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Nonreciprocity and one-way propagation of optical signals
are crucial for modern nanophotonic technology, and
typically achieved using magneto-optical effects requiring
large magnetic biases. Here we suggest a fundamentally
novel approach to achieve unidirectional propagation of
surface plasmon-polaritons (SPPs) at metal-dielectric inter-
faces. We employ a direct electric current in metals, which
produces a Doppler frequency shift of SPPs due to the
uniform drift of electrons. This tilts the SPP dispersion, en-
abling one-way propagation, as well as zero and negative
group velocities. The results are demonstrated for planar
interfaces and cylindrical nanowire waveguides. © 2018
Optical Society of America

OCIS codes: (240.6680) Surface plasmons; (250.5403) Plasmonics;
(230.3810) Magneto-optic systems.
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Nonreciprocity and unidirectional propagation of electromag-
netic waves are highly important topics in modern optics, cru-
cial for nanophotonic, quantum-optical, and optoelectronic
applications [1-10]. The main mechanisms generating one-
way propagation and strong nonreciprocity are magneto-optical
phenomena [2,3,9-11], including topological quantum-Hall
effect [2,3], nonlinearity resulting in optical diodes and circula-
tors [4,8,12—14], and other methods breaking time-reversal
symmetry in the system [5,6].

The study of surface waves and plasmonics is another inher-
ent part of nanophotonics, which allows reduction of the length
scales and dimensionality of various electromagnetic phenom-
ena [15,16]. Not surprisingly, nonreciprocity and unidirec-
tional propagation of surface plasmon-polaritons (SPPs) have
recently attracted considerable attention [17-22]. These studies
mostly deal with magneto-optical nonreciprocity in the trans-
verse Voigt geometry, including topological quantum-Hall-
effect states [20,23,24].

Here we put forward a novel mechanism resulting in one-
way propagation of SPPs at metal-dielectric interfaces. Namely,
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we show that in the presence of a longitudinal direct electric
current, the SPP spectrum becomes nonreciprocal, with unidi-
rectional propagation in a certain frequency range. This is
caused by the Doppler shift of the wave frequency in the
drifting electron plasma. Furthermore, the SPP spectrum is
deformed such that the group velocity of SPPs propagating
along the current vanishes at a critical wave vector, and then
becomes negative for larger wave vectors. Thus, the electric-
current-induced nonreciprocity is qualitatively different
compared to the known magnetic-field-induced case.

Importantly, we show that the nonreciprocal effect from the
electric current can be comparable with the magneto-optical
one at reasonable values of the system parameters. Moreover,
we consider SPPs at a planar metal-dielectric interface, as well
as in a cylindrical nanowire. Metallic nanowires provide a
highly efficient platform for plasmonics and metamaterials
[25-28], and they can be naturally biased by a direct electric
current. As we show below, this results in the nonreciprocal
properties of nanowire plasmons.

To start with, we consider SPPs propagating along the
planar metal-vacuum interface x = 0, in the %z directions,
as shown in Fig. 1. We employ the simplest Drude model
of the metal (neglecting losses) with the permittivity

Electric current

metal

Magnetic fieid '
H ¥
Fig. 1. Schematic diagram of a surface SPP propagating along the
metal-vacuum interface [15,16]. The applied magnetic field H and
direct electric current J are shown.
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e(w) = 1-w? / @” and plasma frequency @, It is well known

(15,16] that SPPs exist at frequencies @ < w,/ V2, ie.,
€ < -1, and propagate along the interface with wave vector
k, = k)2, k, = cko/-€/~/-1 - ¢, |k,| > ko. Hereafter, the
overbar denotes the unit vectors of the corresponding axes,
ky=w/c, and we introduced the parameter ¢ = sgnk, =
+1 indicating the SPP propagation direction. The function
ky(@) determines the dispersion relation of SPPs (see the
dashed curve in Fig. 2). The SPP field decays away from
the interface with the exponential-decay rates k; = k,//-¢
(in the vacuum, x > 0) and k, = \/_ £, (in the metal, x < 0).

We first briefly describe the nonreciprocity and unidirec-
tional propagation of SPPs in the presence of a transverse mag-
netic field H = Hy [18-20]. Usually, it is calculated using the
anisotropic permittivity tensor of the magnetoactive metal.
However, we employ a simpler way to derive the same results.
Recently, some of us have shown [29,30] that the (x, z)-plane
rotation of the electric field of the SPP induces the correspond-
ing orbital motion of electrons in the metal and, hence, the
transverse magnetization due to the inverse Faraday effect.
(This property is related to the transverse spin of SPPs [31],
which is currently attracting considerable attention [32-34].)
Using Gaussian units, the magnetization of the metal can be
written as [29,30]

ew de Eq|? -

M= i o Im(E* xB) = o |¢%W exp(26,%)§. (1)
Here ¢ = (87w)™!, E(r) is the complex electric field in
the SPP wave, omitting exp(-iwt), E; is its amplitude right
above the metal, whereas ¢ < 0 and m are the electron charge
and mass, respectively. The magnetization (1) means that SPPs,
being mixed light-electron quasiparticles, carry transverse mag-
netic moment i  oy. It can be calculated as a ratio of the integral
magnetization (1) to the number of the quasiparticles. Using
the standard Brillouin energy density W, this yields [29,30]

hw ZJ_
r=0 M) = oz Hs¥> @
where (...) = [...dx, and pp = hle|/2mc is the Bohr mag-
neton. The absolute value of the magnetic moment (2)
grows from 0 to pp as the SPP frequency @ changes from 0
to w, / V2.

Equations (1) and (2) describe the intrinsic properties of
SPPs without an external magnetic field. Applying the magnetic
field H = Hy leads to the Zeeman interaction with the mag-
netic moment (2), - - H, which shifts the energy (frequency)
of the SPP [35]. Denoting the SPP frequency without a
magnetic field as wy(#,), the Zeeman-shifted frequency in
an external magnetic field becomes w(k,) = w(k,) + dw(k,):

€

T+ 2° @)
Here Q = -¢H/mc is the cyclotron frequency of the
electrons in the magnetic field H, and the correction S
depends on %, via €[wy(k,)]. The modified SPP dispersion (3)
is shown in Fig. 2(a). The magnetic correction makes the
spectrum  nonreciprocal, i.e., depending on the propagation
direction o. In particular, the cutoff frequency @ / V2 s
now shifted to ®,/+/2 +cQ/2. This means that in the
range @ € (w,/~2-Q/2, a)/\/_—i—Q/Z) SPPs become

unidirectional, i.e., propagating only in the positive (negative)

bw=-h'py-H=-
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Fig. 2. Nonreciprocal modifications of the SPP spectra caused by
(a) a transverse magnetic field, Eq. (3), and (b) a longitudinal direct
electric current, Egs. (5) and (6). The dashed curves show the unper-
turbed reciprocal SPP dispersion @ (#,). The frequency ranges with
the one-way SPP propagation and the wave vector range with the
negative group velocity of SPPs are marked by yellow and blue, respec-
tively. The parameters are (a) Q = 0.2w, and (b) and # = -0.1c.

z-direction for H > 0 (H < 0). Notably, the magnetic correc-
tion to the dispersion (3) exactly coincides with the one calcu-
lated in [18] using anisotropic permittivity of the metal in a
magnetic field.

We are now in the position to consider SPPs in the presence
of a direct electric current with density J = Jz flowing in the
metal. In this case, the problem can be readily analyzed in terms
of the modified permittivity €(w). Indeed, the presence of the
current means that free electrons in the metal move with the
velocity u = J /ne, where n = mw?/4ne* is the volume
density of the electrons. This movement of the electron plasma
produces the Doppler frequency shift ® — @ - ku in the metal
permittivity [36]:

o, "
(0 - kll,u)2 ' @
Considering the z-aligned propagation of SPPs, we can still em-
ploy the wusual form of the SPP dispersion relation,
k, = ko+/-€/~/-1 - & but now with the Doppler-modified
permlttmty (4). Expanding this in the linear approximation
in the drift velocity # we arrive at the following dispersion
relation:

elw)=1-

1-
w:a)o(/ep)+l+ .

The current-modified SPP dispersion (5) is nonreciprocal,
as shown in Fig. 2(b). Moreover, this nonreciprocity differs

ok, | (5)
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qualitatively from the known magnetic-field case, Fig. 2(a).
Indeed, the cutoff frequency asymprote @, / V2 (for |k,| — o0)

is now tilted as w,/~/2 + k,u, rather than split. The most
4 14

interesting feature of the modified dispersion is that it has an

inflexion point:

. @ c 3 . [0 3 .
kmf — _ pd —, kmf — o _kmf . 6
» «/EC (21/{) w( » ) \/Z + 2" u. ( )

The SPP group velocity v, = dw/0k, vanishes and changes its

sign in this point. For positive current J > 0, # < 0, /ezi,“f >0,
. . inf ..
and the group velocity becomes negative for £, > £,*. This is

because slow SPPs near the cutoff frequency @, / /2 are dragged
by the flow of electrons in the backward direction. Furthermore,
the inflexion point (6) determines the maximum frequency of
the SPPs propagating along the current J. For @ > w(/e}“f),
SPPs become wunidirectional, propagating only in the direction
opposite the current. Due to the tilt of the cutoff asymptote,
the unidirectional-propagation range is not limited from above
by a higher frequency. However, practically, high wave numbers
|k,| are accompanied by strong absorption of SPPs [16].

The inflexion-point parameters are determined by the ratio
of the electron drift velocity to the speed of light: |#|/c < 1.
For typical laboratory currents, this is a very small parameter.
However, the power of 1/3 makes the inflexion-point character-
istics not too extreme, resulting in observable consequences at
feasible parameters. In particular, the current-induced cutoff
frequency shift ~£" % could be of the order of or even larger
than the similar magnetic-field-induced shift ~€.

For example, Ref. [21] considered a gold nanowire of radius
7o =107 cm in the presence of an electric current
T =ar3J = 75107 A; see Fig. 3. Using the free-electron
density in gold, 726 -10* cm™, we find the electron drift
velocity |u| ~2.5-10% cm/s~0.8-10° ¢. The SPP cutoff
frequency was wp/ﬁ:4.8 .10 571, and the SPP wave
number [k,| =2 - 107 cm™!. Reference [21] examined the
nonreciprocal effect of the azimuthal magnetic field generated
by the current, H, = 27 /cry~1.5-10° G (and enhanced
by a magnetoactive dielectric around the wire), but neglected
the direct electric-current effect on surface plasmons. In
fact, the above parameters correspond to the cyclotron fre-
quency Q=~3-10' 57! and the Doppler frequency shift
|kyu| =5 - 10! 57! > Q. Moreover, the chosen wavenumber
exactly corresponds to the inflexion point (6): [,| =~ |k1",,“f|,
where the group velocity in the current direction vanishes,
and only the backward propagation is possible. Thus, the elec-
tric-current nonreciprocity is stronger than the magnetic-field
one (in a pure metal, without a magnetoactive dielectric), and it
can provide one-way propagation for these parameters.

To properly analyze the electric-current effect in a nanowire,
we now consider SPPs in the cylindrical geometry of a metallic
wire of radius ry, Fig. 3. For the sake of generality, we introduce
the permittivity &; > 0 and permeability y; > 0 outside the
wire and the permittivity &, < 0 and permeability y, > 0
inside the wire (later we set &; = u; = p, = 1). The funda-
mental plasmonic wire mode is TM polarized and, hence,
can be described by the vector potential A = Az [37], where
A is the zero-order solution of the scalar wave equation in the
cylindrical coordinates (7, @, 2):
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Fig. 3. Schematic diagram of an SPP mode of a metallic nanowire.
The direct electric current J in the nanowire and the corresponding
induced magnetic field H (considered in [21]) are shown.

7"<7’0,

bK o1 ), (7

r> 7.

A= Aoeikpz{ dIO(KZr))

Here k, is the propagation constant, ky, = 4/, - k7 , are the

radial exponential-decay constants, ki, = /€1, 2k are the
wave numbers in the two media, while /) and K, are the modi-
fied Bessel functions. The amplitudes (4, 6) in Eq. (7) are to be
determined. The wave electric and magnetic fields in each
medium are given by [37]

E= z'/eOA+’2ﬁV(v A, H=—v<a (9

ki, Hi
Substituting the potential (7) into Eq. (8), we obtain all vector
components of the wave fields. Applying the electromagnetic
boundary conditions at 7 = g, we arrive at the system of equa-

tions for the amplitudes (4, b):
M(“) = (K%&ﬂl[o@z) —K%52H2K0@1)> (ﬂ) -0
2k 12K 1 (pr) b
(9)

b 204111 (p2)
where p; , = Ky ,79. Equation (9) has nontrivial solutions only
when D =det M =0, which provides the transcendental
characteristic equation D(@, k£,) = 0 for the plasmonic mode
dispersion.

Similar to the planar SPP case, we introduce the effect of the
electric current via the Doppler shift (4) in the Drude-metal
permittivity €, = e(w). The drift velocity of the electrons is re-
lated to the current as Z = 773 J = mrineu. Substituting the
Doppler-modified permittivity (4) into the characteristic equa-
tion, we numerically find the modified dispersion relation for
the fundamental SPP mode in the electric-biased nanowire.
Figure 4 shows the dispersion relation for a nanowire with
w, = 10 57!, 7o =20 nm, and different values of Z.
Panel (a) shows the modified dispersion for a very high value
of the current Z = 30 A, chosen to exaggerate the nonrecip-
rocal effect, while panel (b) displays the zoomed-in perturba-
tion of the SPP dispersion for realistic smaller currents
Z <1 mA. All the features discussed for the planar SPP, in-
cluding the one-way propagation and negative group velocity
ranges, can be clearly observed here.

In conclusion, we have proposed a simple, yet fundamental,
way to achieve unidirectional propagation of surface SPPs using
a direct electric current in metals. The one-way propagation of
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Fig. 4. Nonreciprocal electric-current-induced modifications of the
SPP spectra in a metallic nanowire with @, = 10'¢ 57! and radius
ro = 20 nm. (a) Unidirectional-propagation and negative-group-
velocity ranges are shown for a very high current Z = 30 A; cf.
Fig. 2(b). (b) Small nonreciprocity from realistic currents Z < 1 mA
is depicted in the form of the deviation dw(k,) from the reciprocal
dispersion @ (k,).

optical signals, in analogy to electronic isolators, is considered
as a fundamental requirement for enabling photonic high-speed
all-optical processing that could substitute current microelec-
tronic components. Nonreciprocal propagation requires
breaking the time-reversal symmetry in the system. This is
usually done via magneto-optical effects requiring large mag-
netic biases. In contrast, our proposal is based on the use of
an electric current, which can be naturally generated in plas-
monic waveguides. The ability to achieve one-way optical
propagation using direct electric currents is conceptually simple
and inherently compatible with modern microelectronics in-
dustry. This approach does not require bulky external magnets
and can be easily implemented in an on-chip integrated
environment potentially combining electrical and optical
components.
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