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Exceptional points, resulting from non-Hermitian degeneracies, have the potential to enhance the capabilities
of quantum sensing. Thus, finding exceptional points in different quantum systems is vital for developing such
future sensing devices. Taking advantage of the enhanced light-matter interactions in a confined volume on a
metal nanoparticle surface, here we theoretically demonstrate the existence of exceptional points in a system
consisting of quantum emitters coupled to a metal nanoparticle of subwavelength scale. By using an analytical
quantum electrodynamics approach, exceptional points are manifested as a result of a strong-coupling effect and
observable in a drastic splitting of originally coalescent eigenenergies. Furthermore, we show that exceptional
points can also occur when a number of quantum emitters are collectively coupled to the dipole mode of localized
surface plasmons. Such a quantum collective effect not only relaxes the strong-coupling requirement for an
individual emitter, but also results in a more stable generation of the exceptional points. Furthermore, we point
out that the exceptional points can be explicitly revealed in the power spectra. A generalized signal-to-noise ratio,
accounting for both the frequency splitting in the power spectrum and the system’s dissipation, shows clearly that
a collection of quantum emitters coupled to a nanoparticle provides a better performance of detecting exceptional
points, compared to that of a single quantum emitter.

DOI: 10.1103/PhysRevA.101.013814

I. INTRODUCTION

The rapid development of quantum technologies has trig-
gered intense interest in the potential of quantum sensors
[1,2]. Without considering energy loss or gain, one only needs
a Hermitian Hamiltonian to describe an energy-conserving
system, where a diabolical point (DP) [3], containing degen-
erate eigenenergies with different corresponding eigenvectors,
may be found. In realistic systems, however, one must con-
sider the energy exchange process with an environment [4],
which in some situations can be described by an effective
non-Hermitian Hamiltonian.

An intriguing property of non-Hermitian Hamiltonians is
that the degeneracy of eigenenergies can occur alongside the
coalescence of the corresponding eigenstates, i.e., the occur-
rence of exceptional points (EPs) [5,6]. Owing to different
mathematical properties of DPs and EPs, when the system
is subject to a perturbation, the resulting energy splitting of
a spectrum is shown to follow a square-root dependence on
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the perturbation at an EP, instead of being linearly propor-
tional to the perturbation, as occurs at a DP [6–8]. In other
words, the energy splitting of the spectrum at an EP may
have an extremely sensitive dependence on the parametric
change caused even by a small perturbation. This is why
the splitting near an EP may be exploited for ultrasensitive
sensing [6,9,10].

We note, however, that the true applicability and usefulness
of EP sensing depend on the details of how the parametric
change is measured [8,11]. In any case, finding practically
useful EPs in physically accessible systems [12–14] and
parameter regimes is still an open problem [15–17], and a
range of candidates have been studied, such as parity-time-
symmetric systems [12,18–25], coupled atom-cavity sys-
tems [26], microcavities [12,20,21,27–29], microwave cavi-
ties [30–33], acoustic systems [34], photonic lattices [19,35],
photonic crystal slabs [36], exciton-polariton billiards [37],
plasmonic nanoresonators [38], ring resonators [39], optical
resonators [40–42], and topological arrangements [37].

However, the typical size of these systems possessing EPs
is usually too large (of several hundred nanometers) to be
utilized for sensing in some important applications. Never-
theless, for such a nanoscale, the relevant parameters, such
as coupling strength between objects, do not easily reach
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FIG. 1. Schematic diagram of the QE-MNP model in spherical coordinates, and examples of the the strength of the coupling to the
dipole mode and pseudomode with different dipole moment orientations. (a) A single quantum emitter embedded in a dielectric medium
with permittivity εb is in proximity to a silver metal nanoparticle at the position (r1, θ1, φ1), where r1 = a + h. (b) Partial enlargement of (a):
A quantum emitter with the dipole orientation �μ = (μr, μθ , μφ ) coupled to the localized surface plasmons with damping rate γp as well as
other decay channels, such as internal nonradiative decay and spontaneous decay into the dielectric material, with a total rate γQE. (c, d) The
strengths of the coupling to the dipole mode h̄gd (c) and to the pseudomode h̄gM (d), as functions of θd and φd with h = 1 nm.

the requirement of forming an EP. Fortunately, when light
is incident on a metal nanoparticle (MNP), local oscillations
of electrons, known as localized surface plasmons (LSPs),
can occur at a length scale much smaller than the wave-
length of light [43–46]. This implies that by placing quan-
tum emitters (QEs), such as biomolecules, near an MNP the
electromagnetic (EM) field outside the MNP becomes tightly
localized around the metal surface, giving rise to possible
strong couplings between the QEs and the MNP [47–49].
Under suitable dissipation conditions, the existence of EPs at
a subwavelength scale becomes possible.

In this paper, we first predict the existence of an EP in
the case of an MNP coupled to a QE, which is generically
described as a two-level system. The role of the QE can
be played by, e.g., a biochemical molecule or a quantum
dot. Surprisingly, we find that the EP can also occur when
several QEs are collectively coupled to the dipole mode in
the MNP. Such a quantum collective effect not only relaxes
the strong-coupling requirement for the individual QE, but
also results in more feasible conditions to generate an EP.
Additionally, by implementing a photon detector near the
QE-MNP system, we show that the observation of an EP, as
well as the frequency splittings in the power spectrum, are
experimentally accessible.

Moreover, we analyze how accurately an EP can be
detected by comparing frequency splitting in theoretical
eigenenergy spectra and the output power spectra. Note that
the required accuracy of the observation of an EP is limited by

dissipation. To specify the degree to which the occurrence of
an EP is affected by dissipation, we propose to use the signal-
to-noise ratio (SNR) taking into account both frequency split-
ting and dissipation. From our analysis of the signal-to-noise
ratio, we conclude that a collection of QEs coupled to an
MNP provides a better performance of the detection of EPs
compared to that of a single QE.

II. SINGLE QUANTUM EMITTER COUPLED
TO THE SILVER NANOPARTICLE

In order to explore the possibility of using the emitter-
plasmon system as a quantum sensor, we follow the formalism
of Ref. [48]. Thus, we first consider a composite system
embedded in a nondispersive, lossless dielectric medium with
permittivity of εb = 2.3, composed of a two-level QE close to
the surface of a silver MNP with a distance h, as depicted in
Fig. 1(a). The MNP with a radius a = 7 nm can be charac-
terized by a Drude-type permittivity εm = ε∞ − ω2

p/[ω(ω +
iγp)] with ε∞ = 4.6, h̄ωp = 9 eV, and the dissipation of silver
h̄γp = 0.1 eV. Here, the QE acts as a pointlike dipole with
the distance h larger than 1 nm [50]. As shown in Fig. 1(b),
�μ = (μr, μθ , μφ ) is the dipole moment of the QE in the
spherical coordinates. The strength of the dipole moment is
| �μ| = 0.38 e nm [48].

The Hamiltonian of the QE is given by ĤQE =
h̄[ω0 − i(γQE/2)]σ̂e1,e1 , where σe1,e1 = |e1〉〈e1|, |e1〉 is the
excited state, and h̄ω0 is the transition energy. Here, the
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Hamiltonian of the EM field can be expanded in terms of the
annihilation (creation) operators of the radiation field, f̂ (�r, ω)
[ f̂ (†)(�r, ω)], including all the EM modes of the vacuum and
LSPs as ĤEM = ∫

d3�r
∫ ∞

0 dωh̄ω f̂ †(�r, ω) f̂ (�r, ω). When ex-
cited, the QE is not only coupled electromagnetically to the
LSPs on the metal surface, but also coupled to several decay
channels, such as internal nonradiative decay due to rovibra-
tional or phononic effects and spontaneous decay into the
dielectric material, with a total rate γQE. The interaction be-
tween the QE and EM modes is given by Ĥint = − ∫ ∞

0 dω{�μ ·
[Ê (�r, ω)σ̂ (1)

+ + H.c.]}, where σ̂
(1)
+ = |e1〉〈g1| represents the

raising operator and

Ê (�r, ω) = i

√
h̄

πε0

ω2

c2

∫
d3�r1

√
εI(�r1, ω)Ĝ(�r, �r1, ω) f̂ (�r1, ω)

represents the quantized EM field [51]. Here, εI(�r1, ω) is the
imaginary part of ε(�r1, ω), and H.c. stands for the Hermitian
conjugate. Note that G̃(�r, �r1, ω) represents the dyadic Green’s
function obtained from the Maxwell-Helmholtz wave equa-
tion under the boundary condition

∇ × ∇ × G̃(�r, �r1, ω) − ω2

c2
ε(�r, ω)G̃(�r, �r1, ω) = Iδ(�r, �r1), (1)

where I stands for the unit dyad. In this regard, the Green’s
function, which contains all the information about the EM
field in both dielectric and metal media, plays a prominent
role in the realization of the coherent coupling between the
QE and the MNP. Therefore, this QE-MNP system can then be
described by the total Hamiltonian, within the rotating-wave
approximation, as Ĥ = ĤQE + ĤEM + Ĥint. For a single quan-
tum excitation, let C1(t ) denote the probability amplitude that
the QE can be excited. By solving the Schrödinger equation,
one can obtain the following integrodifferential equation for
C1(t ) [52]:

d

dt
C1(t ) = −

∫ t

0
dt1

∫ ∞

0
dωJ(ω)ei(ω0−ω)(t−t1 )C1(t1), (2)

where J(ω) is the so-called spectral density of the QE-MNP
system, which can be expanded into the sum of Lorentzian
distributions (see the Appendix):

J(ω) ≈
∞∑

n=0

g2
n

π

γp/2

(ω − ωn)2 + (γp/2)2
, (3)

where

g2
n =

∑
α=r,θ,φ

g2
nα, (4)

with

ωn = ωp/
√

ε∞ + εd(n + 1)/n

being the cutoff frequency of the LSPs characterized by the
angular momentum n and the Ohmic loss γp. Suppose that
there is no direct tunneling between the MNP and the QE (h >

1 nm). Then the coupling strengths between the QE and the
Lorentzian modes of the LSPs are given by

g2
nr = μ2

r (n + 1)2 fn(ωn) (5)

and

g2
nθ (φ) = μ2

θ (φ)

n∑
m=0

Dnm
[
mPm

n (0)
]2

fn(ωn), (6)

where

Dnm = (2 − δm0)
(n − m)!

(n + m)!
,

δm0 is the Kronecker delta function,

fn(ωn) = a2n+1

(a + h)2n+4

(
1 + 1

2n

)
ωp

4πε0h̄

(
ωn

ωp

)3

,

and Pm
n (x) is the associated Legendre polynomial. In order to

properly evaluate and fit the polarization spectrum, the LSPs
on the MNP can be approximately separated into the dipole
mode and the pseudomode [53,54] with cutoff frequencies
[48] ωd = ω1 and

ωM =
∑∞

n=2 ωng2
n∑∞

n=2 g2
n

correspondingly. The couplings to the dipole mode and pseu-
domode are gd = g1 and g2

M = ∑∞
n=2 g2

n, respectively.
Typically, the coupling to the pseudomode can be neglected

when h is large enough. However, when the QE is placed
closer to the MNP with h � 10 nm, the coupling to the
pseudomode can play a dominant role, even five to ten times
stronger than the one to the dipole mode. In addition to
h, both the coupling strengths, gd and gM, also depend on
the orientation of the transition dipole moment, as shown in
Figs. 1(c) and 1(d).

This QE-MNP system can formally be described by a non-
Hermitian three-level Hamiltonian revealing EPs [48]:

Ĥ3×3 =
⎡⎣ω0 − i γQE

2 gd gM

gd ωd − i γp

2 0
gM 0 ωM − i γp

2

⎤⎦. (7)

When the QE is gradually moved closer to the MNP, both
imaginary and real parts of the eigenenergies coalesce at a
certain distance, resulting in the emergence of the EP. As
shown in Figs. 2(a) and 2(b), we can observe the EP while
placing the QE at h ≈ 3 nm with the dipole moment orienta-
tion (μ, θd, φd ) = (0.38, π/2, 0).

Due to the huge difference in the magnitudes, the appear-
ance of an EP mainly results from the coupling between
the QE and the pseudomode instead of the dipole mode.
Consequently, to investigate the circumstance in which the EP
forms, we consider a reduced Hamiltonian as well [26,38]:

Ĥ2×2 =
[
ω0 − i γQE

2 gM

gM ωM − i γp

2

]
, (8)

which describes the relevant coupling between the QE and the
pseudomode; furthermore, it is a standard form of Hamiltoni-
ans generically studied in the context of EPs [6,26,38]. It is
clear that the EP can arise only under the conditions ω0 = ωM

and gM = (γp − γQE)/4.
In the vicinity of the EP shown in Fig. 2, the real parts of

the eigenenergies drastically split when the QE is placed even
closer to the MNP. It is noteworthy that, in the region where
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FIG. 2. Dependence of the eigenenergies of H3×3 on the distance h and the metal nanoparticle radius a. The dipole moment orientation
is fixed at (μ, θd, φd ) = (0.38, π/2, 0) for the following calculations. (a) Real and (b) imaginary parts of the energy spectra jointly show the
appearance of an exceptional point when placing the quantum emitter at h ≈ 3 nm. The occurrence of the eigenenergy splittings in the real
(imaginary) part of the region, h > 3 (h < 3), is caused by both the detuning (ωM − ω0) and the coupling to the dipole mode. (c), (d) Real
(c) and imaginary (d) parts of energy spectra as a function of the metal nanoparticle radius a showing an exceptional point.

h > 3, splitting occurs as well, in contrast to the conventional
coalescence observed in the previous literature [5,6,26]. These
splittings are consequences of the off-resonance condition
ω0 �= ωM due to the dependence of ωM on h. Additionally, the
coupling between the dipole mode and the QE also induces
splitting. By solving the eigenvalue of Ĥ3×3 in Eq. (7), the
splitting strength 	E , i.e., the difference between the dotted
red and solid blue eigenenergies in Fig. 2, close to the EP can
be analytically given by

	E = −√
3i

[
u2 + p(ωd, gd )2/3 − 48g2

d

]
12p(ωd, gd )1/3

, (9)

where

p(ωd, gd ) = 144g2
d(2ωd	 + iγ	) + iu3 + 12q(ωd, gd ), (10)

q(ωd, gd ) = −96g4
d

(
γ 2

	 − 10iγ	ωd	 + 2ω2
d	

)
− 3γ	g2

du3 − 768g6
d, (11)

u = γ	 + 4iωd	, ωd	 = ωd − ω0, and γ	 = γp − γQE. With
Eq. (9), one can evaluate how the dipole mode coupling affects
the eigenenergy splitting near an EP. Meanwhile, we find that
the variations of the MNP radius can also achieve an EP, as
shown in Figs. 2(c) and 2(d).

III. DETECTING AN EP WITH THE POWER SPECTRUM

In engineering the presence of an EP in the QE-MNP sys-
tem, one of the important issues is to first verify its existence.
To this end, we propose to utilize the power spectrum as a
potential means to do so [55] since it is experimentally mea-
surable and usually exhibits features which are theoretically
well understood

As we will see in the following, the behavior of the power
spectrum reflects the features of the EP, including the coalesce
of eigenenergies and the drastic splitting of corresponding
eigenenergies near the EP. However, we will also show the
difficulty of limited visibility due to the broadening in the
power spectrum caused by dissipation.

By definition, the power spectrum S(ω) is given by

S(ω) = 1

π
Re

∫ ∞

0
dτ 〈σ̂ (1)

+ (0)σ̂ (1)
− (τ )〉eiωτ , (12)

where 〈σ̂ (1)
+ (t )σ̂ (1)

− (t + τ )〉 is the two-time correlation ob-
tained by applying the quantum regression theorem to
〈σ̂ (1)

− (t )〉 = Tr[σ̂ (1)
− ρ(t )]. The time evolution of the QE-MNP

system density matrix ρ(t ) is governed by the master equation

ρ̇(t ) = i

h̄
[ρ(t ), Ĥeff ] + γQE

2
L[σ̂ (1)

− ]ρ(t )

+ γp

2

∑
β=d,M

L[âβ]ρ(t ) (13)
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FIG. 3. (a) The power spectrum at different values of h with h̄γp = 0.1 eV. For the case of h ≈ 3 nm (black dashed curve), we can observe
a single main peak, which is a consequence of the exceptional point, corresponding to the coalescence of eigenenergies shown in the inset.
When moving the quantum emitter toward the metal nanoparticle at h = 2.5 nm (blue dotted curve), it reaches the critical splitting and defines
an increment threshold 	h̄gM = 0.026 eV, i.e., the difference of the h̄gM between h ≈ 3 nm and h = 2.5 nm. When the quantum emitter is
even closer to the metal nanoparticle at h = 2 nm (red solid curve), the splitting becomes more visible. In panels (b) and (c), in order to further
investigate the relation between h̄γp and 	h̄gM, the value of h̄γp is reduced to 0.05 and 0.01 eV, respectively. The critical splittings occur at
h = 3.5 and 6 nm, corresponding to the smaller thresholds 	h̄gM = 0.016 and 0.01 eV, respectively. Additionally, it should be noted that, in
these panels, the S(ω) axis is shown on the logarithmic scale. (d) The real part of the splitting strength Re(	E ) and the splitting in the power
spectrum 	ω vs coupling strength h̄gM with h̄γp = 0.1 eV (red), 0.05 eV (blue), and 0.01 eV (black). The circle, triangle, and square dots
on the dashed curves represent the numerical data points for 	ω. Re(	E ) rises drastically near the exceptional point. However, this behavior
cannot be reflected in 	ω due to the broadening in the power spectrum. This leads to the undetectable regions marked in light gray; meanwhile,
their widths equal to the threshold 	h̄gM.

with effective Hamiltonian

Ĥeff = h̄ω0σ̂e1,e1

+ h̄
∑

β=d,M

[ωβ â†
β âβ + gβ (âβ σ̂

(1)
+ + â†

β σ̂
(1)
− )]. (14)

The superoperator L is defined as

L[ô]ρ(t ) = 1
2 [2ôρ(t )ô† − ρ(t )ô†ô − ô†ôρ(t )].

As shown by the black dashed curve in Fig. 3(a), cor-
responding to the presence of an EP at h̄gM ≈ 0.025 eV,
h ≈ 3 nm, and h̄γp = 0.1 eV, the single main peak is the con-
sequence of the EP. When we gradually move the QE towards
the MNP, a splitting is present in the energy spectrum, as
shown by the green curves in the inset of Fig. 3(a). However,

it should be noted that such splitting cannot be observed in
the power spectrum until the QE is placed at h = 2.5 nm
(blue dotted curve). This obfuscation is due to the broadening
caused by dissipation. As a result of the dependence on h, the
coupling strength gM increases during the QE movement, and,
consequently, we can define an increment threshold 	h̄gM =
0.026 eV, i.e., the difference of coupling strength between the
emergence of an EP and the beginning of the splitting. As the
QE is positioned at h = 2 nm (red solid curve), the splitting
is even more notable since the increment in h̄gM significantly
exceeds the threshold 	h̄gM.

This implies that the visibility of the splitting in the power
spectrum is an intuitive benchmark of its performance in
detecting the EP. To enhance the visibility, it is critical to
suppress the broadening in the power spectrum, such that the

013814-5



PO-CHEN KUO et al. PHYSICAL REVIEW A 101, 013814 (2020)

increment in h̄gM can more easily exceed the threshold 	h̄gM.
Doing so helps us to rule out the region where the EP has been
broken and, in turn, to pin down a smaller parameter range
containing the EP, and hence improve the sensitivity.

As the dissipation is the origin of the broadening in the
power spectrum, the former is responsible for the value of the
threshold 	h̄gM as well. In order to investigate the relation
between h̄γp and 	h̄gM, we further reduce the value of h̄γp

to 0.05 and 0.01 eV in Figs. 3(b) and 3(c), respectively.
Following the same analysis as Fig. 3(a), we conclude that
the corresponding 	h̄gM = 0.016 and 0.01 eV, respectively,
in line with our explanation above.

To further schematically elaborate the intimate relation
between h̄γp and 	h̄gM, in Fig. 3(d), we depict the real part of
the splitting strength, Re(	E ) (solid curves), of Eq. (9) and
the visible splitting, 	ω (dashed curve), in the power spec-
trum, at h̄γp = 0.1, 0.05, and 0.01 eV. Although the splitting
in the energy spectrum around the EP is drastic, it cannot be
reflected by 	ω, due to the dissipation-induced broadening,
as explained above. 	ω is finite only if the increment in h̄gM

exceeds 	h̄gM. This leads to the undetectable region, marked
by the light gray areas in Fig. 3(d). It is clear that the smaller
the γp the smaller the increment threshold 	h̄gM.

IV. EXCEPTIONAL POINTS INDUCED BY COLLECTIVE
COUPLING TO SURFACE PLASMONS

When increasing the number of QEs near the MNP, one
can expect a stronger interaction between the dipole mode of
LSPs and the QEs compared to the previous case [56]. Hence,
the strong-coupling regime between the LSPs and QEs can be
easily reached by their collective coupling to the dipole mode,
rather than to the pseudomode. In this regard, an EP is likely
to be achieved via the collective coupling between the dipole
mode and the QEs. We assume that there are N QEs arranged
radially at h nm from the surface of the MNP with an identical
dipole moment orientation of each i’s QE �μi = (μr, μθ , μφ )
being parallel to the x axis, as illustrated in Fig. 4(a).

Transforming the dipole-dipole interaction

Ji j = 1

4πεb
[�μi · �μ j/|�ri j |3 − 3(�μi · �ri j )(�μ j · �ri j )/|�ri j |5]

into the effective detuning δJ with identical distance ri j be-
tween each adjacent QE, the interactions between the QEs and
the LSPs can be described by the three-level non-Hermitian
Hamiltonian:

H3×3 =

⎡⎢⎣ω0 − i γQE

2 + δJ

√
Ngd gM√

Ngd ωd − i γp

2 0

gM 0 ωM − i γp

2

⎤⎥⎦. (15)

Note that a similar Hamiltonian was studied in Refs. [48,56]
but not in the context of EPs. From the eigenvalue equations,
one can obtain the energy spectra with the emergence of an EP
by setting ten to twenty QEs in proximity to MNP as depicted
in Figs. 4(b) and 4(c). Therefore, compared to the single-
QE case, an EP here is mainly triggered by the collective
coupling between the QEs and the dipole mode instead of the
pseudomode. As we increase the number of the QEs, an EP
occurs when the QEs are placed at a further distance hEP from

FIG. 4. (a) Schematic of N quantum emitters placed near the
metal nanoparticle on the x-y plane at an identical distance h from
the metal nanoparticle surface. The quantum emitters are separated
from one another by φ = 2π/N along the �φ direction, with the dipole
moment orientation being parallel to the x axis. (b), (c) The real
(b) and imaginary (c) parts of the energy spectra as a function of
h with N = 10 (red), N = 15 (blue), and N = 20 (green) quantum
emitters. The observable shift of the exceptional point position, as
well as the eigenenergy splitting, emerge when increasing the num-
ber of quantum emitters. The noticeable eigenenergy splittings result
from an immense strength of the dipole-dipole interaction due to
the close distances among quantum emitters. Note that by increasing
the number of quantum emitters a stronger collective coupling to the
dipole mode can be observed, such that the exceptional point occurs
when the quantum emitters are placed at a longer distance hEP with
respect to the surface of the metal nanoparticle.

the surface of the MNP. However, if the composite system
contains 20 QEs or even more, a complete energy splitting
can occur due to the strong dipole-dipole interaction, such that
the EP disappears. Therefore, there is a limit on the suitable
number of the QEs to achieve an EP in the energy spectrum.
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Besides the dipole-dipole interaction, the QEs coupled to
the pseudomode also play an important role in the formation
of eigenenergy splitting near an EP. In order to investigate
how the coupling to the pseudomode affects the eigenenergy
splitting, we make a comparison between different sizes of the
MNPs coupled to ten QEs with the significant enhancement
of the coupling to the pseudomode. The splitting emerges

FIG. 5. (a), (b) Real (a) and imaginary (b) parts of the energy
spectra as a function of distance h with the radius a = 7 (red solid)
and a = 10 (blue dashed) when setting the number of quantum
emitters N = 10. The larger the radius a, the smaller the distance hEP,
where an exceptional point emerges. (c) The eigenenergy splittings
are triggered by an enhanced coupling to the pseudomode gM with
both increment of a and reduction in hEP, which indicates that the
region in blue color is suitable to perform the exceptional point.

while enlarging the MNP size from a = 7 to 10 nm, as shown
in Figs. 5(a) and 5(b). This is because the enlargement of
the MNP size is beneficial to enhance the coupling to the
pseudomode.

Meanwhile, the distance hEP for the occurrence of the EP
becomes closer to the MNP. In this case, the coupling to the
pseudomode can be enhanced, thereby increasing the splitting
simultaneously. As shown in Figs. 5(c) and 5(d), the relation
between hEP and the radius a of the MNP can be described by
an analytic form:

hEP = −a +
[

6Nω3
d

(
4μ2

r + μ2
θ + μ2

φ

)
πε0ω2

p(γp − γQE)2

] 1
6 √

a. (16)

Overall, the enlargement of the eigenenergies splitting at
the position of an EP results from the enhancement of the
coupling to the pseudomode, which can be caused by both
increase of the MNP size and reduction in the distance hEP.

V. DETECTING THE EXCEPTIONAL POINTS OF
THE NUMEROUS QUANTUM EMITTERS CASE

Once again we can utilize the power spectrum to detect
the presence of the EP in a system composed of numerous
QEs coupled to LSPs. To do so we first consider the master
equation of the QEs-MNP system:

ρ̇(t ) = i

h̄
[ρ(t ), Ĥeff ] + γQE

2
L[σ̂ (c)

− ]ρ(t )

+ γp

2

∑
β=d,M

L[âβ]ρ(t ), (17)

with effective Hamiltonian

Ĥeff = h̄(ω0 + δJ )σ̂ (c)
+ σ̂

(c)
− + h̄

∑
β=d,M

ωβ â†
β âβ

+ h̄
√

Ngd(âdσ̂
(c)
+ + â†

dσ̂
(c)
− )

+ h̄gM(âMσ̂
(c)
+ + â†

Mσ̂
(c)
− ), (18)

where σ̂
(c)
+ (σ̂ (c)

− ) represents the raising (lowering) operator for
the collection of QEs. Following the same procedure used
in the single QE case, by calculating two-time correlations
〈σ̂ (c)

+ (t )σ̂ (c)
− (t + τ )〉, one can obtain the power spectrum:

S(ω) = 1

π
Re

∫ ∞

0
dτ 〈σ̂ (c)

+ (0)σ̂ (c)
− (τ )〉eiωτ .

Under suitable conditions, an EP is exhibited, i.e.,√
10h̄gd ≈ 0.025 eV, h ≈ 4.6 nm, h̄γp = 0.1 eV, and we can

observe only one main peak in the power spectrum as shown
by the black dashed curve in Fig. 6(a), corresponding to the
coalescence of eigenenergies, as shown by the green curves in
the inset. When we move the QE toward the MNP, a drastic
splitting is present in the energy spectrum. However, such
splitting cannot be observed readily in the power spectrum
since another peak merges into the main peak. Using the same
approach as in the single QE case, the QEs should be placed at
a close enough distance, i.e., h = 3.5 nm (blue dotted curve),
in order to exceed the threshold of coupling to the dipole mode
	h̄gd = 0.01 eV. As the QE is positioned at h = 2 nm (red
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FIG. 6. (a) The power spectrum of ten quantum emitters for different values of h with h̄γp = 0.1 eV. For the case of h ≈ 4.6 nm
(black dashed curve), the observation of a single main peak is a consequence of the exceptional point, corresponding to the coalescence of
eigenenergies shown in the inset. When moving the quantum emitter toward the metal nanoparticle at h = 3.5 nm (blue dotted curve), a splitting
starts to emerge from the broadening, which is the critical splitting, and here is defined as an increment threshold 	h̄gd ≈ 0.01 eV. Moreover,
when the quantum emitter is even closer to the metal nanoparticle at h = 2.5 nm (red solid curve), the splitting becomes more noticeable. In
panels (b) and (c), in order to probe the relation between h̄γp and 	h̄gd, the value of h̄γp is reduced to 0.05 and 0.01 eV, respectively. The
critical splittings occur at h = 6.5 and 15 nm, with respect to the smaller threshold 	h̄gd = 0.005 and 0.001 eV, correspondingly. Additionally,
it should be noted that, in these panels, the S(ω) axis is shown on the logarithmic scale. (d) The real part of the splitting strength Re(	E )
and the splitting in the power spectrum 	ω vs coupling strength h̄gd with h̄γp = 0.1 eV (red), 0.05 eV (blue), and 0.01 eV (black). The circle,
triangle, and square dots on the dashed curves represent the numerical data points for 	ω. Although the 	ω near the exceptional point in the
case of h̄γp = 0.1 eV possesses a stronger dependence on h̄gd than in the case of h̄γp = 0.05 eV, it comes with the larger threshold 	h̄gd (gray
areas) in proximity to the exceptional point due to the wider broadening in the power spectrum. In addition, the green areas show that the 	ω

in the power spectrum is smaller than the expected strength in the energy spectrum due to the larger h̄γp.

solid curve), the splitting is more notable since the increment
in h̄gd significantly exceeds the threshold 	h̄gd.

Analogous to the single QE case, in order to explore the
relation between h̄γp and 	h̄gd for the ten QEs case, we then
reduce the value of h̄γp to 0.05 and 0.01 eV in Figs. 6(b)
and 6(c), corresponding to a threshold 	h̄gd = 0.005 and
0.001 eV, respectively. As expected, the QEs-MNP system
with a smaller dissipation requires the smaller 	h̄gd to ob-
serve the splitting.

Therefore, to further schematically analyze the relation be-
tween h̄γp and 	h̄gd, we plot the real part of the eigenenergies
splitting near an EP, Re(	E ) (solid curves), and also the
visible splitting, 	ω (dashed curve) in the power spectrum,
at h̄γp = 0.1, 0.05, and 0.01 eV, in Fig. 6(d). It is easier to
identify the presence of an EP via the variation of gd if the
splitting near an EP is strongly dependent on gd. This is

because, under the influence of larger dissipation, the QE-
MNP system possesses more drastic splitting near the EP with
respect to gd in the energy spectrum. However, for the larger
dissipation case in the power spectrum, rather than the clearer
observation of the drastic splitting, it actually comes with not
only the larger threshold 	h̄gd (gray area), but also a smaller
splitting than the expected value in the energy spectrum (green
area) due to the larger h̄γp.

For this reason, how accurately the EP can be observed
depends on how large of a strength of splitting one can detect
near the EP in the power spectrum. Thus, the splitting (	ω)
here is the information to be regarded as “the signal.” The
width of the main peak will obscure the ability to extract
the required splitting. For convenience, the width of the main
peak can be quantified using the full width at half maximum
(FWHM), which has a relationship with h̄γp as depicted in
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FIG. 7. (a) Variation in the FWHM vs dissipation h̄γp. Solid blue
and dotted red curves stand for the cases of a single quantum emitter
and ten quantum emitters, respectively. The FWHM has positive
correlation with h̄γp. (b) SNR vs coupling strength of an individual
quantum emitter. For the h̄γp = 0.01 eV case shown in the inset, the
SNR of the single quantum emitter case (solid black curve) is slightly
higher than the ten quantum emitters case (dashed black curve)
within the range of h̄gd(M) = 0 to 0.02 eV. In contrast, for the larger
dissipation h̄γp = 0.05 eV (solid and dot-dashed blue curves stand
for the cases of a single quantum emitter and ten quantum emitters,
respectively.) and h̄γp = 0.1 eV (dotted and dashed red curves stand
for the cases of a single quantum emitter and ten quantum emitters,
respectively), the SNRs of the ten quantum emitters case are both
higher than the single quantum emitter case.

Fig. 7(a). In this regard, we thus define a SNR, accounting for
the splitting and FWHM, which quantifies the resolution of
the power spectrum:

SNR = 	ω

FWHM
. (19)

One can infer that the higher the SNR the better the resolution
for detecting the EPs. Comparing the SNR of the single QE
case to the ten QEs case, in terms of coupling strength, we find
that although the SNR of a single QE case is slightly higher
than in the ten QEs case for h̄γp = 0.01 eV the SNR of the ten
QEs case is conversely greater for both h̄γp = 0.05 and 0.1 eV
as shown in Fig. 7(b). Combining these results, a collection of

QEs possesses better SNR for larger system dissipation when
considering the individual coupling strength of each QE.

VI. CONCLUSIONS

In conclusion, we have shown the emergence of EPs in
open quantum systems composed of an MNP and a number
of QEs. Surprisingly, an EP can stem from the coupling of
different modes between a QE and LSPs. For the single-QE
case, the formation of an EP mainly results from the coupling
to a pseudomode, which becomes dominant when the distance
between the QE and the MNP is shorter than 10 nm. However,
the coupling to the dipole mode plays an important role in
inducing the eigenenergy splittings near an EP. Subsequently,
placing more QEs nearby the MNP triggers a collective cou-
pling, which also induces an EP. Instead of the coupling to the
dipole mode, the coupling to the pseudomode and the dipole-
dipole interaction between QEs become important factors
leading the splitting of eigenenergies near an EP. Therefore,
with a proper balance between the quantum collective effect
and the dipole-dipole interaction, using a number of QEs near
the MNP not only relaxes the strong-coupling requirement for
an individual QE, but also results in a more stable condition
to generate exceptional points.

Furthermore, we have shown that EPs can be revealed
in power spectra. Specifically, EPs correspond to frequency
splitting in a power spectrum. We find that the system’s dis-
sipation sets a detection limit of observable splitting near an
EP. The SNR analysis, accounting for frequency splitting and
the system’s dissipation, enables us to evaluate the accuracy
of the observation of EPs. We conclude that a collection of
QEs coupled to an MNP offers unique advantages in terms of
a better SNR for the larger system’s dissipation compared to
that of a single QE.
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APPENDIX: DERIVATIONS OF THE SPECTRAL DENSITY
IN THE QUASISTATIC LIMIT

From the integrodifferential equation, given by Eq. (2), one
can obtain the spectral density as follows [52]:

J(ω) = ω2

πε0c2 �μ1 · Im[Ĝ(�r1, �r1, ω)] · �μ1, (A1)

where the Green’s tensor Ĝ(�r1, �r1, ω) satisfies the boundary
conditions [57]

Ĝ(�r1, �r1, ω) = Ĝ0(�r1, �r1, ω) + Ĝscatt (�r1, �r1, ω). (A2)

Here, the full Green’s tensor is composed of the unbounded
dyadic Green’s function Ĝ0(�r1, �r1, ω) and the scattering
dyadic Green’s function Ĝscatt (�r1, �r1, ω), which represent
the vacuum contribution and an additional contribution of
the multiple reflection and transmission waves, respectively.
Given a silver MNP with the wave vector km = ω

c

√
εm embed-

ded in a homogeneous medium of wave vector kb = ω
c

√
εb,

the unbounded part of the dyadic Green’s function, in terms
of the spherical vector wave functions, is given by

Ĝ0(�r1, �r1, ω) = kb

∑
s=±

∞∑
n=0

n∑
m=0

fmn
[ �Ms(1)

mn (kbr1) �Ms
mn(kbr1)

+ �Ns(1)
mn (kbr1) �Ns

mn(kbr1)
]
, (A3)

and the scattered part of the dyadic Green’s function can be
expanded as

Ĝscatt (�r1, �r1, ω) = kb

∑
s=±

∞∑
n=0

n∑
m=0

fmn
[
RH �Ms(1)

mn (kbr1) �Ms(1)
mn (kbr1)

+ RV �Ns(1)
mn (kbr1) �Ns(1)

mn (kbr1)
]
, (A4)

where

fmn = i

4π
(2 − δm0)

2n + 1

n(n + 1)

(n − m)!

(n + m)!
.

Here, RH and RV represent the centrifugal reflection coeffi-
cients corresponding to the electric field of the TE and TM
waves, respectively. We take the quasistatic limit into account
due to the justified assumption that the distance between the
MNP and QE is much smaller than the wavelength of the
electromagnetic field (kbr1 � 1). Hence, the values of RH and
RV are given by

RH ≈ iπa2n+3k2n+1
b

(
k2

m − k2
b

)
22n+4�

(
n + 3

2

)
�

(
n + 5

2

) , (A5a)

RV ≈ iπ (n + 1)(kba)2n+1
(
k2

m − k2
b

)
22n+1�

(
n + 1

2

)
�

(
n + 3

2

)[
(n + 1)k2

b + nk2
m

] .(A5b)

Note that the spherical vector wave functions,
�Ms

mn(kbr1), �Ms(1)
mn (kbr1) and �Ns

mn(kbr1), �Ns(1)
mn (kbr1), with

s = ± corresponding to the TE and TM modes, respectively,
can be defined as

�M±
mn(kbr1) ≈ −

√
π (kbr1)n

2n+1�
(
n + 3

2

)[
mPm

n (κ )

sin θ1
t±
m (φ1)θ̂ ± dPm

n (κ )

dθ1
t∓
m (φ1)φ̂

]
, (A6a)

�M±(1)
mn (kbr1) ≈ i2nm�

(
n + 1

2

)
√

π (kbr1)n+1

[
Pm

n (κ )

sin θ1
t±
m (φ1)θ̂ + dPm

n (κ )

dθ1
t∓
m (φ1)φ̂

]
, (A6b)

�N±
mn(kbr1) ≈

√
π (n + 1)(kbr1)n−1t∓

m (φ1)

2n+1�
(
n + 3

2

) [
nPm

n (κ )r̂ + dPm
n (κ )

dθ1
θ̂ − mPm

n (κ )

sin θ1

t±
m (φ1)

t∓
m (φ1)

φ̂

]
, (A6c)

�N±(1)
mn (kbr1) ≈ i2nn�

(
n + 1

2

)
t∓
m (φ1)√

π (kbr1)n+2

[
−(n + 1)Pm

n (κ )r̂ + dPm
n (κ )

dθ1
θ̂ − mPm

n (κ )

sin θ1

t±
m (φ1)

t∓
m (φ1)

φ̂

]
, (A6d)

where t+
m (φ1) = sin(mφ1) and t−

m (φ1) = cos(mφ1). Pm
n (κ ) is the associated Legendre polynomial with κ = cos θ1, and �(x)

stands for the gamma function. Substituting all the spherical vector wave functions and the centrifugal reflection coefficients into
the dyadic Green’s function, one can obtain the elements of the full Green’s tensor. One finds that only the three diagonal terms
survive:

Grr (�r1, �r1, ω) = A +
∞∑

n=0

BCnm

(
n + 1

n + m − 1

)2

, (A7a)

Gθθ (�r1, �r1, ω) = A(1 + ξ 2) +
∞∑

n=0

n∑
m=0

DnmB
[
CnmPm

n+1(0)2 + C′
nmm2Pm

n (0)2
]
, (A7b)

Gφφ (�r1, �r1, ω) = A(1 + ξ 2) +
∞∑

n=0

n∑
m=0

DnmB
[
Cnmm2Pm

n (0)2 + C′
nm(n − m + 1)2Pm

n+1(0)2
]
, (A7c)

where A = ikb/6π , ξ = kbr1/2,

B = a2n+1
(
k2

b − k2
m

)
4π (a + h1)2n+2

,
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Cnm = n(n + m − 1)2

(a + h1)2k2
b

[
(n + 1)k2

b + nk2
m

] ,

and

C′
nm = a2

2n(n + 1)[4n(n + 2) + 3]
.

Sequentially, the approximate Lorentzian form of the spectral density in Eq. (3) can be obtained by substituting Eqs. (A7a)–(A7c)
into Eq. (A1).
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