

)
um

(
d

2

)
= 1

Lm

δnm, (41)

where (�un) ≡ un(0+) − un(0−) is the discontinuity of the
mode function at x = 0. Here, C� = c0d + 2CJ + Cc is
the total capacitance of the system and Lm = (ω2

mC�)−1 are
the effective inductances for different modes.

With this normalization, the flux can be expressed in terms
of the mode functions as �(x,t) = ∑∞

n=0 un(x)ψn(t). Plugging
this into Eq. (32), the Lagrangian of the system can be
simplified as

L = L(ψj ,ψ̇j ; t) =
∞∑

n=0

[
C�

2
ψ̇2

n − ψ2
n

2Ln

]
. (42)

Here, the Lagrangian of the system is expressed with the mode
fluxes ψn(t) as generalized coordinates.

IV. HAMILTONIAN FORMULATION

Now, we are able to simulate a semitransparent membrane
in an optical cavity with capacitively coupled tunable res-
onators. The effective displacement of the membrane can be
adjusted linearly with the variation in the external flux δ�ext.

In this section, we continue our discussion on the analog
system of Sec. III C, but now using a Hamiltonian formu-
lation. In Sec. IV A, we employ the canonical quantization
procedure [48,49] to derive the Hamiltonian of the classical
quadratic optomechanical system, where the pseudomechani-
cal degree of freedom (the variation in the external flux δ�ext)
remains classical. Furthermore, we introduce an additional
quantum field to the external flux variation in Sec. IV B. This
results in the quantum quadratic optomechanical coupling,
where the pseudomechanical degree of freedom is quantum
mechanical.

A. Classical quadratic optomechanics

We start from the Lagrangian of Eq. (42). The momentum
θn conjugate to the mode flux ψn is given by

θn = ∂L

∂ψ̇n

= C�ψ̇n. (43)

The Hamiltonian H (ψj ,θj ; t) is generated by the Legendre
transformation [50]

H (ψj ,θj ; t) =
∞∑

n=0

ψ̇nθn − L(ψj ,ψ̇j ; t)

=
∞∑

n=0

[
θ2
n

2C�

+ C�

2
ω2

nψ
2
n

]
. (44)

From now on, we treat the canonical variables (ψn,θn) as
quantum operators that satisfy the canonical commutation
relation [48,49]

[ψ̂n,θ̂m] = i�δnm. (45)

This is equivalent to introducing the annihilation and the
creation operators ân and â

†
n, with

ψ̂n =
√

�

2ωnC�

(â†
n + ân),

θ̂n = i

√
�ωnC�

2
(â†

n − ân). (46)

Note that the annihilation and the creation operators here are
defined for the global mode, not for an individual tunable
resonator forming the system. The annihilation operator ân

destroys one microwave photon of frequency ωn, from the
system (i.e., removing a photon from the nth global mode
of the capacitively coupled tunable resonators). The creation
operator â

†
n creates one microwave photon with frequency

ωn in the system. These satisfy the commutation relations
[âj ,âk] = [â†

j ,â
†
k] = 0 and [âj ,â

†
k] = δjk .

With these relations, we arrive at the standard quantum
Hamiltonian of a multimode system

Ĥ =
∞∑

n=0

�ωn

(
â†

nân + 1

2

)
. (47)

The time dependence of the operators can be obtained
from the Heisenberg equation of motion. Substituting the
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approximate form of the normal-mode frequency [Eq. (38)],
the Hamiltonian becomes

Ĥ =
∞∑

n=0

�ω(0)
n

[
1 − (−1)n

ωc(�d (1))2

v0D
δ�2

ext

]
â†

nân, (48)

where constant terms have been dropped for simplicity. This
is the classical quadratic optomechanical Hamiltonian, where
the frequency of each eigenmode is a quadratic function of the
pseudomechanical degree of freedom (flux variation δ�ext).

B. Quantum quadratic optomechanics

We denote the capacitively coupled tunable resonators
of Sec. III C as “resonator A” and rewrite the Hamiltonian
of Eq. (48) as ĤA. We now introduce another uniform TL
resonator, denoted as “resonator B” (see Fig. 1). In general,
the flux �̂B(z) and the Hamiltonian ĤB can be written as (z is
the new coordinate system describing the resonator B)

�̂B(z) =
∑
m

√
�

2�mC�,B
uB

m(z)(b̂†m + b̂m),

ĤB =
∑
m

��mb̂†mb̂m, (49)

where C�,B is the total capacitance, �m is the mode frequency,
and uB

m(z) is the mode function of the resonator B, which can
be obtained following the procedures used in Sec. III. Here,
b̂m and b̂

†
m are the annihilation and the creation operators

satisfying the commutation relations [b̂j ,b̂k] = [b̂†j ,b̂
†
k] = 0

and [b̂j ,b̂
†
k] = δjk . The annihilation operator b̂m destroys one

microwave photon from the resonator B, whose frequency is
�m; the creation operator b̂

†
m, on the other hand, creates one

microwave photon of frequency �m in the resonator B.
Now, we assume that the variation in the external flux δ�ext

arises from the magnetic field that is generated by the resonator
B. In this case, the variation in the external flux becomes a
quantum variable δ�̂ext, written as [43]

δ�̂ext =
∑
m

Gm(b̂†m + b̂m), (50)

where the coefficients Gm are determined by the experimental
configuration. This form can be understood from the fact that
the magnetic field is proportional to the current along the
resonator B, so that δ�̂ext ∝ ÎB(−z0) ∝ ∂z�̂B(−z0).

We also assume that the pseudomechanical mode frequen-
cies �m are small compared to the optical mode frequencies
ωn, so that the resonator A adiabatically follows the dynamics
of the resonator B. In this case, the dependence of normal-
mode frequency ωn on the external flux variation δ�ext is well
defined also for a quantum variable, and we can substitute
Eq. (50) into (48) with δ�ext → δ�̂ext. The Hamiltonian of
the system consisting of the resonator A and the resonator B
then becomes

Ĥ =
∞∑

n=0

�ω(0)
n â†

nân +
∑
m

��mb̂†mb̂m

−
∞∑
n

∑
m,l

�γnml â†
nân(b̂†m + b̂m)(b̂†l + b̂l), (51)

where the coupling tensor γnml is given by

γnml = (−1)n
ω(0)

n ωc(�d (1))2

v0D
GmGl. (52)

The tensor γnml quantifies the interaction between three
resonator modes: the nth mode of the resonator A, and the
mth and the lth modes of the resonator B.

The Hamiltonian of Eq. (51) reduces to the quadratic
optomechanical Hamiltonian if we restrict the dynamics
to only involve a single mode of each resonator (i.e., by
selectively exciting a single mode of each resonator). For
instance, by only considering the nth mode of the resonator A
and the mth mode of the resonator B, the Hamiltonian takes
the standard quadratic optomechanical form

Ĥ = �ω(0)
n â†

nân + ��mb̂†mb̂m − �gnmâ†
nân(b̂†m + b̂m)2, (53)

where gnm ≡ γnmm is the quadratic coupling strength of the nth
mode of the resonator A and the mth mode of the resonator B.
This corresponds to an optical cavity of unperturbed resonance
frequency ω(0)

n coupled to a semitransparent membrane in the
middle, oscillating with mechanical oscillation frequency �m.
The coupling strength gnm can be written as

gnm = (−1)nω(0)
n G2

m

ωc(�d (1))2

v0D
, (54)

and it follows that gnm ∝ 1
Cc

tan 2(π�0
ext/�0).

Equation (54) implies that the coupling strength is tunable:
in addition to the geometrical arrangement of the system which
determines Gm, the optomechanical coupling strength can be
adjusted by controlling either the capacitive coupling Cc or
the bias flux �0

ext. The optomechanical coupling is strong
when the capacitive coupling is weak (Cc → 0) or the bias
flux �0

ext is close to half-integer multiples of �0 (but not too
close to break the ηα

n → 0 assumption). On the contrary, if
the capacitive coupling is stronger or the bias flux is closer
to integer multiples of a flux quantum, the optomechanical
coupling strength decreases.

V. CIRCUIT REALIZATION

In this section, we propose a circuit design to realize the
quadratic optomechanical Hamiltonian of Eq. (53). A detailed
analysis on the schematic illustration in Fig. 1 will be presented
in Sec. V A. We discuss which modes of the resonators
are suitable for describing the quadratic optomechanical
Hamiltonian. In Sec. V B, we derive the analytic expression for
the coupling constants Gm corresponding to inductive coupling
between the resonators A and B as in Ref. [43], and the
quadratic optomechanical coupling strength gnm follows. In
Sec. V C, we suggest a criterion for the field strength of the
resonator B in order to retain the quadratic coupling. Estimates
on the coupling strength gnm and the upper limit on the field
strength will be provided using realistic parameters.

A. Circuit layout

We investigate the configuration illustrated in Fig. 11. As in
Sec. IV B, two resonators, resonator A and resonator B, which
correspond to capacitively coupled tunable resonators and a
TL resonator, are taken into account. Note that the resonator A
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dA/2−dA/2 CJ/2, EJ0
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w w
Loop L Loop R

0

FIG. 11. (Color online) Detailed layout of Fig. 1, composed
of resonator A (two capacitively coupled tunable resonators) and
resonator B (a TL resonator). The SQUID loops that belong to
tunable resonators are denoted as loop L and loop R. The total length,
the characteristic capacitance, and inductance per unit length of the
resonator α = A, B are given by dα , cα , and 
α , respectively. All
Josephson junctions are equal with junction capacitance CJ/2 and
Josephson energy EJ0. The three coordinate axes (x, z, and s) specify
positions in the system.

is bent in such a way that provides an inductive coupling with
the resonator B at two sites (loop L and loop R). We assume
that the TL resonators forming the resonator α are uniform
and have the characteristic capacitance and inductance per
unit length cα and 
α . Also, we define dα as the total length
of the resonator α (α = A, B). All Josephson junctions in the
resonator A are set to have equal junction capacitance CJ/2
and Josephson energy EJ0.

We introduce three coordinate axes (x, z, and s) for the
full characterization of the system. The curvilinear coordinate
x is the longitudinal coordinate of the resonator A. The two
tunable resonators that make up resonator A, each ranging
over − dA

2 < x < 0 and 0 < x < dA
2 , interact with each other

through the capacitor Cc at x = 0. The ground-ended SQUIDs
of the tunable resonators are placed at x = ± dA

2 . The linear
axes z and s describe the longitudinal and the transverse
coordinates of the resonator B, which extends over − dB

2 <

z < dB
2 . The symmetry axis of the system lies at x = z = 0.

The SQUIDs of the resonator A are placed at z = ±z0 and
s1 < s < s2, with a width w along the z axis. The loops L and
R are subject to the equal bias flux �0

ext.
Following the conventions of Sec. IV B, we denote the

normal-mode frequencies of the resonator A and the resonator
B as ωn and �m. Also, we denote the annihilation operators
corresponding to the nth mode of resonator A and the mth
mode of resonator B as ân and b̂m.

This system meets the three requirements mentioned in
the previous sections: (i) tunable resonators are employed
to simulate a cavity whose effective length can be varied
by the fluxes threading the SQUID loops; (ii) the tunable
resonators are capacitively coupled to each other to introduce

reflection and transmission of waves which are similar to a
semitransparent membrane in the middle; (iii) the effective
length of the tunable resonators are coupled to the quantum
fields b̂m of a single resonator.

It remains to make sure that the fluxes through the SQUIDs
have a variation of the same magnitude in the opposite
direction (±δ�̂ext), in addition to the equal bias flux �0

ext. To do
so, suppose that we only excite the mth mode of resonator B.
Then, the flux field of the resonator B is given by Eq. (49):

�̂B(z) =
√

�

2�mcBdB
uB

m(z)(b̂†m + b̂m),

where uB
m(z) is the normal-mode function of resonator B.

The current ÎB(z) = − 1

B

∂z�̂(z) along the resonator B at
z = ±z0 is

ÎB(±z0) = − 1


B

√
�

2�mcBdB
uB

m

′
(±z0)(b̂†m + b̂m).

The flux variation threading the SQUID loop is proportional
to the current along resonator B at z = ±z0. That is, the flux
variations δ�̂ext through the loop L, and −δ�̂ext through the
loop R, are proportional to ÎB(−z0) and ÎB(z0), respectively.
This requires that the current along the resonator B has
opposite signs at z = ±z0,

ÎB(−z0) = −ÎB(z0), (55a)

or, equivalently, the derivative of the resonator mode function
should have opposite signs at z = ±z0,

uB
m

′
(−z0) = −uB

m

′
(z0). (55b)

This is possible when the mode function uB
m(z) is an even-

parity function of z, i.e., uB
m(z) = uB

m(−z). In addition, the
antinode of the mode function should not be located at z = ±z0

since the antinodes correspond to the nodes of the current,
where the flux variation is zero.

Therefore, if we are working in a regime where the effective
length interpretation in Sec. III B is valid, i.e., considering
low-enough n modes of the resonator A and bias fluxes �0

ext
not too close to half-integer multiples of a flux quantum to
ensure ηL,R

n → 0, it is possible to construct the quadratic
optomechanical Hamiltonian

Ĥ = �ω(0)
n â†

nân + ��mb̂†mb̂m − �gnmâ†
nân(b̂†m + b̂m)2

by considering the resonator B mode functions with even
parity. Here, the unperturbed normal-mode frequency ω(0)

n

of the resonator A, and the quadratic coupling strength gnm

between the nth mode of the resonator A and mth mode of
the resonator B is obtained from Eqs. (39) and (54), with
redefinition of parameters 
0 → 
A, c0 → cA, and d → dA:

ω(0)
n = πvA

DA
[n + mod(n + 1,2)]

− 2vA cos −1
(∣∣r (0)

n

∣∣)
DA

mod(n + 1,2), (56)

gnm = (−1)n
ω(0)

n cA

CcDA

(
Gm�0

4π
AEJ0

)2

tan 2

(
π

�0
ext

�0

)
, (57)
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where vA = 1/
√


AcA is the velocity of the wave inside the
resonator A, and DA = dA + 2(�0

2π
)2(
AEJ0)−1 is the total

effective length of the resonator A in the absence of the flux
variation. Here, |r (0)

n | is the absolute value of the reflectivity
arising from the capacitive coupling at x = 0 and can be
obtained from Eq. (40).

In particular, we consider the case where the resonator B
is open ended, i.e., ∂z�̂B(± dB

2 ) = 0. Then, the normal-mode
frequency �m and the normal-mode function uB

m(z) is given
by (m = 1,2, . . .)

�m = mπvB

dB
, (58)

uB
m(z) =

{√
2 sin

(
mπz
dB

)
(m : odd),√

2 cos
(

mπz
dB

)
(m : even).

(59)

Here, even and odd values of m correspond to even-parity
mode functions and odd-parity mode functions, respectively.
We conclude that sufficiently low modes of the resonator A,
together with even modes (m = 2, 4, . . .) of the resonator B,
are plausible candidates for the circuit realization of quadratic
optomechanics.

B. Inductive coupling

In this section, we discuss the inductive coupling of
the resonator A and the resonator B. The coefficient Gm

relating the effective displacement parameter ξ̂ and the flux
variation δ�̂ext can be obtained by considering the geometrical
configuration of the system [43].

The magnetic field at (z,s) generated by the current
distribution ÎB(z) of resonator B is estimated from the Biot-
Savart law

B̂(z,s) = μ0

4π

∫ dB/2

−dB/2

sÎB(z′) dz′

[s2 + (z − z′)2]3/2
, (60)

where μ0 = 4π × 10−7 H m−1 is the permeability of free
space. Note that the magnetic field is described as a quantum
operator. If the point in consideration is sufficiently close to
the resonator B, compared to its dimension, i.e., s 
 dB, the
integrand of Eq. (60) contributes significantly only in the
range |z′ − z| � s, and the limits of integration ±dB/2 can
be replaced with ±∞. Also, if the variation in the current
distribution ÎB(z′) is negligible near z′ = z, then Eq. (60) can
be approximated as

B̂(z,s) ≈ μ0s

4π
ÎB(z)

∫ ∞

−∞

s dz′

[s2 + (z − z′)2]3/2
= μ0ÎB(z)

2πs
,

which is the magnetic field arising from a straight wire carrying
a constant current. Thus, if the SQUIDs are placed very close
to resonator B (s1,s2 
 dB), and the positions of the SQUIDs
z = ±z0 correspond to nodes of the normal-mode function
uB

m(z) (the variation in the current distribution is minimal), the
flux variation δ�̂ext through the SQUIDs is

δ�̂ext ≈ w

∫ s2

s1

B̂(−z0,s) ds = Gm(b̂†m + b̂m),

where the inductive coupling coefficient Gm is given by

Gm = ± μ0w

2π
BdB

√
mπ�

vBcB
ln

(
s2

s1

)
. (61)

Here, the sign of the coefficient depends on which node of
the normal-mode function we choose as z = z0. If we further
assume that the dimension of the SQUID is much smaller than
its distance from resonator B, i.e., (s2 − s1) 
 s1, we can apply
the approximation

ln (1 + x) ≈ x (|x| 
 1)

to simplify Eq. (60):

Gm = ± μ0

2π
B

A

dBs1

√
mπ�

vBcB
. (62)

Here, A ≡ w(s2 − s1) is defined as the area enclosed by
the SQUID loop. Combining Eqs. (57) and (62), the ratio
of the coupling strength gnm to the product of normal-
mode frequencies ω(0)

n �m, is written as (n = 0,1,2, . . . and
m = 2,4,6, . . .)

�gnm(
�ω

(0)
n

)
(��m)

= (−1)n

BdB

�2
0

(
cADA

Cc

)(
LJ0


ADA

)2

×
(

A

dBs1

)2 (
μ0


B

)2

tan 2

(
π

�0
ext

�0

)
, (63)

where LJ0 is the effective inductance of the SQUID in
the absence of the external flux LJ0 = 1

2EJ0
(�0

2π
)2. From the

discussions of Sec. III B, it is important that LJ0/
ADA be
smaller than 10−2 and that �0

ext not be too close to half-integral
multiples of �0 in order to maintain the effective length
interpretation. Note that the absolute value of this ratio is
independent of n and m.

The ratio is inversely proportional to the coupling capaci-
tance Cc and depends on the bias flux with tan 2(π�0

ext/�0)
as discussed in Eq. (54). Also, a geometric factor A/dBs1

is involved in the expression, with a quadratic dependence.
This is due to the fact that the flux through the SQUID loop,
which is dependent on the area enclosed by the loop and the
distance from the current source, plays a significant role in the
pseudomechanical coupling.

We define the normalized coupling strength as the ratio
of the coupling strength gnm to the mode frequency �m of
the resonator B. In Figs. 12 and 13, the normalized coupling
strengths are illustrated as a function of the bias flux �0

ext/�0

and coupling capacitance Cc. Realistic parameters, which yield
LJ0 < 10−2 
ADA and CJ < 10−2 cADA, have been used to
evaluate Eq. (63).

In Fig. 12, the low-capacitive-coupling regime (equiva-
lently, the high-reflectivity regime) is taken into account. The
coupling strength is larger for higher resonator A modes
and smaller for lower resonator A modes. The coupling
strength grows infinitely high as the bias flux �0

ext approaches
0.5 �0. In particular, for the bias flux of �0

ext/�0 = 0.4 and
n = 1, which is in the regime where the effective length
interpretation is valid, the normalized coupling strength has
the value g12/�2 ≈ 10−5. This is approximately five orders
of magnitude higher than the normalized quadratic coupling

033835-13



EUN-JONG KIM, J. R. JOHANSSON, AND FRANCO NORI PHYSICAL REVIEW A 91, 033835 (2015)

0 0.1 0.2 0.3 0.4 0.5
10−7

10−6

10−5

10−4

10−3

n = 8, 9

n = 6, 7

n = 4, 5

n = 2, 3

n = 0, 1

Bias flux Φ0
ext/Φ0

m
=

2
co

u
p
li
n
g

st
re

n
gt

h
|g

n
2
|/

Ω
2

FIG. 12. (Color online) The normalized coupling strength
|gnm|/�m as a function of the bias flux, for m = 2 and different
n modes (n = 0 to 9, from bottom to top). The parameters dA =
dB/20 = 20 mm, A/dBs1 = 10−3, 
A = 
B = 4.57 × 10−7 H m−1,
cA = cB = 1.46 × 10−10 F m−1, Cc = 1 fF, CJ = 30 fF, and EJ0 =
6.17 × 10−22 J were used to evaluate Eq. (63). The two modes labeling
a single line (n = 8,9 and the uppermost line, for instance) are in fact
different but too close to be distinguishable in the plot. The three
markers + at �0

ext/�0 = 0.4 correspond to those in Fig. 13.
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FIG. 13. (Color online) The normalized coupling strength
|gnm|/�m as a function of the coupling capacitance Cc of resonator A,
for m = 2 and different n modes (n = 0 to 5, from bottom to top). All
parameters used are the same as in Fig. 12, except for the fixed bias
flux �0

ext/�0 = 0.4 and varying capacitance Cc. The three markers
+ at Cc = 1 fF correspond to those in Fig. 12. The upper horizontal
axis is the reflectivity of n = 1 mode obtained from Cc.

strength Eq. (4) in the cavity optomechanical system of
Ref. [13].

Figure 13 describes the dependence of the normalized
coupling strength on the coupling capacitance Cc, for a fixed
value of bias flux �0

ext/�0 = 0.4. The capacitance Cc and the
absolute value of the effective reflectivity |r (0)

n | are converted to
each other according to Eq. (40). As the capacitance becomes
smaller, the normalized coupling strength gnm/�m increases,
and vice versa. Note that each seemingly degenerate mode of
Cc = 1 fF are resolved into two distinct modes as the coupling
capacitance Cc grows. In the low-Cc regime, the two tunable
resonators forming resonator A are almost decoupled, and the
deviation from the degeneracy point is very small. However,
as the capacitance Cc grows, this deviation becomes larger,
showing significant differences between modes.

C. Field strength

For the system to retain a quadratic coupling, there is a
restriction on the expectation value and the fluctuations in the
flux variation 〈δ�̂ext〉 and �(δ�̂ext) ≡

√
〈δ�̂2

ext〉 − 〈δ�̂ext〉2.
This is due to the fact that the displacement parameter ξ̂ =
�d (1)δ�̂ext should lie within a certain range to maintain the
quadratic approximation (38). Defining the position quadrature
of the mth mode of the resonator B as X̂m ≡ b̂

†
m + b̂m =

δ�̂ext/Gm, the criterion becomes

|〈X̂m〉 ± �(X̂m)| � Xnm∗, (64)

where Xnm∗(�0
ext) ≡ ξn∗/|�d (1)Gm| is the maximal amplitude

of the quadrature X̂m to maintain a quadratic coupling. Here,
ξn∗ is the validity extent of the nth mode of the resonator A,
which is obtained from Eq. (17). The fluctuation in the X̂m can
be explicitly written as

�(X̂m) =[(〈
b̂†2

m

〉 − 〈b̂†m〉2
) + (〈

b̂2
m

〉 − 〈b̂m〉2
)

+ 2(〈b̂†mb̂m〉 − 〈b̂†m〉〈b̂m〉) + 1
]1/2

. (65)

Hereafter, we refer to Xnm∗ as the maximal amplitude. Note
that the maximal amplitude is dependent on the modes n and
m of the resonators A and B as well as the bias flux �0

ext.
Figure 14 shows the estimates for the maximal amplitude

for m = 2 as a function of bias flux based on the realistic
parameters used in Fig. 12. Higher n and m modes have
lower maximal amplitudes, decreasing by a small amount.
The maximal amplitudes are highly affected by the bias flux,
especially near half-integral multiples of �0. Using Fig. 14,
we test the validity of the quadratic approximation based on
three typical quantum states: the vacuum state, a thermal state,
and a coherent state.

1. Vacuum state

For the vacuum state |0〉, the expectation value of
the position quadrature is zero, i.e., 〈X̂m〉 = 0, and only
the fluctuations remain. The fluctuations of the position
quadrature for the vacuum state are given by �(X̂m) = 1. Thus,
the criterion of Eq. (64) reduces to the inequality Xnm∗ � 1.
For the settings in Fig. 14, this inequality is readily satisfied
unless the bias flux approaches half-integral multiples of a
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FIG. 14. (Color online) Maximal amplitudes Xnm∗ of the position
quadrature defined in Eq. (64), as a function of bias flux �0

ext, for
m = 2 and different values of n. All the parameters used are the
same as in Fig. 14. Each curve corresponds to a discrete n mode.
Note that the two modes labeling a single curve (n = 0,1 and the
uppermost curve, for instance) are in fact different but so close to each
other as to look degenerate when the reflectivity is high. The upper-
right region (yellow) and the lower-left region (green) correspond to
the higher-order-coupling regime and the quadratic-coupling regime,
respectively.

flux quantum within �0/250. Thus, the vacuum fluctuations
lie well inside the quadratic coupling regime.

2. Thermal state

For a thermal state at temperature T , the expectation value
and fluctuations of the position quadrature are

〈X̂m〉 = 0, �(X̂m) =
√

coth

(
��m

2kBT

)
,

and the criterion (63) reduces to the inequality

coth

(
��m

2kBT

)
� (Xnm∗)2.

From this, we can obtain upper bounds on the average photon
number n̄ = 〈b̂†mb̂m〉 of a thermal state. The condition is given
by

n̄ =
[

exp

(
��m

kBT

)
− 1

]−1

� (Xnm∗)2 − 1

2
.

For a bias flux of �0
ext/�0 = 0.4 in Fig. 14, Xnm∗ for n = 9

and m = 2 is approximately 33.8 and it follows that the upper
bound on the average photon number is n̄ � 572.

3. Coherent state

For a time-evolving coherent state |β,t〉 = |βe−i�mt 〉, nei-
ther the expectation value nor the fluctuations of the position
quadrature vanish, and are given by

〈X̂m〉 = 2|β| cos (�mt − ϕ), �(X̂m) = 1,

where ϕ is the phase defined as β = |β|eiϕ . Then, the
criterion (64) reduces to the inequality

2|β| + 1 � Xnm∗.

The upper bound on the average photon number is expressed
as

n̄ = |β|2 � (Xnm∗ − 1)2

4
.

Thus, for a bias flux of �0
ext/�0 = 0.4 in Fig. 14, it follows

that n̄ � 270.

VI. CONCLUSIONS

In conclusion, we have introduced and analyzed a cQED
setup for simulating membrane-in-the-middle optomechan-
ical systems. Two capacitively coupled SQUID-terminated
TL resonators (resonator A) inductively coupled to a TL
resonator (resonator B) were used to generate a quadratic-
optomechanical-like coupling. A complete description of the
Hamiltonian formulation as well as the canonical quantization
procedure are provided. Although not discussed explicitly, by
introducing an asymmetry in our circuit, either by applying
unequal bias fluxes through the SQUIDs or moving the position
of the coupling capacitor of resonator A, our circuit enters
the standard linear optomechanics regime. Using realistic
parameters, the ratio of the quadratic coupling strength to
the pseudomechanical oscillation frequency is estimated as
10−5. We note that our proposal anticipates a significant
improvement in the quadratic coupling strength to five orders
of magnitude, from the cavity-optomechanical systems of
Refs. [10–13].

In general, the superconducting TL resonators could be
manufactured with quality factors of 104 or higher [32,54],
and the quadratic coupling strength compared to dissipation
rates κA, κB of resonators could be raised to g/κA, g/κB > 0.1
in our setup. This suggests that the strong-coupling regime
of quadratic optomechanics might be achievable, and that
our setup would be a good testing ground for quantum
phenomena in this regime, e.g., QND measurements [19,20]
of pseudomechanical phonon number.
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[7] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer,
Nature (London) 460, 724 (2009).

[8] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D.
Whittaker, and R. W. Simmonds, Nature (London) 471, 204
(2011).
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