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Whispering-gallery-mode (WGM) microresonators provide a high-performance platform for measuring single nano-
particles and viruses, as well as large molecules. However, there is still room for further improving their sensitivity and
detection limit, towards their theoretical limit. Here, we present a new method that enhances the performance of
WGM sensors based on the mode-splitting method. We show that scatterer-induced mode splitting is significantly
enhanced in a rotating resonator. This enhancement originates from the different Sagnac frequency shifts that the
clockwise and counterclockwise optical fields in the resonator experience due to the rotation of the resonator. Our
approach, combining Sagnac shift and mode splitting, provides a new route for enhancing the coherent optical sensing
of nanoparticles with single-particle resolution. In addition, our results shed light on the studies of, e.g., topological or
optoacoustic effects with rotating devices. © 2018 Optical Society of America under the terms of the OSA Open Access
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1. INTRODUCTION

Whispering-gallery-mode (WGM) optical resonators with their
high quality factors and small mode volumes, enabling strong
light–matter interactions, have become a versatile platform for fun-
damental studies and technological applications of light and its
interactions with matter [1,2]. A prominent example, closely re-
lated to the present study, is ultrasensitive detection of, e.g., weak
forces [3], displacement [4], and magnetic field [5] with WGM
resonators. In particular, label-free and self-referencedWGM sens-
ing of nano-objects based on mode splitting (i.e., splitting of a res-
onance mode into two resonances with different frequencies and
linewidths) induced by a nano-object entering themode volume of
the resonator has emerged as a promising new technology with
widespread applications in, e.g., medical diagnosis and environ-
mental monitoring [6–9]. This technique can accurately count
and size nanoparticles as small as 10 nm in radius, with also supe-
rior suppression of noises (such as frequency fluctuation, thermal
or back-action noise, andmotional disturbance) [8,10]. To further
improve the sensitivity of WGM sensors, considerable efforts have
been made towards suppressing losses, decreasing the resonator
mode volume, or utilizing topological degeneracies arising from
the non-Hermiticity of the waveguide-coupled resonators, such
as recent experiments utilizing plasmonic particles [11–13], optical
gain [10,14], or exceptional points [15–19].

Here, we show that the performance of a WGM nanoparticle
detector can be enhanced by utilizing relativistic motional effects of
light, without the need for loss compensation or WGM–plasmon
hybrid structures. Specifically, we utilize the Sagnac effect, which
induces opposite frequency shifts to counterpropagating optical
modes in a spinning resonator [20], to further enhance the
scatterer-induced mode splitting. Sagnac- and rotation-induced
effects have been theoretically and experimentally investigated for,
e.g., sensitive measurements of angular velocity of the medium in
optical gyroscopes [21,22], optical chiral symmetry breaking [23],
rotational Doppler effect [24], rotary photon drag [25], nonrecip-
rocal light or sound propagation [26,27], and magnetometry [28].
However, the possible role of a rotating WGM resonator in single-
particle sensors has not yet been explored, to the best of our
knowledge. Our scheme is experimentally accessible, as the
required experimental techniques and platforms are readily avail-
able [8,18,22]. Also our method is compatible with existing
WGM-sensing techniques and thus, besides an additional
Sagnac-induced increase in mode splitting, advantages of the
WGM sensors as demonstrated in Refs. [8,10], such as self-ref-
erencing, ultrasensitivity to perturbations, fast detection, and im-
munity to thermal drift and laser noise [10,26,29,30], can be
integrated into our proposed method.
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2. RESULTS AND DISCUSSION

A. Model and Working Principle of a Spinning
Nanoparticle-Detector

We consider a waveguide-coupled WGM optical resonator with a
single nanoparticle (or scatterer) in its mode volume, as shown in
Fig. 1(a). This resonator, with optical resonance frequency ωa and
intrinsic loss γa, is probed with an optical field at frequency ωl,
which is input in the clockwise (CW) direction [i.e., no input
field in the counterclockwise (CCW) direction]. Here, the reso-
nator is rotated, and the waveguide is stationary. Such a system
with a spinning resonator and stationary waveguide was experi-
mentally realized in a recent work by Maayani et al. who also
showed that such a system can be used for optical nonreciprocity
[26]. In the experiment, a resonator with radius R � 1.1 mm was
mounted on a turbine, which spins the resonator stably around its
axis, reaching the rotation frequency 6.6 kHz [26]. By positioning
the resonator near a single-mode fiber, the light can be evanes-
cently coupled into or out of the resonator through the tapered
region. The spinning resonator drags air into the region between
the taper and the cavity, so that a boundary layer of air forms. Due
to the air pressure on the surface of the taper that faces the res-
onator, the taper flies above the cavity, the position of which can
be self-adjusted [26], leading to stable resonator–fiber coupling.
The particle in the evanescent field of the resonator acts as a scat-
terer, inducing the coupling of CW and CCW propagating modes
with strength J and thus leading to an optical mode splitting [8].
Mode splitting induced by other factors such as surface roughness
or material inhomogeneity can be pre-detected and thus mini-
mized [8,10,26], or modes and resonators without such intrinsic
mode splitting can be used. We note that by directly revealing
particle polarizability (a parameter depending on the size, shape,
and refractive index of the particle) [8], this technique can dis-
criminate between particles of the same size but different refrac-
tive indices or shapes [8,10].

The CW and CCW modes in the spinning resonator
experience different refractive indices [26], i.e., n� � n�1�
RΩ�n−2 − 1�∕c�, where n and R denote, respectively, the refractive
index and the radius of the resonator, Ω is the rotation speed, and
c is the speed of light in vacuum. As a result, the frequencies of
CW and CCW modes of a resonator experience Sagnac–Fizeau
shifts [31], i.e., ωa → ωa � Δsag, with

Δsag �
nRΩωa

c

�
1 −

1

n2
−
λ

n
dn
dλ

�
, (1)

where λ is the wavelength of the probe light. The dispersion term
λdn∕ndλ makes up 1% of the value of �1 − 1∕n2�, which char-
acterizes the relativistic origin of the Sagnac effect [31]. The
underlying physics is indeed well known [31]; however, the
possibility of using it to enhance the performance of a particle
sensor has not been explored previously.

In the rotating frame at the frequency ωl of the probing field,
the effective Hamiltonian of the system in the traveling-wave basis
can be written as [8,15]

H eff � �Δ� − iγ�a†cwacw � �Δ− − iγ�a†ccwaccw � �J − iγc�a†cwaccw
� �J − iγc�a†ccwacw � i

ffiffiffiffiffiffi
γex

p
ain�a†cw − acw�, (2)

with

Δ� � Δa � J � Δsag, γ � �γa � γex�∕2� γc , (3)

where γ is the total optical loss, acw or accw denotes the intra-
cavity field of the CW or CCW mode, Δa � ωa − ωl , γex is
the waveguide–resonator coupling rate, γc denotes the optical
loss induced by the particle, and ain is the amplitude of the probe
field. The last term in Eq. (2) implies that the optical field is
input only in the CW direction. The system studied here is fully
classical, and acw,ccw can be treated as classical numbers. The
eigenfrequencies of this system are readily derived as

ω1,2 � ωa � J � ω 0 − i�γ � γ 0�, (4)

where

2ω 0 � �2�D2 � 4J2γ2c �1∕2 � 2D�1∕2,
2γ 0 � �2�D2 � 4J2γ2c �1∕2 − 2D�1∕2, (5)

and D � Δ2
sag � J2 − γ2c . The complex optical frequency splitting

is then found as Δω � ω1 − ω2 � 2ω 0 − 2iγ 0, which is now
strongly affected by rotation speed Ω.

B. Enhanced Mode-Splitting in a Spinning Resonator

Here, we consider that the scatterer falls onto the surface of the
resonator and stays on the resonator, rotating with it, similar to
the particles on a stationary WGM resonator [8,10]. In the fol-
lowing, we compare the particle-induced mode splitting in a spin-
ning resonator with that in a stationary resonator, assuming that
the particles falling onto the surface of the stationary and spinning
resonators attach to the surface and stay at their place. Figure 1(b)
shows the schematic of the energy levels of optical eigenmodes,
which are strongly related to the detection limit. For a stationary
cavity, two orthogonal standing wave modes (SWMs) are formed
by the presence of the particle. The particle is detectable if the
SMWs can be resolved in the transmission spectrum. The strict
condition for the resolvability of mode splitting in the transmis-
sion spectrum was previously defined as J > γ [32], which can be
generalized to ω 0 > γ for the spinning case. Also, the upper limit
of the detection is r ≪ λ [8], where r is the radius of the particle.
To compare the frequency splitting in a rotating system and that
in a stationary system, we define the enhancement factor

η �
���� Δω�Ω ≠ 0�
Δω�Ω � 0�

���� �
�
D2 � 4J2γ2c
�J2 � γ2c �2

�
1∕4

> 1: (6)

Clearly, factor η depends on the rotation speed of the resonator
and the frequency splitting induced by the particle. We note that

(a) (b)

Fig. 1. (a) Schematic of a single nanoparticle sensor with a spinning
resonator. The resonator with rotation speed Ω is driven by an optical
field. A nanoparicle placed in the mode volume of the resonator induces
a coupling with strength J between the CW and CCW modes.
(b) Schematic of the energy levels of the optical eigenmodes. The fre-
quency splitting of 2J for a stationary resonator (Ω � 0) is increased
by the Sagnac effect toΔω > 2J when the resonator is spinning (Ω ≠ 0).
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for a stationary system, there is no observable splitting in the
transmission spectrum if J < γc . Therefore, in evaluating η in
Eq. (6). we restrict the discussion to the case J > γc (i.e., observ-
able splitting for the stationary resonator). Under this condition,
D2 � 4J2γ2c > �J2 � γ2c �2, and hence D2 > �J2 − γ2c �2 should be
satisfied to have η > 1. It is easy to show that D2 > �J2 − γ2c �2 is
always true, implying that η is always greater than one (i.e.,
η > 1). Thus, mode splitting in a spinning resonator (i.e., Ω ≠ 0)
is always larger than mode splitting in a stationary resonator
(i.e., Ω � 0) for the same perturbation. We mention that par-
ticle position does not affect the Sagnac-induced enhancement
(or change) in the splitting, but it does affect the splitting due
to scatterer-induced modal coupling [8]. Thus enhancement of
the Sagnac-based scheme over the stationary-resonator-based
schemes utilizing mode splitting is not affected by the position
of the particle. Similar to stationary sensors, the spinning sensor
is also robust against additional (but detectable) noises or uncer-
tainty of, e.g., rotation speed [22,26,28,33]. Moreover, the rotary
uncertainty or the uniformity of the resonator can be optically
detected and overcome via designing or calibrating the resonator
and related systems [22,28,33].

Figure 2(a) shows enhancement factor η as a function of ro-
tation speed for different particle-induced mode couplings. In our
calculations, we choose experimentally available values [8,17,26],
i.e., n � 1.44, ωa � 193.5 THz, and γex � γa � 6.43 MHz. In

Fig. 2(a), we choose R � 1.1 mm, J∕γa � 1.5, and γc∕γa � 0.3
for case A, while we choose R � 0.5 mm, J∕γa � 1.1, and
γc∕γa � 0.065 for case B, as in experiments [17,18]. The values
of J and γc depend on the radius or the refractive index of the
particle, and the mode volume of the resonator [8,18]. We find
that η increases with rotation speed Ω, leading to enhanced fre-
quency splitting. We note that rotation speed Ω � 6.6 kHz for
R � 1.1 mm has been realized experimentally [26]; for compar-
isons, we also plot the case with accessible parameters Ω �
30 kHz and R � 0.5 mm. We also note that much higher
frequencies of rotation have been realized in recent experiments
[34,35]. These results imply that spinning the resonator provides
a potentially helpful way to further improve the performance of
the particle sensor. Thus, particles that may go undetected with a
stationary sensor may be detected with a spinning resonator.

C. Enhancement of Transmission in a Spinning
Resonator

The rotation also induces resonance frequency shifts for optical
modes, so that the intracavity fields can be strongly modified. To
clearly see this, we derive the steady-state values of the fields
in the CW and CCW directions as

ācw �
ffiffiffiffiffiffi
γex

p
ain�γ � iΔ−�

�γ � iΔ���γ � iΔ−� � �J − iγc�2
,

āccw � −
ffiffiffiffiffiffi
γex

p
ain�iJ � γc�

�γ � iΔ���γ � iΔ−� � �J − iγc�2
, (7)

and define the relative photon number as

β � jācwj2
jāccwj2

� γ2 � �Δa � J − Δsag�2
J2 � γ2c

: (8)

Figure 2(b) shows that β depends on both rotation speed Ω
and optical detuning Δa. For Δa∕J ≤ −1, β always increases
with Ω, while for Δa∕J > −1, β first decreases, arriving at a mini-
mum at Δsag � Δa � J , and then increases with increasing Ω.
We see from Eq. (7) that the intracavity photon numbers of
both the CW and CCW modes decrease with Ω, as a result of
the shifted optical resonance. However, for a high rotation speed
Ω, the Sagnac shift Δsag exceeds Δa and J , leading to a larger
value of β, and thus significantly affecting the properties of light
propagation.

By using the input–output relation, aout � ain −
ffiffiffiffiffiffi
γex

p
ācw ,

where aout is the amplitude of the output field, we obtain the
optical transmission rate

T �
���� aoutain

����
2

�
����1 − γex�γ � iΔ−�

�γ � iΔ���γ � iΔ−� � �J − iγc�2
����
2

: (9)

Figures 3(a) and 3(b) show the transmission rate T for the case
γc∕γa � 0.3 (case A in Fig. 2) as a function of optical detuning.
In the absence of a particle, a stationary resonator supports two
degenerate modes with the same frequency but opposite propa-
gation directions (CW and CCW traveling modes), exhibiting a
resonance dip at Δa � 0 in the transmission spectrum. When the
same resonator spins at speed Ω, the resonance dip shifts to Δa �
−Δsag due to the Sagnac effect [blue curves in Figs. 3(a)–3(b)].
When a nanoparticle enters the mode volume of the sta-
tionary resonator, scattering-induced modal coupling leads to
two orthogonal standing-wave modes, which are reflected in the
transmission spectrum as two spectrally different resonances. The
asymmetry in the spectrum implies that the particle induces

(a)

(b)

Fig. 2. Sensitivity enhancement factor η (a) and relative photon
number β � jācwj2∕jāccwj2 (b) as a function of rotation speed Ω.
We choose R � 1.1 mm, J∕γa � 1.5, and γc∕γa � 0.3 for case A,
and R � 0.5 mm, J∕γa � 1.1, and γc∕γa � 0.065 for case B, as in
recent experiments [8,17,18]. Also, J and γc depend on the properties
of the particle and the resonator [8,17,18].
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different losses to the two orthogonal modes. For a spinning res-
onator with a nanoparticle in the mode volume, the resonance
dips of the split modes shift to Δa � −J � ω 0. If Ω, for example,
is tuned from 0 kHz to 6.6 kHz, the frequency splitting increases
from 19.35 MHz to 20.51 MHz. The difference in linewidth,
however, changes slightly. The resonance shift and the enhance-
ment of frequency splitting due to Sagnac effect lead to changes
in the transmission at fixed frequency detuning Δa � −Δsag.
For example, in the presence of a particle, the change in the
transmission for Ω � 6.6 kHz is twice that for Ω � 0, as shown
in Figs. 3(a)–3(b).

We note that the location of the particle affects mode split-
ting due to the scatterer-induced modal coupling but not the en-
hancement (or change) in mode splitting due to the Sagnac effect
(in a spinning resonator). In the case of mode splitting due to the
scatterer-induced modal coupling, a particle located in a high-
intensity field in the mode volume leads to a larger mode splitting
than the same particle located in a low-intensity field in the
mode volume. However, Sagnac-induced enhancement in mode
splitting, depending on the spinning speed of the resonator,
is the same for the particle located in the low or high field in
the mode volume. Hence, in experiments it is possible to distin-
guish these two different kinds of effects. Also we note that the
Sagnac effect can lead to an observable frequency shift of the out-
put spectrum even for the case without any particle. Therefore,
by analyzing the change of, e.g., the transmission spectra of the
probe light, the additional effect induced by the scatter can also
be identified by analyzing, e.g., the locations of the minima of the
transmission curve.

To show the impact of the particle on light propagation in
a spinning resonator, we define the transmission difference:
ΔT � T − T 0, where T and T 0 are the optical transmission

with and without the particle, respectively. Figure 3(c) shows that
for a high rotation rate, ΔT can be tuned in a large range. We
note that ΔT can be changed even for a slow rotation speed. For
example, for Δsag ≪ γa, J, we have

ΔT �Δa � 0� ≈ J2 � γ2c � 2JΔsag

�γ � γc�2 � 4J2
: (10)

The term 2JΔsag in the numerator of Eq. (10) implies that the
effect of frequency splitting on the transmission is enhanced by
the rotation speed of the resonator. In other words, the transmis-
sion of a spinning resonator is very sensitive to perturbations
induced by a particle.

Then we consider the transmission rate for the case γc∕γa �
0.065 (case B in Fig. 2) with much higher rotation speeds.
Figure 3(d) shows the transmission rate T for Ω � 30 kHz.
We find that compared with case A (i.e., γc∕γa � 0.065) with
Ω � 6.6 kHz, the spectrum is strongly modified for higher rota-
tion speed. If Ω is increased from 0 kHz to 30 kHz, the frequency
splitting increases from 14.19 MHz to 20.13 MHz. Figure 3(e)
shows the dependence of T on Δa and Ω. Clearly, the frequency
splitting is broadened for a large value of Ω. In this regime,

ācw ≈
ffiffiffiffiffiffi
γex

p
ain

γ � i�Δa � J � Δsag�
from which we find that the intracavity photon number of the
CW mode for Δa < 0 is larger than that for Δa > 0. As a result,
strong absorption emerges in the Δa < 0 regime, which is in sharp
contrast to the stationary system. Figure 3(f) shows that depend-
ing on both optical detuning and rotation speed, ΔT can be tuned
to be positive or negative with a fixed optical detuning, indicating
also a convenient way to observe the splitting induced by the
particle.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Transmission rate T as a function of optical detuning Δa for Ω � 0 (i.e., a stationary resonator) (a), Ω � 6.6 kHz (b), and Ω � 30 kHz (d).
(c) Transmission difference ΔT as a function of optical detuning Δa. (e) Transmission rate T as a function of optical detuning Δa and rotation speed Ω.
(f ) Transmission differenceΔT as a function of detuningΔa and rotation speedΩ. We choose R � 1.1 mm, J∕γa � 1.5, and γc∕γa � 0.3 (i.e., case A in
Fig. 2) in (a)–(c), and R � 0.5 mm, J∕γa � 1.1, and γc∕γa � 0.065 in (d)–(f ) (i.e., case B in Fig. 2).
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D. Multiparticle Detection with a Spinning Resonator

The above discussion can be generalized to a more practical case
with several particles falling into the mode volume one by one. In
this situation, the effective Hamiltonian can be written as

H 0
eff � �Δ 0� − iγ 0�a†cwacw � �Δ 0

− − iγ 0�a†ccwaccw � C1a†cwaccw

� C2a†ccwacw � i
ffiffiffiffiffiffi
γex

p
ain�a†cw − acw�, (11)

where

Δ 0
� � Δa �

XN
i�1

Ji � Δsag, γ 0 � �γa � γex�∕2�
XN
i�1

γc,i,

C1,2 �
XN
i�1

�Ji − iγc,i� exp�	i2mβj�, (12)

where �Ji − iγc,i� and βi are the complex frequency splitting and
angular position of i-th particle, N is the particle number, and
m is the azimuthal mode number. Figure 4 shows discrete up
or down jumps of the frequency splitting with nanoparticles
continuously deposited on the sensor, in which random values of
�Ji − γc,i� and βi are chosen. It is obvious that detection sensitivity
is enhanced for each particle by spinning the resonator. We note
that a higher rotation speed can be achieved for a smaller reso-

nator, leading to further enhanced detection sensitivity, as shown
in Fig. 4(b).

3. CONCLUSION

In conclusion, we have showed that spinning a WGM resonator
enhances the performance of a WGM-based nanoparticle detec-
tor. Compared to a stationary sensor, our scheme features both an
enhanced mode splitting and a strongly modified transmission
spectrum, providing a new way to enhance the sensitivity of
WGM-based particle sensors, without the need for complex ma-
terials, hybrid systems, optical gain, or low temperatures. Our
proposed method is complementary to other state-of-the-art sens-
ing techniques already achieved experimentally, using, e.g., an
active resonator [10] or a sensor operating at an exceptional
point [18,19].

We note that rotating resonators or sensors have been pursued
very recently in various experiments [22,26,28], with precisions
limited by—as also in their stationary counterparts—optical
absorption, optical recoil noise, or the motion of the particles.
Future works will consider the effect of various losses and noises
on the performance of these sensors and an in-depth study of
time-varying interaction between WGM field and the flying-
by nanoparticles [8]. Finally, besides sensing, our results may
potentially lead to the use of spinning resonators in engineering
of, e.g., topological or optoacoustic devices.

APPENDIX A: EXPERIMENTAL FEASIBILITY
OF THE SPINNING SENSOR

In our proposed scheme, the ring cavity can be mounted on a
turbine, which spins the resonator, as in the recent experiment
performed by Maayani et al. [26]. In the experiment, the resona-
tor with radius R � 1.1 mm can spin with the stability of its axis,
reaching the rotation frequency 6.6 kHz. By positioning the
resonator near a single-mode telecommunication fiber, the light
can be coupled into or out of the resonator evanescently through
the tapered region.

For such a spinning device [26], the aerodynamic process plays
a key role in stable resonator–fiber coupling: a fast spinning res-
onator can drag air into the region between the taper and the
cavity, so that a boundary layer of air forms. Due to the air pres-
sure on the surface of the taper facing the resonator, the taper flies
at a height above the cavity, which can be several nanometers. If
some perturbation induces the taper rising higher than the stable
equilibrium height, it floats back to its original position, which is
called “self-adjustment” [26]. The self-adjustment of the taper
separation from the spinning resonator enables critical coupling
of light into the cavity, by which counter-circulating light expe-
riences optical drag identical in size, but opposite in sign.
Importantly, this experiment confirms that the taper did not
touch or stick to the rotating resonator even if the taper is pushed
towards it, which is in contrast to the situation for a stationary
resonator (i.e., the taper may stick to the resonator through
van der Waals forces and thus needs to be pulled back to break
the connection). Other factors, such as intermolecular forces,
lubricant compressibility, tapered-fiber stiffness, and wrap angle
of the fiber, may affect resonator–waveguide coupling. However,
these factors are confirmed to be negligible in the experiment,
which are thus also neglected in our discussions on the spinning
sensor.

spinning sensor

spinning sensor

stationary sensor

stationary sensor

(b)

(a)

Fig. 4. Variation in frequency splitting for a spinning and a stationary
WGM-based particle sensor as more than one particle is deposited on the
resonators. The rotation speed is set as Ω � 6.6 kHz in (a) and 30 kHz
in (b).
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We consider that the scatterer falls onto the surface of the res-
onator and stays on the resonator, rotating with it, similar to the
particles on a stationary WGM resonator [8,10]. We compare the
mode splitting in a spinning resonator with the splitting in a sta-
tionary resonator: if the particle is not stationary on the mode
volume (e.g., particle diffuses on the surface), then we will observe
changes in the amount of mode splitting. If the particle is
detached from the resonator due to spinning or any other reasons,
then mode splitting will disappear and the transmission will
return back to the case when there is no particle.

The strength of the interaction between the cavity field and the
particle is affected by the location of the particle. For example, a
particle may be located on a position on the resonator where there
is no field, or the field is very weak. This will lead to lower in-
teraction strength and hence the amount of mode splitting will be
small. If the particle sits on a position where the field is high, then
the mode splitting will be larger as the light–particle interaction
strength will be higher. This effect is valid in the Sagnac-based
particle detector too. However, the Sagnac effect itself is not
affected by the particle position. Thus the enhancement of mode
splitting originating from the Sagnac effect will not be affected by
the position of the particle. However, mode splitting that origi-
nates from the scatterer-induced modal coupling is affected by the
position of the particle. Therefore, the fact that the Sagnac-based
scheme performs better than a stationary-resonator-based scheme
utilizing mode splitting does not change by the position of the
particle. The complex optical mode coupling induced by the par-
ticle, related to the overlap between the particle and mode volume
of the resonator, depends on the particle position. According to
Ref. [8], the complex mode coupling induced by the particle can
be expressed as

J � −
αf 2�r�ωc

2V c
, γc �

2π2α2f 2�r�ωc

3λ3V c
,

where r is the particle position, V c is the mode volume of the
resonator, f �r� is the normalized mode distribution function,
and λ is the light wavelength in the resonator. α is the particle
polarizability, which depends on the size and refractive index of
the particle. Then we can see that the particle position affects the
values of J and γc , but does not change the ratio

γc∕J � −4π2α∕�3λ3�.
The particle position may affect detection efficiency, since the

particle is undetectable if ω 0 < γ is satisfied, where ω 0 is half of
the frequency splitting induced by the particle. However, in pre-
vious experiments [8,10], nanoparticles falling onto the stationary
resonator randomly were detected and counted. Here we propose
to enhance the performance of the WGM particle sensor by use of
the Sagnac effect. We show that sensitivity enhancement factor η
always exceeds 1 with the condition J > γc , which indicates an
observable splitting for the stationary resonator. In Fig. 4, we also
plot the frequency splitting variation for several nanoparticles, in
which random values of J and γc are used. It is clear that the per-
formance of a particle sensor can be enhanced by spinning the
resonator.

The rotation of the resonator may lead to some mechanical
effects on the particle. A fast spinning resonator drags a boundary
layer of air past the region between the resonator and stationary
taper, which may induce the particle diffusing in the air. This may
change the overlap of the particle and the mode volume of the

resonator, and then the values of J and γc . However, the ratio
γc∕J is not affected by the particle position. Our scheme is robust
against the motion of the particle, since the sensitivity enhance-
ment factor always exceeds 1 when there is an observable splitting
in the transmission spectrum of a stationary resonator. In addi-
tion, the particle detection in current experimental WGM sensors
can be very fast. We can safely say that the location of the par-
ticle and the rotation of the resonator will not change the fact that
the spinning-resonator-based scheme performs better than the
stationary-resonator scheme.

APPENDIX B: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In consideration of the Sagnac effect, the Hamiltonian of the
spinning resonator–nanoparticle system can be written as

H � �ωa � Δsag�a†cwacw � �ωa − Δsag�a†ccwaccw
� J�a†cwaccw � a†ccwacw� �

ffiffiffiffiffiffi
γex

p
ain�a†cwe−iωl t − acweiωl t�,

where acw or accw denotes the intracavity field of the CW or CCW
mode, ωa is the resonance frequency of the stationary cavity, ωl is
the frequency of the probe light, Δsag is the Sagnac shift, J is the
optical coupling induced by the particle, γex is the resonator–
waveguide coupling rate, and ain is the amplitude of the probe
light. By using the unitary transformation

U � exp�−iωl t�a†cwacw � a†ccwaccw��,
the Hamiltonian can be transformed into the rotating frame, i.e.,

H 0 � U †HU − iU † ∂U
∂t

,

� �Δa � Δsag�a†cwacw � �Δa − Δsag�a†ccwaccw
� J�a†cwaccw � a†ccwacw� �

ffiffiffiffiffiffi
γex

p
ain�a†cw − acw�,

where Δa � ωa − ωl is the optical detuning. Notice that the total
optical loss is γ � �γa � γex�∕2� γc , where γa is the intrinsic
optical loss of the resonator, and γc is the optical loss induced
by the scatter. The effective Hamiltonian can be written as

H eff � �Δ� − iγ�a†cwacw � �Δ− − iγ�a†ccwaccw � �J − iγc�a†cwaccw
� �J − iγc�a†ccwacw � i

ffiffiffiffiffiffi
γex

p
ain�a†cw − acw�,

where Δ� � Δa � Δsag. Solving the characteristic equation of
the system given by

�ωa � Δsag − iγ − ω��ωa − Δsag − iγ − ω� − �J − iγc�2 � 0,

we find the eigenfrequencies of the system as

ω � ωa − iγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 2iJγc

p
, D � Δ2

sag � J2 − γ2c :

By setting D − 2iJγc � �ω 0 − iγ 0�2, where ω 0 and γ 0 are real
numbers, we have

ω 0 � ��D2 � 4J2γ2c �1∕2∕2� D∕2�1∕2,
γ 0 � ��D2 � 4J2γ2c �1∕2∕2 − D∕2�1∕2:

Then the eigenfrequencies of the system can be written as
ω1,2 � ωa � J � ω 0 − i�γ � γ 0�, so that the complex mode
splitting is Δω � 2ω 0 − 2iγ 0.
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