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Single-photon-triggered quantum chaos
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We demonstrate how to manipulate quantum chaos with a single photon in a hybrid quantum device combining
cavity QED and optomechanics. Specifically, we show that this system changes between integrable and chaotic
relying on the photon state of the injected field. This onset of chaos originates from the photon-dependent chaotic
threshold of the qubit-field coupling induced by the optomechanical interaction. By deriving the Loschmidt
Echo, we observe clear differences in the sensitivity to perturbations in the regular versus chaotic regimes.
We also present the classical analog of this chaotic behavior and find good correspondence between chaotic
quantum dynamics and classical physics. Our work opens up a route to achieve quantum manipulations,
which are crucial elements in engineering new types of on-chip quantum devices and quantum information
science.
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I. INTRODUCTION

Chaos plays an important role in most fields of classical
physics [1] and quantum mechanics [2]. The study of chaos
is not only significant from the perspective of understanding
fundamental physics, but also for potential applications in
achieving secure communication [3–5], enhancing tunneling
rates [6–8], and building operable quantum computers [9].
The field of quantum chaos, i.e., studying how classical
chaotic dynamics manifests itself in quantum mechanics,
has achieved spectacular advances in recent years [10–15].
However, previous works on quantum chaos merely focus on
certain simple quantum systems [16–22], e.g., Dicke model,
kicked top, nuclear model, etc.

Cavity optomechanics studies the quantum effects induced
by the radiation-pressure interaction between the electro-
magnetic and mechanical systems [23,24], which provides
a platform for manipulating the bosonic field. In particular,
the quadratic optomechanical coupling [25–32] has attracted
much attention even though it is very weak. Recently, the
development of nanofabricated optomechanical technologies
makes it possible to introduce the optomechanical interaction
into cavity QED or other systems [33–39]. Here we pro-
pose a possible scheme in a cavity optomechanical system
“doped” with an atomic ensemble realizing a Dicke model
(DM) to study its chaotic behavior. Such proposal has po-
tential applications for inspiring various on-chip quantum
devices.

Here we study how to manipulate quantum chaos with
a single photon in a hybrid quantum model by combining
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an optomechanical system with cavity QED. The proposed
system can be changed between its quasi-integrable regime
and its quantum chaotic one by preparing different photon
states of the ancillary mode. In this hybrid model, the cor-
responding chaotic threshold of qubit-field coupling could be
very weak. Physically, the introduced quadratic optomechani-
cal coupling can effectively change the qubit-field interaction
strength, depending on the photon number of the ancillary
cavity. Thus, the hybrid model studied here has a photon-
dependent chaotic threshold in its qubit-field coupling, which
ultimately leads to single-photon-triggered quantum chaos.
Apart from the fundamental interest in exploring the quantum-
classical correspondence [40], our work will inspire further
investigations regarding photon-dependent quantum dynamic
effects in hybrid cavity QED. Moreover, this work, combining
quantum chaos with single-photon technologies, could be
used for chaos-assisted communications [41,42] and various
single-photon devices [43–45].

II. MODEL

As depicted in Fig. 1(a), we consider a hybrid optome-
chanical system consisting of a normal Dicke model and an
ancillary cavity. The total Hamiltonian is given by (h̄ = 1)

H = Han + Hdm −
∑
l=e,o

gl a
†
l al (b

† + b)2, (1)

where al (a†
l ) and b (b†) are the annihilation (creation) op-

erators of the ancillary mode and single-mode bosonic field
of the DM, respectively. Note that gl (l = e, o) quantifies the
optomechanical quadratic coupling strength between the two
bosonic modes al and b, where ge = g and go = geiπ manifest
that the bosonic mode b interacts with al at the position of
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FIG. 1. (a) Schematic diagram of the physical implementation of
the generalized hybrid model containing a normal Dicke model (DM)
and an ancillary cavity. The ancillary cavity al (l = e, o) couples
quadratically with the normal DM (a bosonic single-mode b interacts
with N two-level systems σ− with dipole coupling strength λ), with
optomechanical coupling strengths ge = g and go = geiπ . (b) The
Dicke model could be implemented by coupling a mechanical res-
onator to a collection of two-level systems.

even or odd number of half wavelengths of the cavity [46].
Here,

Han =
∑
l=e,o

ωl a
†
l al , (2)

and ωl is the frequency of the ancillary cavity mode. The DM
Hamiltonian reads

Hdm = ωb†b + �Jz + λ√
N

(b† + b)Jx, (3)

with a collective qubit-field coupling strength λ. For the N
qubits, � is the excitation energy; meanwhile, the collective
pseudospin operators obey the SU2 algebra, and they are given
by Jz = (1/2)

∑N
i=1 σz, J± = ∑N

i=1 σ±, and Jx = J− + J+.
Due to parity conservation, [Htot,�] = 0, the Hilbert space
of Htot can be separated into two noninteracting parts. Here
we note that � = eiπN , and N = b†b + Jz + N/2 is the total
excitation number of the system (excluding the ancillary
modes a).

It should be stressed that in the Hamiltonian H , the
quadratic coupling term produces a photon-dependent mod-
ification on the potential of field b. We consider the ancillary
mode to be prepared in the Fock state |ne no〉a(ne = no + n,
and ne, no, n = 0, 1, 2, . . .). Then the photon number operator
a†

l al could be replaced by an algebraic number nl . More
specifically, provided that the initial ancillary mode is in

|00〉a(n = 0), injecting a photon (ne = 1) into the cavity, then
the ancillary mode would be in |10〉a (n = 1). However, if
another photon (no = 1) is subsequently injected into the
cavity, then the ancillary mode is in |11〉a (n = 0), which is
physically equivalent to |00〉a. In other words, injecting two
different photons (ne = 1, no = 1) makes the ancillary mode
return to the equivalent initial state, i.e., |00〉a → |10〉a →
|11〉a. Hereafter, we only consider the case of n = 0, 1,
where n = 0 corresponds to a normal DM. We now apply a
squeezing transformation b = cosh(rn)bn + sinh(rn)b†

n, with
rn = (−1/4) ln[1 − 4ngl/ω]; then the system Hamiltonian
becomes Dicke-like,

Hn = �Jz + ωnb†
nbn + λn√

N
(b†

n + bn)Jx + Cn, (4)

where

ωn = exp(−2rn)ω, (5)

λn = exp(rn)λ, (6)

Cn =
∑
l=e,o

nlωl + [exp(−2rn) − 1](ω/2) (7)

are the photon-dependent system parameters. Equation (4)
shows that the qubit-field coupling strength could be enhanced
significantly by adjusting the photon-dependent squeezing
parameter rn [25], which allows the occurrence of single-
photon-triggered quantum chaotic behavior.

III. SINGLE-PHOTON-TRIGGERED QUANTUM CHAOS

To investigate the quantum chaotic behavior triggered by
the single photon of the proposed system, in the following,
we present three signatures of quantum chaos, i.e., (1) nearest-
neighbor level spacing, (2) Loschmidt Echo, and (3) Poincaré
sections.

A. Level spacing

Quantum chaos manifests itself by the statistical proper-
ties of the energy levels. Specifically, the character of the
energy spectra can be quantified by the nearest-neighbor level-
spacing distribution P(s), which has been experimentally
verified in Rydberg excitons [47,48] and an acoustic resonator
[49]. The comparison between P(s) and the result obtained
by random matrix theory (RMT) produces a signature of
quantum chaos [50,51]. The levels of classical integrable
systems are uncorrelated and show a Poissonian statistics,
i.e., Pp(s) = exp(−s), indicating strong level clustering [52].
Conversely, in chaotic systems, the energy level-spacing dis-
tribution is well approximated by the Wigner-Dyson function,
i.e., Pw(s) = πs/2 exp(−πs2/4), indicating the eigenvalues of
random matrices.

To investigate the level statistics of the system, we first
numerically diagonalize the Hamiltonian Hn. Then we ap-
ply a general unfolding process; finally the nearest-neighbor
level-spacing distribution P(s) is constructed. Figure 2 shows
the P(s) distributions of the proposed system for different
values of the qubit-field coupling strength λ. In the region
considered, when the ancillary cavity is prepared in |00〉a
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FIG. 2. Nearest-neighbor level-spacing distribution P(s) for sev-
eral values of λ considering the ancillary mode to be prepared in
(a)–(c) |10〉a and (d)–(f) |00〉a . Note that |10〉a corresponds to
n = 1, and |00〉a to n = 0. The yellow-solid curve is the universal
Poissonian distribution and the red-dashed curve shows the Wigner-
Dyson distribution. Insets: The bar graphs quantitatively present
the quantity η. The yellow and red bars show the case of n = 0
and n = 1, respectively. The horizontal black arrow indicates the
single-photon-triggered quantum chaos. The system parameters are
chosen as � = ω = 1, g = 0.23ω, and N = 20.

[this is a normal DM corresponding to n = 0, shown in
Figs. 2(d)–2(f)], the spectral statistical property closely fol-
lows a Poissonian distribution, which is the counterpart of a
classical integrable system. In contrast, it yields the Wigner
distribution when the mode a is in |10〉a [shown in Figs. 2(a)–
2(c)], which manifests the chaotic property of the system. The
transition of the level statistics from a Poisson-like distribu-
tion to a Wigner-like form provides a clear indication that
quantum chaos is triggered by a single photon.

To obtain a more quantitative description, we cal-
culate the quantity η = | ∫ s0

0 [P(s) − Pw(s)]ds/
∫ s0

0 [Pp(s) −
Pw(s)]ds|, where s0 = 0.472913 . . . [53]. This η character-
izes the degree of similarity between P(s) and the normal
Poissonian distribution Pp(s). Theoretically, η = 0 if P(s)
follows the Wigner distribution, while η = 1 for a Poissonian
distribution. The graph bars in the insets of Fig. 2 show the
results for η. We find that for n = 0, P(s) is close to 0.8,
while it fluctuates around 0.2 for n = 1. In other words, P(s)
roughly follows a Poisson distribution for n = 0 and obeys
the Wigner distribution for n = 1. In this sense, this system
changes from regular to chaotic. Normally, this transition
is closely related to the system’s symmetry [47,54]. Here,
it is intimately connected with parity symmetry breaking in
the thermodynamic limit N → ∞ (see Appendix A). Specif-
ically, due to the introduced optomechanical interaction, the
proposed quantum model allows the single-photon-induced
parity symmetry breaking under the condition of fixed system
parameters.

B. Sensitive dependence on perturbations

The hypersensitivity to perturbations is another signature
of chaos [55]. We will now calculate the Loschmidt Echo (LE)
to quantify this sensitivity. The LE was first introduced in
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FIG. 3. (a) The L(t ) in Eq. (3) vs the qubit-field coupling strength
λ. We color the region where single-photon-triggered chaos could be
observed. (b) Evolutions of LE for various values of λ. We choose
δ̃ = 0.001ω and ωt = 100 for (a) and N = 100 for both.

nuclear magnetic resonance (NMR) experiments to measure
the sensitivity to perturbations brought by the surrounding en-
vironment [56–61]. The validity of this measurement has been
verified experimentally in many-body spin systems. Quan-
tum mechanics without the concept of trajectory preserves
the overlap between two states. Specifically, for a quantum
system, given the same initial state 
0, under the influence
of two Hamiltonians with a slight perturbation, the two states
will evolve along with time [62]. More precisely, here we
consider an extra two-level atom S added into this hybrid
optomechanical model [63] as a perturbation. We assume that
the hybrid DM is prepared in the ground state |G〉 = |00〉
and the extra two-level atom is in a superposed state α|v〉 +
β|u〉, where |α|2 + |β|2 = 1; accordingly, the LE reads
(see Appendix B)

L(t ) = |〈G|exp(iHvt )exp(−iHut )|G〉|2. (8)

Here, Hv and Hu are two Hamiltonians with a slight difference,

Hv,u = ωv,ub†
nbn + �d†d

+ λn(b†
n + bn)(d†

√
1 − d†d/N + H.c.), (9)

where ωv = ωn + δ̃, ωu = ωn − δ̃, and δ̃ is a small per-
turbation caused by the extra two-level atom. Here
we have applied the Holstein-Primakoff transformation:
J+ = d†

√
N − d†d, J− = √

N − d†d d , and Jz = d†d − N/2,
where d is the bosonic operator [64]. In quantum mechanics,
the overlap between the two identical initial states is supposed
to be 1. Then it decays along with the evolution of the two
states under the influence of two Hamiltonians. In some cases,
after a time evolution, if these two wave functions become
quite different or completely different (orthogonal), then L(t )
should be much less than 1 or equal to 0. This shows that
the system exhibits a hypersensitive dependence on the initial
perturbation, i.e., chaotic behavior.

Figure 3(a) plots the LE versus the coupling strength λ,
showing that the LE decays quickly to zero when the coupling
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FIG. 4. Plots of Poincaré surface sections projected in the p1 − q1 plane for the Hamiltonian Hsc for various values of λ. We select sections
of E = −ω, and p2 = 0, q2 > 0. (a)–(d) n = 1; (e)–(h) n = 0. Each column has the same coupling strength λ.

approaches a critical point, λnc = √
ωn�/2. This proves that

when the qubit-field coupling is near this critical point, the
proposed system is very sensitive to the perturbation caused
by the extra atom. We find that compared to the case of n = 0,
L(t ) decreases more sharply at a lower λ with n = 1. Thus,
this system exhibits a stronger sensitivity under the influence
of an extra atom compared with the case without optome-
chanical interactions (n = 0). In essence, the optomechanical
interaction lowers the critical point. When λ ∈ [0.15, 0.4],
there is a high probability for the emergence of quantum
chaos triggered by a single photon (see the shaded area).
Figure 3(b) plots the evolution of LE for various values of
λ. For a given λ, L(t ) for n = 1 decreases faster than the case
of n = 0, which indicates that the two same initial states at
n = 1 evolve faster (than the n = 0 case) to entirely different
states after a long enough time. The corresponding arrows
also show the emergence of single-photon-triggered quantum
chaos.

C. Poincaré sections

In analogy with classical chaos, we proceed to consider the
classical counterpart of the proposed system. By introducing
the bosonic modes for position-momentum representation
via bn = √

ωn/2(q1 + ip1/ωn), d = √
�/2(q2 + ip2/�), and

setting [q1, p1] = 0 and [q2, p2] = 0, we could move from the
Hamiltonian Hn to a classical one,

Hcl = − N

2
� + 1

2

(
ω2

nq2
1 + p2

1 − ωn + �2q2
2 + p2

2 − �
)

+ 2λn

√
�ωnq1 p1

√
1 − �2q2

2 + p2
2 − �

2N�
. (10)

We calculate the derivative of Hcl and then obtain the equa-
tions of motion (see Appendix C),

q̇1 = ∂Hcl

∂ p1
, ṗ1 = −∂Hcl

∂q1
,

q̇2 = ∂Hcl

∂ p2
, ṗ2 = −∂Hcl

∂q2
. (11)

To better visualize the presence of single-photon-triggered
chaos in the classical regime, we now study the dynamics
of the canonical variables as a function of the coupling pa-
rameter λ. Specifically, we numerically integrate these simul-
taneous classical equations of motion and plot the Poincaré
sections, which have been experimentally observed in many
systems [7,10], for a variety of different initial conditions. The
resulting Poincaré surface of sections with energy E = −ω

are shown in Fig. 4. When n = 0, i.e., Figs. 4(e)–4(h), the
Poincaré section only consists of a series of regular trajec-
tories and discrete islands in the region considered. For the
case n = 1 shown in Figs. 4(a)–4(d), as the coupling strength
λ is increased, we see the shrinking of regular orbits and
the expansion of a series of chaotic regions. For a certain
Poincaré section, the motion across the boundaries between
regular and chaotic regions is classically forbidden [62].
Interestingly, for a fixed coupling strength λ, by compar-
ing the bottom row for n = 0 with the top for n = 1, it is
clearly shown that the classical trajectory transforms from a
regular to a chaotic one in phase space when the parameter
λ ∈ [0.15, 0.4]. In other words, it manifests single-photon-
triggered chaos. The observed Poincaré sections show an
excellent agreement with the prediction of nearest-level distri-
bution (shown in Fig. 2) and the dynamics properties (shown
in Fig. 3).
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IV. EXPERIMENTAL IMPLEMENTATIONS

The description of the quantized electromagnetic field is
based on states with fixed photon number in specific modes,
i.e., Fock or number states. In recent years, there has been
increasing interest in the generation of single-photon states
[65–75] because single photons play a key role in secure
quantum communication, quantum cryptography, and various
single-photon devices. A single-photon state is easily pre-
pared conditionally from photon pairs of parametric down
conversion, ion traps, cavity QED systems, and solid-state
systems using superconducting quantum circuits.

In the experiment [68], a micromaser (or one-atom maser)
employed a high-Q (4×1010) cavity, producing a photon
lifetime in the cavity as high as 0.3 seconds. This system
can be described by the Jaynes-Cummings Hamiltonian. Tra-
ditionally, the injected atoms are in the upper state of the
maser transition. If the field is in an initial state |n〉, then
the interaction of an atom with a field leaves the cavity and
atom field in a superposition of the states |e〉|n〉 and |g〉|n + 1〉.
By measuring an atom in the ground state, the superposition
is reduced to the state |n + 1〉. Experimentally, it is easy to
measure the atom inversion given by I = Pg − Pe; here, Pg and
Pe are the probability of finding a ground-state or excited-state
atom, respectively.

Solid-state systems are considered as another good can-
didate for generating Fock states. Recently, an on-chip mi-
crowave single-photon source was reported in a circuit quan-
tum electrodynamics system consisting of a superconducting
qubit coupled to a transmission line [70]. It was reported
that six-photon pure Fock states can be prepared in this
architecture. The interaction between qubit and resonator is
achieved by using a capacitor, measured by spectroscopy. The
qubit states are measured by using a readout dc supercon-
ducting quantum interference device (SQUID). If the qubit
state is mapped to the photon state, then the superposition
of the ground and excited states, α|g〉 + β|e〉, will lead to
the same superposition of photon states, α|0〉 + β|1〉. The
average photon number is proportional to the average qubit
excitation probability, 〈a†a〉 = (〈σz〉 + 1)/2, and has a max-
imum of one photon when the qubit is in its excited state.
The two quadratures of homodyne voltage are proportional
to the x and y components of the qubit state: 〈a† + a〉 =
〈σx〉 and i〈a† − a〉 = 〈σy〉. Experimentally, the agreements
between output integrated voltage of states 〈a†a〉 and 〈σz〉,
i〈a† − a〉 and 〈σy〉, respectively, verify the generation of Fock
states.

The proposed system is a general quantum hybrid model,
which can be realized in several experimental platforms, e.g.,
quadratically coupled optomechanical system or supercon-
ducting circuit. Thanks to the rapid progress achieved in
the fabrication of diamond nanostructures, the Dicke model
can be implemented in diamond mechanical nanoresonators
[76–79], i.e., an ensemble of nitrogen-vacancy (NV) centers
embedded in a single-crystal diamond nanobeam. The flex
of the beam strains the diamond lattice and, in turn, cou-
ples directly to the spin triplet states; then, a crystal-strain-
induced coupling can be generated. Moreover, the required
quadratic coupling can be realized in a “membrane-in-the-

middle” configuration by placing a semitransparent mem-
brane at the node of the ancillary cavity mode, where ω′ = 0
[26,46].

In addition, as an alternative experimental possibility, a
hybrid quantum superconducting circuit [80–82] is also con-
sidered here. In the superconducting circuit, the qubits are
coherently coupled to the spin ensemble, which can be seen as
a two-level atom ensemble. The Dicke model can be realized
by capacitively coupling the qubits to the resonator B [83,84].
Moreover, resonator A contains superconducting quantum-
interference devices (SQUIDs) that make its frequency ωa

tunable by applying opposite flux variations ±δ� in its loop.
Due to this parametrically induced frequency shift of res-
onator A, the position quadrature of resonator B can couple
quadratically to the photon number of resonator A in a certain
regime [31].

To implement our proposal, the key is to reach the strong
quadratic coupling g ≈ ω/4 [g ≈ ω′′

c (0)x2
zpf ]. Fortunately, re-

cent advances have shown that stronger quadratic couplings
could be achieved in many platforms, such as photonic crys-
tals [85,86], superconducting circuits [87], and microdisk
resonators [88]. In addition, it is manifested that the quadratic
coupling strength could be exponentially enhanced [25,89],
which allows the realization of single-photon-triggered quan-
tum chaos when g 
 ω.

V. CONCLUSIONS

In summary, we have studied quantum chaos triggered by
a single photon in a cavity optomechanical system doped
with an atom ensemble. By preparing different states of the
ancillary mode, the system can be changed between the quasi-
integrable regime and quantum chaos. This fundamental effect
could be useful in engineering new types of quantum on-
chip devices, simulating various single-photon devices, and
achieving chaos-assisted communications.
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APPENDIX A: SINGLE-PHOTON-INDUCED Z2

SYMMETRY BREAKING

In the main text, we obtained the Dicke-like Hamiltonian,

Hn = �Jz + ωnb†
nbn + λn√

N
(b†

n + bn)Jx + Cn, (A1)

where ωn = exp(−2rn)ω, λn = exp(rn)λ, and Cn =∑
l=e,o nlωl + [exp(−2rn) − 1](ω/2), and, correspondingly,

the critical coupling strength reads

λnc =
√

�ωn/2. (A2)

The Hamiltonian (A1) shows a photon-dependent property
of our proposed system. This property makes it possible
to observe single-photon-triggered quantum chaos, which is
closely connected with the single-photon-induced Z2 sym-
metry breaking in the thermodynamic limit N → ∞. To
investigate the system’s symmetry, as an example, we con-
sider a certain qubit-field coupling strength λ = 0.3 (within
our considered region, 0.15 < λ < 0.4) and the cases when
n = 0, 1, respectively.

In the case when n = 0, Eq. (A1) can be reduced into a
normal Dicke Hamiltonian. The system’s critical point be-
comes λc = √

�ω/2 = 0.5, and here we have chosen � =
ω = 1. Within the considered parameter regime of λ < λc,
the system is in the normal phase. The present effective
Hamiltonian Hn could be diagonalized in the thermodynamic
limit N → ∞ [17]. To diagonalize the Hamiltonian Hn,
we introduce the Holstein-Primakoff transformation, J+ =
d†

√
N − d†d, J− = √

N − d†d d , and Jz = d†d − N/2 [46].
Then, Eq. (A1) can be diagonalized into

Hnp = ω−c†
1c1 + ω+c†

2c2 + Eg, (A3)

where

ω2
± = 1

2

[
ω2

n + �2 ±
√(

�2 − ω2
n

)2 + 16λ2
n�ωn

]
. (A4)

We have introduced the Bogoliubov transformation,

bn = ξ
(b)
− c†

1 + ξ
(b)
+ c1 + ζ

(b)
− c†

2 + ζ
(b)
+ c2, (A5a)

d = ξ
(d )
− c†

1 + ξ
(d )
+ c1 + ζ

(d )
− c†

2 + ζ
(d )
+ c2, (A5b)

where the coefficients satisfy

ξ
(b)
± = cos ν

2
√

ωnω−
(ωn ± ω−), ζ

(b)
± = sin ν

2
√

ωnω+
(ωn ± ω+),

ξ
(d )
± = − sin ν

2
√

�ω−
(� ± ω−), ζ

(d )
± = cos ν

2
√

�ω+
(� ± ω+).

(A6)

Here the angle ν is determined by

tan(2ν) = 4λn
√

�ωn(
�2 − ω2

n

) . (A7)

In this case, the ground state reads |G〉np = |00〉c and, cor-
respondingly, the ground-state energy is Eg/N = −�/2 [17].
The ground state |G〉np conserves the Z2 symmetry, i.e.,
�|00〉c = |00〉c, confirmed by the zero ground-state coher-
ence of the field, i.e., 〈b〉g = 0.

In the other case, if we consider n = 1, the effective
coupling strength is enhanced and the critical qubit-field

coupling strength is effectively decreased, i.e., λn > λnc. In
other words, when n = 1 and λ = 0.3, the system reaches into
the superradiant phase. By applying two displacements on the
bosonic modes

bn → b̃n + γb, d → d̃ − γd (A8)

or

bn → b̃n − γb, d → d̃ + γd , (A9)

and in the thermodynamic limit, the Hamiltonian Hn can be
diagonalized to

Hsp = ω̃−c̃†
1c̃1 + ω̃+c̃†

2c̃2 + Ẽg. (A10)

we note that

γb =
√

N

(
λ2

n

ω2
n

− �2

16λ2
n

)
and γd =

√
N

2

(
1 − �ωn

4λ2
n

)
.

(A11)

Following the same process as before, but now using

b̃n = ξ̃
(b)
− c̃†

1 + ξ̃
(b)
+ c̃1 + ζ̃

(b)
− c̃†

2 + ζ̃
(b)
+ c̃2, (A12a)

d̃ = ξ̃
(d )
− c̃†

1 + ξ̃
(d )
+ c̃1 + ζ̃

(d )
− c̃†

2 + ζ̃
(d )
+ c̃2, (A12b)

the coefficients are then given by

ξ̃
(b)
± = cos ν̃

2
√

ωnω̃−
(ωn ± ω̃−), ζ̃

(b)
± = sin ν̃

2
√

ωnω̃+
(ωn ± ω̃+),

ξ̃
(d )
± = − sin ν̃

2
√

�̃ω̃−
(�̃ ± ω̃−), ζ̃

(d )
± = cos ν̃

2
√

�̃ω̃+
(�̃ ± ω̃+).

(A13)

Here the angle ν̃ satisfies

tan(2ν̃) = 2ωn�(
16λ4

n

/
ω2

n − ω2
n

) (A14)

and �̃ = �(1 + 4λ2
n

�ωn
)/2. The excitation energies become

ω̃2
± = 1

2

[
ω2

n + 16λ4
n

/
ω2

n ±
√(

16λ4
n

/
ω2

n − ω2
n

)2 + 4�2ω2
n

]
.

(A15)

We point out that the ground-state energy is

Ẽg = −�

4

(
4λ2

n

�ωn
+ �ωn

4λ2
n

)
(A16)

and the ground state |G〉±sp = |00〉±c with c̃†
i c̃i|00〉±c =

0|00〉±c (i = 1, 2) becomes twofold degenerated. Here, ± rep-
resent the different direction of displacement applied into
bn, which leads to different coefficients ξ̃± and ζ̃±. As an
evidence, the ground-state coherence of the field

〈b〉±g = ±exp(rn)γb (A17)

becomes nonzero. Consequently, its symmetry is sponta-
neously broken, i.e., �|G〉±sp �= |G〉±sp.

The above discussions show the single-photon-induced
Z2 symmetry breaking in the thermodynamic limit N → ∞.
Specifically, for a fixed qubit-field coupling λ (within our
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considered region), the system’s symmetry can be broken by
injecting a single photon. This symmetry breaking is closely
related to the crossover of the level statistics from a Poisson-
like distribution to a Wigner-like form [47,54] for finite N .
Accordingly, it is connected to the occurrence of quantum
chaos.

APPENDIX B: DERIVATION OF LOSCHMIDT ECHO

In order to illustrate how chaos is characterized by the
hypersensitivity to perturbations, we analytically calculate the
Loschmidt Echo (LE) of the proposed system. For a quantum
system, the measure of the LE is the overlap between two
states that evolve from the same initial state 
0 under the
influence of two Hamiltonians. Specifically, here we consider
an extra two-level atom S injected into this hybrid quantum
model [63]. Then the system Hamiltonian is given by (we set
h̄ = 1)

H0 =
∑
l=e,o

ωl a
†
l al + ωb†b + �Jz + λ√

N
(b† + b)(J+ + J−)

−
∑
l=e,o

gla
†
l al (b + b†)2, (B1a)

HI = 1

2
ωsσz + λs(b

† + b)(σ+ + σ−). (B1b)

Here the Hamiltonian HI describes the extra two-level atom S
with transition operators σz, σ+, and σ−, coupled to the single-
mode bosonic field of the initial normal Dicke model. Also, ωs

is the frequency between the ground state |v〉 and excited state
|u〉 of the extra atom S. The same as before, we prepare the
al mode in the Fock state |ne, no〉a (ne = no + n and ne, no,

n = 0, 1, 2, . . .) and apply a squeezing transformation b =
cosh(rn)bn + sinh(rn)b†

n. Provided that the detuning between
atom S and the single-mode bosonic mode b is much larger
than the coupling strength λs, i.e., |�s| ≡ |ωs − ω|  λs,
and applying the Fröhlich-Nakajima transformation, we then
obtain

Heff = (ωn + δ̃σz )b†
nbn + 1

2
(ωs + δ̃)σz + �Jz

+ λn√
N

(b†
n + bn)Jx + Cn, (B2)

where δ̃ = λ2
s /�s, and we have made a rotating-wave ap-

proximation. We note that the second term in Heff describes
the extra two-level atom. As before, we use the Holstein-
Primakoff transformation, and the Hamiltonian Heff is further
reduced to

Heff = (ωn + δ̃σz )b†
nbn + 1

2
(ωs + δ̃)σz + �d†d

+ λn(b†
n + bn)

(
d†

√
1 − d†d

N
+

√
1 − d†d

N
d

)
+ Cn.

(B3)

We assume that the extra atom S is in a superposed state
α|v〉 + β|u〉, here |α|2 + |β|2 = 1. Then Eq. (B3) could be
rewritten as

Heff = |v〉〈v| ⊗ Hv + |u〉〈u| ⊗ Hu, (B4)

with

Hv = ωvb†
nbn + �(d†d − N/2) + λn(b†

n + bn)

×
(

d†

√
1 − d†d

N
+

√
1 − d†d

N
d

)
+ Cn, (B5)

and

Hu =ωub†
nbn + �(d†d − N/2) + λn(b†

n + bn)

×
(

d†

√
1 − d†d

N
+

√
1 − d†d

N
d

)
+ Cn, (B6)

where ωv = ωn − δ̃ and ωu = ωn + δ̃. By comparing Hv (Hu)
with the Hamiltonian Hn, we find that the extra two-level
atom only changes the frequency of the effective single-mode
bosonic mode with δ̃. At time t , the total state becomes

|
(t )〉 = e−iHeff t (α|v〉 + β|u〉) ⊗ |G〉
= α|v〉 ⊗ e−iHvt |G〉 + β|u〉 ⊗ e−iHut |G〉. (B7)

We have assumed that the photon-dressed atomic ensemble
is initially in the ground state |G〉 = |00〉 of the Hamiltonian
Hn. In the following, we will prove that the dynamics of the
photon-dressed atomic ensemble is sensitive to the state of
the extra atom. We trace over the degrees of freedom of the
photon-dressed atomic ensemble in |
(t )〉; then the reduced
density matrix reads

ρ(t ) = |α|2|v〉〈v| + |β|2|u〉〈u| + (Dα∗β|u〉〈v| + H.c.), (B8)

where D is a decoherence factor, which is given by

D(t ) = 〈G|exp(iHvt )exp(−iHut )|G〉. (B9)

The Loschmidt Echo can be defined as

L(t ) = |D(t )|2, (B10)

and thus we obtain Eq. (3) in the main text. For a short time t ,
L(t ) could be approximated as

L(t ) ≈ exp(−4�δ̃2t2), (B11)

with � = 〈G|(b†
nbn)2|G〉 − 〈G|b†

nbn|G〉2. In the normal phase,
we apply Eqs. (A5) into Eq. (B11), and then we obtain

�np = 2ξ
(b)2
+ ξ

(b)2
− + 2ζ

(d )2
+ ζ

(d )2
− + (ξ (b)

+ ζ
(d )
− + ξ

(b)
− ζ

(d )
+ )2.

(B12)

In the superradiant phase, we apply Eqs. (A12) into Eq. (B11)
(using b̃n to replace bn), and then we obtain

�sp = 2ξ̃
(b)2
+ ξ̃

(b)2
− + 2ζ̃

(d )2
+ ζ̃

(d )2
− + (ξ̃ (b)

+ ζ̃
(d )
− + ξ̃

(b)
− ζ̃

(d )
+ )2

+ γ 2
b [(ξ̃ (b)

+ + ξ̃
(b)
− )2 + (ζ̃ (d )

+ + ζ̃
(d )
− )2]. (B13)

In addition, we could define the purity P = TrS (ρ2
S ) =

TrS{[TrEρ(t )]2} [61] to describe the evolution of two states.
Here, ρ(t ) = |
(t )〉〈
(t )|, and Tr means tracing over the
variables of E or S. Then the purity P can be written as

P = 1 − 2|αβ|2[1 − L(t )]. (B14)

The purity demonstrates the degree of similarity between two
states, which can test the system’s sensitivity. Physically, the
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purity satisfies P � 1. For two identical initial states, P is
supposed to be 1. High sensitivity to the perturbation should
be reflected in a large decay of the purity.

APPENDIX C: CLASSICAL MODEL

In the following, we study the classical counterpart of
the proposed system. We move from the quantum me-
chanical Hamiltonian given by Eq. (A1) to a classical one
by introducing

bn =
√

ωn

2

(
q1 + i

ωn
p1

)
, b†

n =
√

ωn

2

(
q1 − i

ωn
p1

)
,

d =
√

�

2

(
q2 + i

�
p2

)
, d† =

√
�

2

(
q2 − i

�
p2

)
, (C1)

where qi, pi (i = 1, 2) are the position and momentum op-
erators, respectively. This Hamiltonian in the position-
momentum representation can be written as

H ′
n = −N

2
� + 1

2

(
ω2

nq2
1 + p2

1 − ωn + �2q2
2 + p2

2 − �
)

+ λn

√
�ωnq1

[(
q2 − i

�
p2

)√
1 − η

+
√

1 − η

(
q2 + i

�
p2

)]
, (C2)

where η satisfies

η = �2q2
2 + p2

2 − �

2N�
� 1.

We set [q1, p1] = [q2, p2] = 0, and in terms of classical vari-
ables, we have

Hcl = −N

2
� + 1

2

(
ω2

nq2
1 + p2

1 − ωn + �2q2
2 + p2

2 − �
)

+ 2λn

√
�ωnq1 p1

√
1 − �2q2

2 + p2
2 − �

2N�
. (C3)

To analyze the behavior of this classical system for finite N ,
we derive the Hamiltonian Hcl,

dq1

dt
= ∂Hcl

∂ p1
= p1, (C4a)

d p1

dt
= −∂Hcl

∂q1
= p2

(
1 − λn

N

√
ωn

�

xy√
1 − η

)
, (C4b)

dq2

dt
= ∂Hcl

∂ p2
= −ω2

nx − 2λn

√
�ωny

√
1 − η, (C4c)

d p2

dt
= −∂Hcl

∂q2
= −�2y − 2λn

√
�ωnx

√
1 − η

×
[

1 − �y2

2N (1 − η)

]
. (C4d)
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