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The linear birefringence of uniaxial crystal plates has been known since the 17th century, and it is widely used in
numerous optical setups and devices. Here we demonstrate, both theoretically and experimentally, the fine lateral
circular birefringence of such crystal plates. We show that this effect is a novel example of the spin-Hall effect of
light, i.e., a transverse spin-dependent shift of the paraxial light beam transmitted through the plate. The well-known
linear birefringence and the new circular birefringence form an interesting analogy with the Goos–Hänchen and
Imbert–Fedorov beam shifts that appear in the light reflection at a dielectric interface. We report experimental
observation of the effect in a remarkably simple system of a tilted half-wave plate and polarizers using polarimetric
and quantum-weak-measurement techniques for beam-shift measurements. In view of much recent interest in
spin–orbit interaction phenomena, our results could find applications in modern polarization optics and nanopho-
tonics. © 2016 Optical Society of America

OCIS codes: (260.0260) Physical optics; (260.5430) Polarization; (260.1440) Birefringence.
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1. INTRODUCTION

Spin–orbit interactions (SOIs) of light have attracted ever-growing
interest during the past decade [1,2]. Because of their fundamental
origin and generic character, SOI phenomena have become inher-
ent in the areas of nano-optics, singular optics, photonics, and
metamaterials. Indeed, SOIs manifest themselves in the most basic
optical processes—propagation, reflection, diffraction, scattering,
focusing, etc.—as soon as these processes are carefully considered
at subwavelength scales. In this work, we describe a novel spin–
orbit phenomenon that occurs in a very simple and thoroughly
studied optical system, namely, a thin uniaxial-crystal plate.

The majority of SOI effects originate from space- or
wavevector-variant geometric phases and result in spin-dependent
redistribution of light intensity [1]. First, when the system has
cylindrical symmetry with respect to the z-axis, SOIs produce
spin-to-orbital angular momentum conversion, i.e., generation
of a spin-dependent vortex in the z-propagating light [3–14].
Second, if the cylindrical symmetry is broken, say, along the
x-direction, SOIs bring about the spin-Hall effect of light, i.e., a
spin-dependent transverse y-shift of light intensity [12–24]. An
example of the latter effect is the so-called transverse Imbert–
Fedorov (IF) beam shift, which occurs when a paraxial optical
beam is reflected or refracted at a plane interface [20–24].

The two factors that typically induce the SOI effects, are (i) the
medium’s inhomogeneity, which changes the direction of propaga-
tion of light, and (ii) the anisotropy, which induces a phase
difference between two polarization components of light [1].
Table 1 summarizes the above two types of SOI effects in inho-
mogeneous (but isotropic) and anisotropic (but homogeneous)
systems. For instance, the radial inhomogeneity in cylindrically
symmetric focusing or scattering systems results in spin-to-orbital
angular momentum conversion [5–14], and a very similar effect
appears in the paraxial light propagation along the optical axis in
cylindrically symmetric anisotropic media [25,26]. As we men-
tioned above, the simplest example of the spin-Hall effect occurs
in the reflection or refraction of light at a sharp inhomogeneity of
an isotropic optical interface [20–24]. Then, what is the counter-
part of this phenomenon for the paraxial light propagating in an
anisotropic medium?

In this paper, we demonstrate, both theoretically and experi-
mentally, that the spin-Hall effect of light and the transverse spin-
dependent beam shift appears in the light transmission through a
uniaxial crystal plate (such as wave plates routinely used in optics)
with a tilted anisotropy axis. This new type of spin-Hall effect is
quite surprising for traditional optics, because it implies weak
circular birefringence of a uniaxial crystal plate. Indeed, the linear
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birefringence of a calcite plate has been known since the 17th
century [27], while here we demonstrate a circular birefringence
of such a crystal in the orthogonal direction. Notably, the well-
known linear birefringence and novel circular birefringence
exhibit a close similarity with the Goos–Hänchen (GH) and
IF beam shifts in the reflection/refraction of light at isotropic in-
terfaces. We provide experimental measurements of this effect us-
ing a standard half-wave plate tilted with respect to the laser beam.

The spin-Hall shift in the transmission of light through a
uniaxial-crystal plate has the same order of magnitude as the IF
beam shifts, i.e., a fraction of the wavelength. We use polarimetric
techniques [28] to characterize the circular-polarization splitting
and shifts of the transmitted beam. We also amplify the effect to
the beam-width scale, using the “quantum weak measurement”
approach [29–32]. This method was previously employed to am-
plify the usual linear birefringence of uniaxial crystals [33,34]
and IF beam shifts at isotropic interfaces [22,35–41].

2. GAUSSIAN BEAM TRANSMITTED THROUGH A
UNIAXIAL CRYSTAL PLATE

To begin with, we consider polarized paraxial Gaussian beams
propagating along the z-axis in free space. The beam represents

a superposition of multiple plane waves (spatial Fourier harmon-
ics) with close wave vectors:

k � kz z̄� kx x̄� kyȳ ≃ k
�
1 −

Θ2

2

�
z̄� kΘx x̄� kΘyȳ; (1)

where k is the wave number; x̄, ȳ, and z̄ are the unit vectors of the
corresponding axes; while Θ � �Θx ;Θy� and Θ2 � Θ2

x � Θ2
y ≪

1 are small angles of the wave vector with respect to the z axis in
the x − z and y − z planes (see Fig. 1). The Fourier (momentum)
representation of the transverse electric field of the Gaussian beam
can be written as [21,23,24]

Ẽ⊥�Θ� ∝
�
α
β

�
exp

�
−�kw0�2

Θ2

4

�
; (2)

where
�
α
β

�
is the normalized Jones vector of the wave polariza-

tion in the �x; y� basis, jαj2 � jβj2 � 1, and w0 is the beam waist.
Performing the Fourier transform of Eq. (2), we obtain the trans-
verse beam field in the real-space representation:

E⊥�R� ∝
Z

Ẽ⊥�Θ�eik·rd2Θ ∝
�
α
β

�
exp

�
−
R2

w2
0

�
: (3)

Here d 2Θ � dΘxdΘy, R � �x; y�, R2 � x2 � y2 is the trans-
verse radius vector, and, for simplicity, we calculated the beam
at the waist plane E⊥�R� ≡ E⊥�r�jz�0. The transition between
the momentum [Eq. (2)] and real-space [Eq. (3)] representations
of the beam can be realized using the stationary-phase asymptotics
at the stationary point Θs�R� � iR∕zR : E⊥�R� � Ẽ⊥�Θs�R��,
where zR � kw2

0∕2 is the Rayleigh range.
Now, let us consider the transmission of the Gaussian beam

[Eqs. (1)–(3)] through a thin uniaxial-crystal (e.g., calcite or
quartz) plate. The beam still propagates along the z-axis, whereas
the anisotropy axis of the plate lies in the x − z plane at the angle
−ϑ with respect to the z-axis (Fig. 1). It is well known that the
crystal plate induces linear birefringence between the ordinary �o�
and extraordinary �e� polarization modes, which propagate with
slightly different phase velocities. For the central plane wave in the
beam, Θ � 0, the extraordinary and ordinary modes correspond

Table 1. Basic Spin–Orbit Interaction Effects, Spin-to-
Orbital Angular Momentum Conversion, and Spin-Hall
Effect, in Inhomogeneous Isotropic and Anisotropic
Homogeneous Systemsa

Spin-to-Orbital
AM Conversion

Spin-Hall Effect
for Paraxial Beams

Inhomogeneity Focusing/scattering in
cylindrically symmetric

systems [5–14]

Reflection/refraction
at a plane interface
(IF shift) [20–24]

Anisotropy Propagation along the
optical axis in a uniaxial

crystal [25,26]

Transmission through
a uniaxial-crystal plate
with a tilted optical axis

aThe present work completes this table by the text in italic at bottom right.

Fig. 1. Schematics of the transmission of a paraxial beam through a tilted uniaxial-crystal plate. (a) General 3D geometry of the problem with the angle
ϑ between the anisotropy axis of the plate and the beam axis z. The small angles Θ � �Θx ;Θy� determine the directions of the wave vectors k in the
incident beam. (b) The in-plane Θx deflections of the wave vectors change the angle between k and the anisotropy axis and result in the well-known
birefringence shift hX i, analogous to the GH shift [24]. (c) The view along the anisotropy axis of the crystal is shown. The transverse Θy deflections of the
wave vectors rotate the corresponding planes of the wave propagation with respect to the anisotropy axis by the angle ϕ ≃ Θy∕ sin ϑ. This causes a new
helicity-dependent transverse shift hY i, i.e., a circular birefringence or spin-Hall effect similar to the IF shift [20–24].
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to the x- and y- linear polarizations:
�
α
β

�
e
�

�
1
0

�
and

�
α
β

�
o
��

0
1

�
(these can also be called TM and TE modes, respectively).

Thus, the action of the plate on the central plane wave can be
characterized by the following Jones equation and matrix:

Ẽ 0
⊥�0� � M̂ 0Ẽ⊥�0�; M̂ 0 �

�
e−iΦ0∕2 0

0 eiΦ0∕2

�
; (4)

where Φ0�ϑ� is the phase difference between the o and e modes,
which is acquired upon the propagation in the plate, the prime
indicates the field of the transmitted wave, and we ignore the
common phase factor.

Importantly, the zero-order transmission Jones matrix [Eq. (4)]
is exact only for the central plane wave in the beam, Θ � 0.
Fourier components with Θ ≠ 0 propagate in slightly different
directions and, hence, are described by slightly different Jones
matrices. First, the waves with the in-plane deflection Θx ≠ 0
propagate at angles θ ≃ ϑ� Θx to the anisotropy axis [Fig. 1(b)].
This slightly modifies the phase difference between the o and e

polarizations of such waves: Φ�θ� ≃Φ0 �
dΦ0

dϑ
Θx . Second, the

waves with the out-of-plane deflection Θy ≠ 0 propagate (in
the linear approximation in Θy) at the same angle to the
anisotropy axis but in slightly different planes of propagation,
which are rotated about the anisotropy axis by the azimuthal angle
ϕ ≃ Θy∕ sin ϑ [Fig. 1(c)]. Such rotation induces additional geo-
metric phases for circularly-polarized plane waves with Θy ≠ 0,
i.e., effects of the spin–orbit interaction of light (see detailed
descriptions in Refs. [1,24]). The above corrections modify the
reflection Jones matrix [Eq. (4)], resulting in the Θ-dependent
terms

Ẽ 0
⊥�Θ� � ˆ̃M�Θ�Ẽ⊥�Θ�;

ˆ̃M ≃
� e−iΦ0∕2�1� ΘxX e� e−iΦ0∕2ΘyYe

−eiΦ0∕2ΘyYo eiΦ0∕2�1� ΘxX o�

�
; (5)

where

X e;o � � i
2

dΦ0

dϑ
; Ye;o � �1 − exp�	iΦ0�� cot ϑ: (6)

Remarkably, we notice a one-to-one correspondence between
the effective Θ-dependent Jones matrix [Eqs. (5) and (6)] and a
similar matrix for the total internal reflection of the beam at a
dielectric interface [24]. In this manner, the e- and o-polarization
modes of the crystal correspond to the TM �p� and TE �s� modes
of the interface, and the phase difference Φ0 corresponds to the
difference between the phases of the Fresnel reflection coefficients
for the p and s modes in the total internal reflection. (Note that
there are some inessential differences in signs in anisotropic-plate
and total-internal-reflection equations, which appear because of
the difference between the transmission and reflection geom-
etries.) In the beam reflection from an interface, the terms propor-
tional to X p;s describe the in-plane GH beam shift [24], while the
Yp;s terms are responsible for the transverse IF shift or spin-Hall
effect of light [20–24]. Therefore, the beam transmission through
a uniaxial crystal plate must exhibit similar shifts. In this manner,
the GH-like shifts described by X e;o correspond to the usual lin-
ear birefringence between the ordinary and extraordinary rays,
while the shifts described by Ye;o correspond to a new type of

spin-Hall effect of light and the effective circular transverse birefrin-
gence of a uniaxial plate.

The Θ-dependent Jones matrix [Eq. (5)] describes the
transformation of the paraxial beam field in the momentum
representation. To write this field transformation in the coordi-
nate representation, we make the Fourier transform of Eq. (5),
M̂�R� � ˆ̃M �Θs�R��:
E 0
⊥�R� � M̂ �R�E⊥�R�;

M̂ ≃

0
BBB@
e−iΦ0∕2

�
1� i

x
zR

X e

�
ie−iΦ0∕2

y
zR

Ye

−ieiΦ0∕2
y
zR

Yo eiΦ0∕2
�
1� i

x
zR

X o

�
1
CCCA: (7)

The real-space Jones matrix [Eq. (7)] contains R-dependent
terms, which describe an inhomogeneous polarization distribution
in the cross-section of the transmitted beam. Most importantly,
even for the e and o polarizations of the incident beam, the
transmitted field exhibits an inhomogeneous distribution of
elliptical polarizations due to the y-dependent terms in M̂�R�.
For example, taking the e-polarized incident beam Eq. (3) with�
α
β

�
�

�
1
0

�
, the transmitted beam field [Eq. (7)] yields

E 0
⊥�R� ∝

0
B@

1� i
x
zR

X e

−ieiΦ0
y
zR

Yo

1
CA exp

�
−
R2

w2
0

�
: (8)

Since −ieiΦ0Yo��sinΦ0� i�1−cosΦ0��cotϑ, for Φ0 ≠ 0mod2π
the beam polarization acquires a weak right-hand ellipticity at
y > 0 and a left-hand ellipticity at y < 0 in the x � 0 cross sec-
tion, as shown in Fig. 2. This signifies the transverse y-splitting of
the right-hand and left-hand circular-polarization components in
the beam [13,20], i.e., the spin-Hall effect of light. This splitting
can be measured via direct polarimetric methods (see Fig. 6) or
detected by placing a crossed o- (y-axis) polarizer after the crystal
plate. Such polarizer cuts the y-component of the transmitted
field and produces a two-hump Hermite–Gaussian intensity dis-
tribution (see Fig. 7 below) [20]:

E 0
⊥y�R� ∝

y
zR

Yo exp

�
−
R2

w2
0

�
: (9)

3. BEAM SHIFTS AND THEIR AMPLIFICATION VIA
QUANTUM WEAK MEASUREMENTS

We are now at the position to calculate the beam shifts induced by
the X e;o and Ye;o terms in Eqs. (5)–(7). The beam shifts can be
determined straightforwardly by calculating the centroid of the
intensity distribution of the transmitted field E 0

⊥�R� [20–24].
However, since we will also use a method of quantum weak mea-
surements [29–32] to amplify and detect the shifts, we will follow
the general quantum-mechanical-like formalism developed in
Refs. [38–40].

We first write the momentum-representation Jones matrix

[Eq. (5)] as [40] ˆ̃M � �1 − ikΘ · R̂�M̂ 0, and introduce the
matrix operators R̂ � �X̂ ; Ŷ �:

X̂ � ik−1
�
X e 0
0 X o

�
; Ŷ � ik−1

�
0 e−iΦ0Ye

−eiΦ0Yo 0

�
: (10)
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Then, using the “state Jones vector” jψi �
�
α
β

�
of the incident

beam, and the corresponding state vector of the transmitted

beam, jψ 0i � M̂ 0jψi �
� e−iΦ0∕2α
eiΦ0∕2β

�
, hψ 0jψ 0i � hψ jψi � 1,

we calculate the x- and y- shifts of the transmitted-beam centroid
as the expectation values of operators [Eq. (10)]:

hX i � hψ 0jX̂ jψ 0i � τ
1

2k
dΦ0

dϑ
; (11)

hY i � hψ 0jŶ jψ 0i � cot ϑ

k
�−σ�1 − cosΦ0� � χ sinΦ0�: (12)

Here we used Eq. (6) and introduced the normalized Stokes
parameters of the incident-beam polarization:

τ � jαj2 − jβj2; χ � 2Re�α
β�; σ � 2 Im�α
β�: (13)

These parameters describe the degrees of extraordinary/
ordinary, diagonal 	45° linear, and right-/left-hand circular
polarizations, respectively.

The polarization-dependent beam shifts hX i and hY i are
counterparts of the GH and IF shifts in the total internal reflec-
tion from an isotropic dielectric interface [24]. First, the analogue
of the GH shift, Eq. (11), describes the usual linear birefringence
between the ordinary and extraordinary rays. Here it is written in
the form of the Artmann formula [24]. Such a phase-gradient
form of the birefringence shift was recently employed for a
fine weak-measurement detection of the “photons trajectories,”
i.e., streamlines of the optical momentum density [42,43]. Note
that the experiment reported in [42] was set such that
Φ0 � 0mod 2π, and the transverse effect in Eqs. (6) and (12)
vanished: Ye;o � hY i � 0.

Second, the transverse shift [Eq. (12)] is the anisotropic
counterpart of the IF shift or the spin Hall effect of light, and
it is the central subject of our study. This transverse shift shows
a new transverse birefringence of a uniaxial crystal plate, which
is now caused by the finite size of the beam and is proportional
to the −σ�1 − cosΦ0� � χ sinΦ0 polarization parameter. For

Φ0 � πmod 2π this becomes purely circular birefringence,
i.e., pure spin-Hall effect of light. Remarkably, this effect occurs
already in the simplest anisotropic wave plates routinely used in
optical setups but now tilted with respect to the beam propagation
(for the normal incidence, the optical axis is orthogonal to the
z-axis, ϑ � π∕2, and the effect vanishes: Yo;e � hY i � 0). Note
also that, akin to the IF shift at interfaces, the spin-Hall-effect
terms in the uniaxial crystal diverge for the propagation along
the optical axis: ϑ → 0, cot ϑ → ∞. This implies a singular tran-
sition to the cylindrically-symmetric problem of the on-axis
propagation in uniaxial crystals: equation ϕ ≃ Θy∕ sin ϑ is valid
only in the jϕj ≪ 1 approximation. In the on-axis propagation,
the SOI manifests itself as the spin-to-orbital angular-momentum
conversion [25,26].

It is worth noticing that, in the problem under consideration,
the operators X̂ and Ŷ [Eq. (10)] are Hermitian. Therefore, their
expectation values [Eqs. (11) and (12)] are purely real, which cor-
responds to the presence of spatial beam shifts and the absence of
angular beam shifts (i.e., changes in the direction of beam propa-
gation) [24,38,40].

The spin-Hall effect can be measured either directly, via sub-
wavelength shift [Eq. (12)] of the beam centroid [20–24], or via
various other methods including quantum weak measurements
[22,29–41]. The latter method allows significant amplification
of the shift using almost crossed polarizers at the input and output
of the system. As before, the input polarizer and matrix M̂ 0

determine the “pre-selected” polarization state jψ 0i � M̂ 0jψi �� e−iΦ0∕2α
eiΦ0∕2β

�
, while the output polarizer corresponds to another,

“post-selected,” polarization state jφi �
� ˜α

˜β

�
. The resulting

beam shifts after the second polarizer are determined by the weak
values [instead of expectation values of Eqs. (11) and (12)] of the
operators R̂ [Eq. (10)]. In contrast to the real expectation values
of Hermitian operators, their weak values are complex. The real
and imaginary parts of the weak values determine the spatial and
angular beam shifts, hRiweak and hΘiweak , respectively [37–40]:

Fig. 2. Distribution of the polarization in the (a) extraordinary and (b) ordinary Gaussian beams transmitted through a uniaxial crystal plate. Right-
hand- and left-hand- polarization ellipses are shown in magenta and cyan, respectively. The background gray-scale distributions show the Gaussian
intensities of the beams, x-shifted due to ordinary linear birefringence. Transverse y-dependent separations of opposite helicities and tilts of the polari-
zation ellipses indicate the σ- and χ-dependent transverse birefringence, described by the Ye;o and hY i terms in Eqs. (5)–(13). The parameters used here
are kw0 � 10, ϑ � π∕4, Φ0 � 2π∕3, and dΦ0∕dϑ � −5.
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hRiweak � Re
hφjR̂jψ 0i
hφjψ 0i ; hΘiweak �

1

zR
Im

hφjR̂jψ 0i
hφjψ 0i : (14)

As the beam propagates from its waist z � 0 along the z axis, the
angular shifts produce shifts in the beam centroid growing with z.
The resulting shifts at z ≠ 0 are

hRziweak � hRiweak � zhΘiweak : (15)

Thus, the quantum-weak-measurements technique can signifi-
cantly amplify the beam shifts in two ways. First, the spatial shifts
hRiweak can be much larger than the expectation values hRi when
jhφjψ 0ij ≪ 1. Second, the appearance of angular shifts hΘiweak
[Eq. (14)] results in large beam shifts [Eq. (15)] in the far-field
region: z ≫ zR .

Amplification of the regular birefringence shift, hX iweak,
was previously measured in Refs. [33,34], and this was the first
experimental example illustrating the quantum weak measure-
ments paradigm. Quantum weak measurements were also used
for amplification of the spin-Hall effect shifts in the beam refrac-
tion and reflection at isotropic interfaces [22,35–41]. Here we
analyze the amplification of the new spin-Hall effect shift,

hY iweak . Let the incident beam be e polarized, jψi �
�
1
0

�
, while

the post-selection polarizer is almost orthogonal: jφi ��
sin ε
cos ε

�
≃
� ε
1

�
, jεj ≪ 1. Then, using Eqs. (6), (10), (14),

and (15) yields

hY ziweak �
1

εk
sinΦ0 cot ϑ� z

zR

1

εk
�1 − cosΦ0� cot ϑ: (16)

Here, the first (spatial) and second (angular) terms correspond to
the imaginary and real parts of the Ye;o quantities, or to the
χ- and σ-dependent contributions to the regular beam shift
[Eq. (12)]. Importantly, the second term becomes dominant in
the far-field zone and is amplified for two reasons: because jεj ≪
1 and z ≫ zR . Note that the singular limit ε → 0 is regularized by
the condition of applicability of the above weak-measurement
equations: 1 ≫ jεj ≫ �kw0�−1 [31,32]. Thus, the maximal
achievable beam shift at jεj ∼ �kw0�−1 is of the order of the beam
width in the far field: w0z∕zR . For the ordinary input polarization

jψi �
�
0
1

�
and post-selection jφi ≃

�
1
−ε

�
, the weak-measure-

ment transverse shift is given by Eq. (16) with the “minus” sign
before the first (spatial) term.

We demonstrate the weak measurements of the spin-Hall
shifts [Eq. (16)] in Section 4. Here, to illustrate the beam-shift
behavior, we calculate the centroid shifts [Eqs. (11) and (12)]
for a typical tilted anisotropic plate. As an example, we consider
a quartz plate with thickness d � 1 mm. The phase difference
between the ordinary and extraordinary waves is given by

Φ0�ϑ� � k�nod o�ϑ� − ñe�ϑ�d e�ϑ��: (17)

Here, no � 1.544 is the refractive index for the ordinary wave,
ñe�ϑ� � neno∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e cos2 ϑ� n2o sin2 ϑ

p
is the refractive index for

the extraordinary wave propagating at the angle ϑ to the optical
axis, ne � ñe�π∕2� � 1.553, and the distances of propagation of
the ordinary and extraordinary rays in the tilted plate are

d e�ϑ� �
ñe�ϑ�dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ñ2e �ϑ� − cos2 ϑ
p ; d o�ϑ� �

nodffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2o − cos2 ϑ

p : (18)

Using Eqs. (17) and (18), in Fig. 3 we plot the linear-birefrin-
gence and spin-Hall shifts [Eqs. (11) and (12)] as functions of
the tilt angle ϑ. One can see that the transverse shift hY i due
to the spin-Hall effect reaches wavelength-order magnitude, typ-
ical for other spin-Hall systems in optics [20–24]. In contrast to
the IF shift in the reflection/refraction problems, here the trans-
verse shift hY i as a function of ϑ displays two-scale behavior.
Namely, the fast oscillations in Fig. 3(b) originate from the
�1 − cosΦ0� term with the rapidly growing (or decreasing) func-
tion Φ0�ϑ� (see Fig. 5), whereas the slow envelope corresponds to
the universal cot ϑ factor in SOI terms.

4. EXPERIMENTAL RESULTS

To verify the above theoretical predictions, we performed a series
of experimental measurements using the setups shown in Fig. 4.
For the anisotropic plate, we used a multiple-order half-wave plate
(WPMH05M-670, Thorlabs, USA) made of a single piece
of high-quality crystalline quartz and designed to operate at a

Fig. 3. Longitudinal (in-plane) and transverse (out-of-plane) shifts of the beam transmitted through a tilted uniaxial crystal plate [Eqs. (11) and (12)].
These plots correspond to a 1 mm thick quartz plate and wavelength λ � 2π∕k � 632.8 nm. The polarizations are (a) τ � 1 (extraordinary wave) and
(b) σ � −1 (left-hand circular). For the opposite polarizations, τ � −1 and σ � 1, the beam shifts have opposite sign, which signifies the usual in-plane
linear birefringence between the ordinary and extraordinary waves, as well as the transverse circular birefringence, i.e., the spin-Hall effect of light.
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wavelength of 670 nm. As a source of the incident Gaussian
beam, we employed a semiconductor laser diode of wavelength
λ � 2π∕k � 675 nm. The laser radiation was passed through
a single-mode fiber and collimated using a microscope objective
lens.

Since the wavelength of the beam differed from the nominal
wavelength of the wave plate, we chose to measure the anisotropic
phase difference Φ0 versus the angle of the tilt ϑ via direct Stokes-
polarimetry methods [28,44] instead of calculating it via Eqs. (17)
and (18). For this purpose we used the setup shown in Fig. 4(a).
The double Glan–Thomson polarizer (P1) selected the desired
linear-polarization state in the incident beam. In the first experi-

ment, this was 45° polarization, i.e.,
�
α
β

�
� 1ffiffiffiffi

2
p �

1
1

�
. Then,

the beam passed through the tilted wave plate, a quarter-wave
plate (QWP) with retardation angle δ, and the second polarizer,
P2, with angle γ. We measured the integral intensity of the trans-
mitted beam, Ī 0�δ; γ� (Ī 0 � R

I 0�R�d2R � R jE 0�R�j2d2R), and
determined the integral Stokes parameters in the transmitted
beam as

S̄0 � Ī 0�0°; 0°� � Ī 0�0°; 90°�;
S̄1 � Ī 0�0°; 0°� − Ī 0�0°; 90°�;
S̄2 � Ī 0�0°; 45°� − Ī 0�0°; 135°�;
S̄3 � Ī 0�90°; 45°� − Ī 0�90°; 135°�: (19)

(Note that the normalized Stokes parameters [Eq. (13)] �τ; χ; σ�
correspond to S̄1;2;3∕S̄0 in the incident beam.) Finally, the phase
difference between the ordinary and extraordinary modes was
determined as [28,44]

Φ0 � tan−1
�
S̄3
S̄2

�
: (20)

The measured phase [Eq. (20)] versus the tilt angle ϑ of the aniso-
tropic plate is shown in Fig. 5.

The phase difference Φ0�ϑ� calculated via the integral Stokes
parameters [Eq. (19)] completely characterize the action of the
tilted wave plate on the central plane wave in the beam. To in-
vestigate the spin-Hall effect in the transmitted beam, we per-
formed a series of measurements of local intensity distributions

I 0�R� and corresponding local Stokes parameters Si�R� and in
the beam cross section.

First, we measured the distributions of the normalized third
Stokes parameter in the transmitted beam,

s3�R� �
S3�R�
S0�R�

; (21)

which characterizes the local ellipticity of the field, or the normal-
ized z-component of its spin angular momentum density [45].
These distributions are shown in Fig. 6 for the extraordinary
and ordinary polarizations of the incident beams. In agreement
with theoretical predictions (Fig. 2) one can clearly see the trans-
verse y separation of positive and negative ellipticities (cf. [13,20]).
This is the first experimental confirmation of the spin-Hall
effect of light produced by the transmission through a tilted
anisotropic plate.

Second, we investigated deformations of the intensity distribu-
tions and beam shifts using the quantum weak-measurement
method described in Section 3. We used the setup shown in
Fig. 4(b) with additional focusing (L1) and imaging (L2) lenses.
Polarizers P1 and P2 produced pre-selected and post-selected

Fig. 5. Polarimetrically measured phase difference Φ0�ϑ� [Eq. (20)]
between the ordinary and extraordinary modes for the beam transmitted
through the tilted half-wave plate. The inset shows the actual measured
phase in the range �−π; π�, whereas the main plot shows the unwrapped
phase.

Fig. 4. Schematics of the experimental setups used for the (a) polarimetric measurements and (b) quantum weak measurements of the beam shifts.
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polarization states jψi and jφi, respectively, while the lenses
controlled the amplification propagation factor z∕zR in Eq. (16).
Namely, the first lens, L1, of focal length 5 cm, produced a
focused Gaussian beam with the Rayleigh range zR ≃ 3840 μm
(determined from the 1∕e2 spot size of the original laser beam,
374 μm, and the spot size of the focused beam in the focal plane,
28.72 μm), while the second lens, L2, of focal length 5 cm,
collimated the beam and provided the effective propagation dis-
tance z � 5 cm. Thus, the propagation amplification factor
was z∕zR ≃ 13, and the second, angular term in the beam shift
[Eq. (16)] strongly dominated the first, spatial term (cf., [22,23]).

We performed weak-measurement experiments with the pre-

selection in the e-polarized state, jψi �
�
1
0

�
, and post-selection

in the almost-orthogonal state jφi �
�
sin ε
cos ε

�
≃
� ε
1

�
, jεj ≪ 1,

as well as with the pre-selection in the o-polarized state jψi ��
0
1

�
and post-selection in jφi ≃

�
1
−ε

�
. In both cases, the trans-

verse beam shift is described by the second (angular) term in
Eq. (16). The transverse intensity distributions I 0�R� in the
o-polarized beam transmitted through the tilted half-wave plate
and post-selected with ε � −1.4 · 10−2; 0; 1.4 · 10−2 are shown
in Fig. 7. One can clearly see beam deformations typical for
quantum weak measurements [30–34]. Namely, the two-hump
Hermite–Gaussian y-distribution takes place for ε � 0, whereas
Gaussian-like distributions are considerably shifted in opposite
y-directions for ε � 	1.4 · 10−2. These intensity deformations
and shifts provide the second experimental evidence of the
transverse circular birefringence and spin-Hall effect in the
system.

Fig. 6. Experimentally measured distributions of the local Stokes parameter s3�R� [Eq. (21)] in the (a) extraordinary and (b) ordinary beams trans-
mitted through the tilted half-wave plate with ϑ ≃ 35° and Φ0�ϑ� ≃ −π (see Fig. 5). The y splitting of opposite spin states with s3 > 0 and s3 < 0
corresponds to the splitting of opposite polarization ellipticities in Fig. 2 and signals the spin-Hall effect of light.

Fig. 7. Transverse intensity distributions I 0�R� in the o-polarized beam transmitted through the tilted half-wave plate and post-selected in the almost
e-polarized state with ε � −1.4 × 10−2; 0; 1.4 × 10−2 (see explanations in the text). The two-hump Hermite–Gaussian distribution at ε � 0 corresponds
to Eq. (8), while the opposite shifts hY ziweak at ε � 	1.4 · 10−2 are the spin-Hall shifts amplified via quantum weak measurements [Eq. (16)]. Like in
Fig. 6, the tilt angle ϑ ≃ 35° corresponds to Φ0�ϑ� ≃ −π, i.e., maximizes the spin-Hall effect ∝ �1 − cos Φ0�.
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The transverse y-shifts of the Gaussian distributions in Fig. 7
are the beam shifts hY ziweak described by Eq. (16). These are
strongly amplified from the typical subwavelength scale k−1

[Eq. (12)], to the beam-width scale with the overall weak-
measurement amplification factor:

A � 1

jεj
z
zR

≃ 929: (22)

The experimentally measured transverse beam shift hY ziweak
versus the tilt angle ϑ are plotted in Fig. 8 for the e and o
pre-selected polarizations and the corresponding post-selections
with ε � 1.4 · 10−2. Since the phase difference Φ0�ϑ� is known
from independent polarimetric measurements (Fig. 5), we com-
pare the measured beam shifts with the analytical result in
Eq. (16). Figure 8 shows a very good agreement between the
experiment and theory. This provides the quantitative confirma-
tion of the spin-Hall effect and circular birefringence of light
transmitted through a tilted anisotropic plate.

5. CONCLUSIONS

We have considered the transmission of a Gaussian light beam
through a uniaxial crystal plate with a tilted anisotropy axis.
The action of the plate on a plane wave is well known and is de-
scribed by the diagonal Jones matrix with a phase retardation
between the ordinary and extraordinary polarizations. However,
birefringence phenomena require the consideration of confined
beams rather than infinite plane waves. We have shown that tak-
ing into account multiple plane waves with slightly different
wavevector directions in the beam spectrum results in nontrivial
beam-shift effects. First, the transmitted beam experiences the in-
plane shift between the o and e linear polarizations. This is the
well-known linear birefringence. Second, the beam experiences
a transverse out-of-plane shift dependent on the circular (and also
diagonal) polarization degrees, i.e., a circular (and diagonal) bi-
refringence. This is a manifestation of the spin–orbit interaction
and a novel type of the spin-Hall effect of light.

Notably, the usual linear birefringence and new circular birefrin-
gence form a close analogy with the GH and IF beam shifts that
appear in the light reflection at a dielectric interface. This is because
mathematically similar spin–orbit interactions appear (i) in the
beam reflection due to the medium inhomogeneity and different
Fresnel coefficients for the TE and TM polarizations, and (ii) in

the beam transmission through a crystal plate due to the medium
anisotropy and different transmission coefficients for the o and
e polarizations.

We have provided a detailed theoretical description and
experimental measurements of the novel circular-birefringence
phenomenon. The remarkably simple system of a tilted half-wave
plate and polarizers was used for this. Our measurements clearly
demonstrated the spin-Hall effect and transverse beam shifts
in the transmitted beam via both polarimetric and quantum-
weak-measurement methods. By using the weak-measurement
technique, we strongly enhanced the transverse beam shift to
the beam-width size and also transformed the spatial shift into
an angular shift, which is clearly seen in the far field.

Thus, we have described a novel basic phenomenon in a sim-
ple thoroughly studied system. Due to the great recent interest
in optical spin–orbit interaction phenomena and the wide use of
anisotropic plates in numerous optical setups and devices, our
results could find applications in polarization optics and nano-
photonics. The methods developed in this work can be extended
and applied to other types of anisotropic plates: dichroic, circular-
birefringent, etc.
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