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We describe the spin-Hall effect of light (as well as the an-
gular Goos-Hänchen effect) at a tilted linear-dichroic plate,
such as a usual linear polarizer. Although the spin-Hall effect
at a tilted polarizer was previously associated with the geo-
metric spin-Hall effect of light (which was contrasted to
the regular spin-Hall effect) [Phys. Rev. Lett. 112, 113902
(2014)], we show that the effect is actually an example of
the regular spin-Hall effect that occurs at tilted anisotropic
plates [Optica 3, 1039 (2016)]. Moreover, our approach re-
veals the angular spin-Hall shift, which is absent in the
“geometric” approach. We verify our theory experimentally
using the method of quantum weak measurements. © 2019
Optical Society of America

https://doi.org/10.1364/OL.44.004781

The spin-Hall effect of light (SHEL) is one of the main man-
ifestations of optical spin-orbit interactions, which have been
intensively studied in the past decade [1–9] (for reviews, see
[10–12]). This phenomenon typically appears at the reflection
or transmission of light beams at various interfaces, and it pro-
duces shifts of the right- and left-hand circularly polarized
beams in opposite directions, orthogonally to the plane of
propagation. Note that these shifts generically appear in both
real (position) and momentum (direction) spaces.

The regular SHEL at a planar interface originates from the
interference of individual plane-wave components in the beam,
which propagate in slightly different directions and acquire
slightly different complex reflection or transmission coefficients
[3,10]. A convenient theoretical description of the SHEL is
provided by a quantum-like formalism with the generalized
wavevector-dependent Jones-matrix operators of the interface
and expectation values of the position and momentum of light
[10,13–15]. Such a description also unifies the transverse
SHEL shifts (also known as the Imbert–Fedorov shifts in
the case of the Fresnel reflection/refraction) and longitudinal
(in-plane) beam shifts associated with the Goos–Hänchen
(GH) effect [5,10,13–15].

In 2009, Aiello et al. put forward the concept of “geometric
SHEL” [16]. This is a spin-dependent transverse shift of the

centroid of the energy flux density (Poynting vector) through
a tilted cross-section of a paraxial optical beam in free space.
This remarkable effect also occurs for vortex beams carrying
orbital angular momentum [17,18], as well as for relativistically
Lorentz-transformed beams (i.e., for space-time tilted cross-
sections) [19,20]. The geometric SHEL was eventually ob-
served experimentally as a SHEL of a beam transmitted
through a tilted dichroic polarizer [21]. In fact, the authors of
Ref. [21] claimed that they observed “a novel kind of the geo-
metric SHEL”, different from that in Ref. [16]. Nonetheless, it
was contrasted to the regular SHEL at optical interfaces because
“the geometric SHEL is practically independent of Snell’s law
and the Fresnel formulas for the interface”, and because of its
tan θ dependence on the angle of incidence, which is “in strik-
ing contrast to the typical cot θ angular dependence of the
conventional SHEL” [21].

Recently, we showed both theoretically and experimentally,
that the SHEL appears not only at isotropic Snell–Fresnel in-
terfaces, but also at the transmission of light beams through
anisotropic wave plates [22] (see also [23,24]). The general for-
malism for the SHEL [10,13–15] is perfectly applicable in this
case, with the Fresnel coefficients being substituted by the
polarization-dependent transmission coefficients of the plate.

Here we show that the spin-Hall effect for a beam transmit-
ted through a tilted polarizer is an example of the regular SHEL
for a tilted anisotropic plate. The only difference is that in the
polarizer case, the birefringence considered in [22] (i.e., the
polarization-dependent phase of the transmitted wave) is
changed to dichroism (i.e., the polarization-dependent ampli-
tude of the transmitted wave). Moreover, the tan θ behavior
observed in [21] is perfectly consistent with the typical cot θ
behavior of the conventional SHEL, because the angle θ for
anisotropic plates should be counted with respect to the
anisotropy axis rather than the normal to the plate [22].
Importantly, we describe and observe the angular SHEL shift,
inherent in the standard-SHEL theory but absent in the geo-
metric-SHEL approach. We verify our theory by experimental
measurements of the SHEL via the method of “quantum weak
measurements” [4,13–15,22,25–29].

Although the geometric-SHEL interpretation advocated in
[21] could also be relevant to the tilted-polarizer system, we
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emphasize that the geometric SHEL strongly depends on the
choice of the theoretical quantity under consideration.
Calculating the centroid of either the energy density, energy
flux density, or momentum flux density, etc., results in very
different shifts, varying from zero to a double-SHEL shift
[16,19,20,30]. Accordingly, the measured effect also depends
on the sensitivity of the detector to this or that quantity,
and it is not clear if the tilted polarizer is sensitive to the energy
flux density as it was assumed in [21]. In contrast, our regular-
SHEL approach uses only the transmission coefficients of the
polarizer and directly provides the intensity distribution of the
transmitted beam. These quantities are unambiguous in both
theory and experiment.

We start with the theoretical description of the problem,
using the nomenclature of the closely related work [22] (see
also [10,13–15]). The geometry of the problem is shown in
Fig. 1(a). The polarization of the incident z-propagating para-
xial beam is described by the normalized Jones vector
jψi � �

Ex
Ey

�
, hψ jψi � jExj2 � jEyj2 � 1. The polarizer is

tilted in the �x, z� plane, such that its absorption axis forms
an angle −θ with the z-axis, and it transmits mostly the y-polari-
zation. In this geometry, and in the zero-order approximation
of the incident plane-wave field, the dichroic action of the
polarizer can be described by the Jones matrix

M̂ 0 �
�
T x�θ� 0
0 T y�θ�

�
, (1)

so that the Jones vector of the transmitted wave is
jψ 0i � M̂ 0jψi (throughout this paper, the prime indicates
the transmitted-beam properties). Here, T x,y represents the
amplitude transmission coefficients for the x- and y-polarized

waves, which can depend on θ. For an ideal polarizer, T x � 0
and T y � 1, but for real dichroic plates we can assume
jT x∕T yj ≪ 1. Note also that T x,y � exp��iΦ∕2� corre-
sponds to the problem with a birefringent waveplate described
in [22].

In the first-order paraxial approximation, taking into
account that the beam consists of many plane waves [31] with
their wavevector directions described by small angles
Θ � �Θx ,Θy� ≃ �kx∕k, ky∕k� [see Fig. 1(a)], the Jones matrix
(1) acquires Θ-dependent corrections [10,13–15], and can be
written as [22]

M̂�Θ� �
�
T x�1� ΘxX x� T xΘyYx

−T yΘyYy T y�1� ΘxX y�
�
, (2)

where

X x,y �
d ln T x,y

dθ
, Yx,y �

�
1 −

T y,x

T x,y

�
cot θ, (3)

are the typical GH and SHEL terms.
Writing the Jones matrix (2) as M̂ � �1 − ikΘx X̂ −

ikΘyŶ �M̂ 0, we obtain the operators of the GH and SHEL
shifts X̂ and Ŷ [13–15,22]. These operators are generally
non-Hermitian; the real and imaginary parts of their expecta-
tion values correspond to the spatial (position) and angular
(direction) shifts of the transmitted beam, respectively.
Assuming, for simplicity, that ImT x,y � 0, we find that the
expectation value of X̂ is purely imaginary, and it describes
the angular GH shift [32,33] of the transmitted beam:

hΘ 0
xi �

1

zR
Im

hψ 0jX̂ jψ 0i
hψ 0jψ 0i � 1

kzR

d ln T
dθ

: (4)

Here, zR is the Rayleigh distance (the angular shift is counted
from the focal plane, so that the actual shift of the beam is
hX 0

zi � zhΘ 0
xi, where z is the propagation distance from the

focal plane), and T 2 � hψ 0jψ 0i � jT xEx j2 � jT yEyj2 is the
intensity transmission coefficient (T � jT x,yj for the x- and
y-polarized beams). Equation (4) perfectly agrees with the
angular GH expression for the beam reflection/refraction at
planar interfaces [5,7,10].

The expectation value of the SHEL operator Ŷ is generally
complex:

hŶ 0i ≡ hψ 0jŶ jψ 0i
hψ 0jψ 0i �

�
−
σ

2k
�T x − T y�2

T 2 � i
χ

2k
T 2

x − T 2
y

T 2

�
cot θ:

(5)

Here, σ � 2 Im�E�
x Ey� and χ � 2Re�E�

x Ey� are the third and
the second Stokes parameters of the incident beam, which
describe the degrees of the circular (spin) and diagonal linear
polarizations, respectively. The real part of this expression
describes the spatial SHEL shift in the focal plane of the beam:
hY 0i � RehŶ 0i, while similarly to Eq. (4), its imaginary part
describes the angular-SHEL shift hΘ 0

yi � z−1R ImhŶ 0i. The
total beam shift at a distance z from the focal plane is given
by hY 0

zi � hY 0i � zhΘ 0
yi.

Remarkably, Eq. (5) precisely coincides with the well-known
expression for the spatial and angular SHEL shifts for the beam
refraction at a Snell–Fresnel interface, if we set the refraction
angle to be equal to the angle of incidence, θ 0 � θ [2,3,7,10].

Fig. 1. (a) Schematic of the transmission of a paraxial beam through
a tilted polarizer. The absorption axis of the polarizer lies in the �x, z�
plane at an angle −θ with respect to the z axis. The small angles
Θ � �Θx ,Θy� determine the directions of the wave vectors k in
the incident beam. (b) Schematic of the experimental setup used
for the quantum weak measurements of the spin-Hall shift of the
transmitted beam.
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Importantly, in contrast to the angular GH shift (4), the SHEL
shifts (5) are present in the ideal-polarizer case, where T x � 0
and T y � 1. Then, expression (5) yields hŶ 0i � −�σ � iχ�
cot θ∕�2kjEyj2�. For a circularly polarized incident beam,
σ � �1, χ � 0, and jEyj2 � 1∕2, this equation yields the
expression −σ cot θ∕k for the geometric SHEL (taking into
account that θ in [16,21] corresponds to θ − π∕2 in this paper).
Thus, the regular-SHEL formalism, with equations completely
equivalent to those at planar Snell–Fresnel interfaces, perfectly
explain the SHEL in the tilted-polarizer system. However, our
theory also predicts the angular SHEL shift given by ImhŶ 0i,
which is absent in the geometric-SHEL approach.

To prove the validity of our approach and to measure the
SHEL at a tilted polarizer, we employ the method of quantum
weak measurements [4,13–15,22,25–29]. In this approach, the
incident beam is linearly y-polarized (“pre-selected”),
jψi � �

0
1

�
, then it passes (almost freely) through the tilted

polarizer under consideration, and then another polarizer
projects (“post-selects”) the transmitted beam onto an almost-
orthogonal polarization state jφi ≃ �

1
ε

�
, jεj ≪ 1. The SHEL

shifts of the resulting beam after the “post-selection” are
described by the complex weak value

hY 0iw � hφjŶ jψ 0i
hφjψ 0i � −

i
ε�k

�
1 −

T x

T y

�
cot θ � −

i
ε�k

Yy : (6)

The small ε in the denominator makes the shift (6) much
larger than the typical subwavelength shift (5). This is the
desired enhancement from the weak-measurement method.
Furthermore, choosing ε to be real or imaginary, one can
choose between the angular and spatial nature of the shift (6)
[27]. The angular shift is easier to measure due to additional
amplification from the propagation factor z∕zR ≫ 1
[4,5,22,25]. It is absent in the geometric-SHEL approach,
and therefore we choose ε to be real.

Note that the weak value (6) diverges at ε → 0 or θ → 0.
This divergence can be regularized by taking into account the
nonlinear correction in the weak-measurement approach
[27,34–36]. This regularization is universal for Gaussian beams
and realized by introducing the prefactor

�
1� k

2zR
jhY 0iwj2

�
−1

in all the beam shifts [36]. As a result, for purely real ε, the
directly observed beam shift is

hY 0
zi �

z
zR

ImhY 0iw
1� k

2zR
jhY 0iwj2

≃ −
z
zR

cot θ

εk

�
1� cot2 θ

2ε2kzR

�
−1

,

(7)

where we set T x∕T y ≃ 0, because in our experiment this quan-
tity is ∼10−3, see Fig. 2.

For experimental measurements of the predicted effect, we
used a sheet polarizer (Thorlabs, USA) and an intensity-
frequency stabilized He–Ne laser (Thorlabs, USA) with
the wavelength λ � 2π∕k � 0.6328 μm. To characterize the
polarizer parameters quantitatively, we measured the dependen-
cies of the transmission coefficients T x,y of the x- and
y-polarized collimated laser beams through the y-oriented
polarizer on the angle of the polarizer tilt, θ. These dependen-
cies (in the logarithmic scale) are shown in Fig. 2. Their deriv-
atives determine the angular GH effect, Eqs. (3) and (4), but
for the SHEL measurements it is sufficient to use the approxi-
mation of an ideal polarizer: T x∕T y ≃ 0.

To measure the SHEL at a tilted polarizer, we used the ex-
perimental setup schematically shown in Fig. 1(b) and entirely
analogous to that used in Ref. [22] with a tilted waveplate.
Polarizers P1 and P2 produced pre-selected and post-selected
polarization states jψi and jφi, respectively, while the lenses
controlled the propagation factor z∕zR. The first lens, L1, of
focal length 50 mm, produced a focused Gaussian beam with

Fig. 2. Experimentally measured angular dependencies of the log-
arithms of the transmission coefficients T x,y�θ�, Eq. (1). The deriva-
tives of these dependencies determine the angular GH shifts according
to Eqs. (3) and (4).

Fig. 3. Spin-Hall effect of light at a tilted polarizer.
(a) Experimentally measured transverse intensity distributions of
the transmitted beam at different angles ε of the polarizer P2, which
determines the “post-selection” in the weak-measurement scheme
Fig. 1(b). (b) Experimentally measured angular dependence of the
spin-Hall shift versus the theoretical dependence (7). The experimen-
tal shift was calculated as a half-difference of the shifts for ε � −0.014
and ε � �0.014, to make it independent of the choice of the y � 0
line. The dashed curve corresponds to the theoretical dependence (7)
without the nonlinear weak-measurement correction.
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the Rayleigh range zR � kw2
0∕2 ≃ 2.273 mm (determined by

measuring the beam waist at the focal plane, w0 ≃ 21.4 μm),
while the second lens, L2, of focal length 75 mm, collimated
the beam and provided the effective propagation distance
z � 75 mm.

First, by tuning the small post-selection parameter ε (via
rotation of the polarizer P2) at the fixed angle θ � 42 deg,
we observed typical SHEL deformations of the intensity
distribution in the transmitted beam, Fig. 3(a). Namely, the
two-hump Hermite-Gaussian y-distribution takes place for
ε � 0, whereas Gaussian-like distributions are considerably
shifted in opposite y-directions for ε � �0.014. Second, we
measured the dependence of the transverse shift of the centroid
of the transmitted beam (for ε � �0.014) on the tilt angle θ.
This is plotted in Fig. 3(b), together with the theoretical pre-
diction, Eq. (7). One can clearly see a good agreement between
theory and experiment, as well as the considerable role of the
nonlinear weak-measurement correction in Eq. (7) for small θ.

In conclusion, we have examined the SHEL and beam shifts
at a tilted linear-dichroic plate (polarizer). Although the SHEL
at a tilted polarizer was previously associated with the so-called
“geometric SHEL” [16,21], we have shown that this phenome-
non represents an example of the regular SHEL at a tilted aniso-
tropic interface [22], and it is fully described by the standard
equations underlying optical beam shifts at various interfaces
[10,13–15]. Furthermore, we have employed the “weak-
measurement” method to strongly amplify and measure the
SHEL at a tilted polarizer by transforming it into the angular
beam shift [4,13–15,22,25–29]. Our results once again dem-
onstrate the generic and universal character of the SHEL at
various optical interfaces.
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