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Abstract
Weexamine themomentum and angularmomentum (AM) properties ofmonochromatic optical
fields in dispersive and inhomogeneous isotropicmedia, using the Abraham- andMinkowski-type
approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees
of freedom) pictures.While the kinetic Abraham–Poyntingmomentumdescribes the energy flux and
the group velocity of thewave, theMinkowski-type quantities, with proper dispersion corrections,
describe the actualmomentum andAMcarried by thewave. The kineticMinkowski-typemomentum
andAMdensities agree with phenomenological results derived by Philbin. Using the canonical spin–
orbital decomposition, previously used for free-space fields, we find the corresponding canonical
momentum, spin and orbital AMof light in a dispersive inhomogeneousmedium. These acquire a
very natural form analogous to the Brillouin energy density and are valid for arbitrary structuredfields.
The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP)wave at a
metal-vacuum interface.We show that the integralmomentumof the SPP per particle corresponds to
the SPPwave vector, and hence exceeds themomentumof a photon in the vacuum.We also provide
thefirst accurate calculation of the transverse spin and orbital AMof the SPP.While the intrinsic
orbital AMvanishes, the transverse spin can change its sign depending on the SPP frequency.
Importantly, we present bothmacroscopic andmicroscopic calculations, thereby proving the validity
of the general phenomenological results. Themicroscopic theory also predicts a transverse
magnetization in themetal (i.e. amagneticmoment for the SPP) as well as the corresponding direct
magnetization current, which provides the difference between the Abraham andMinkowski
momenta.

1. Introduction and overview

1.1. AbrahamandMinkowskimomenta
The characterization of themomentum and angularmomentum (AM) of light in continuousmedia is a long-
standing problem,with the Abraham–Minkowski discussion in its center; see [1–5] for reviews. Although
recently therewere several works claiming the ‘resolution’ of the Abraham–Minkowski controversy [5–7],
debates on various aspects of opticalmomentum inmedia are still continuing. Naturally, differentmomenta can
manifest in different types of problems or experiments. For example, one can investigate optical forces acting on
themediumor on a smallmaterial probe in themedium [7–10]. On the other hand, onemaywonder about the
momentum carried by thewave per se and characterizingwave parameters such as the velocity of its propagation
(phase or group) orwave vector [11–19]. In this workwemostly stickwith the second approach. Throughout
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this paper we considermonochromatic waveswithfixed frequency ,w lossless isotropicmedia described by
permittivity and permeability e and m (which can depend on w in the dispersive case), and cycle-averaged
dynamical properties (energy,momentum, andAM) ofwaves.

To recall the basics of the problem,we start with the Poyntingmomentumdensity ofmonochromatic light
in free space [20–22]:

gk E HRe . 1.10 0 *= ´( ) ( )

Hereafter, we useGaussian units6 with g 8 ,1pw= -( ) k c,0 w= and all free-space quantities aremarked by the
subscript ‘0’. In a non-dispersivemedium, theAbraham andMinkowskimomentumdensities are given by
[1–5]:

, . 1.2A M0 0   em= = ( )
These twomomenta are often interpreted as ‘kinetic’ and ‘canonical’momenta of light, respectively [3–5,
7, 11, 13, 18]. In dispersivemedia, theAbrahammomentumpreserves its form,while the ‘canonical’momentum
should bemodifiedwith dispersion-related terms [12–14, 16, 17]:

dispers. terms , 1.3M M = +˜ { } ( )

and the ‘naïve’Minkowskimomentum (1.2) does notmake physical sense.Hereafter, wemark by tilde all
quantitiesmodified by the presence of dispersion. For simplicity, wewill refer to themomentum (1.3) as to the
properlymodifiedMinkowskimomentum in a dispersivemedium.

For the simplest optical fields—planewaves—in a transparentmedium, the AbrahamandMinkowski
momenta ‘per photon’ are reduced to the following simple form [3–5, 7, 11–14, 16–18]:

n n c
k v k

1
, , 1.4A

p g
g M2

 



w

= = =˜ ( )

where np em= and n n nd dg p pw w= + are the phase and group refractive indices of themedium,
respectively, v kg w= ¶ ¶ is the group velocity in themedium v c n ,g g=( ) and k is thewave vector in the
medium,withmagnitude k n k .p 0=

Equations (1.4) shed light on the physicalmeaning of the AbrahamandMinkowskimomenta, which can be
associatedwith the group velocity andwave vector in themedium. This correspondence is very general [11, 18].
For example, even for inhomogeneous waves in non-transparent inhomogeneousmedia, such as surface
plasmon-polaritons (SPPs) atmetal-vacuum interfaces [23], the group velocity is still determined by the integral
value of the Poynting (=Abraham)momentum [24]. At the same time, the conservation of thewavemomentum
andmomentummatching in various resonant problems involveMinkowskimomentum, i.e., thewave vector in
themedium. Themost known example is Snell’s law in the light refraction at planar interfaces [20, 22].
Furthermore,more subtle spin and orbital Hall effects (transverse beam shifts) in the refraction at planar
interfaces are intimately related to the conservation of the correspondingMinkowski AMbased on the same
wavevector k [25–30].

However, there are problems,where thewave vector and correspondingmomentumconservation arewell
defined andobservable,while using theMinkowskimomentum faces difficulties. For instance, in evanescent or
surfacewaves, such as SPPs, thewave vectork exceeds k0 in absolute value, and this ‘super-momentum’higher than

k0 per photon is observable inmomentum-transfer experiments [23, 31–35]. Aswe showbelow, themodified
Minkowskimomentum (1.3) can explain these featureswhen integrated in localized SPPwaves, but not locally in
evanescent and other structuredfields. This problem is related to another opticalmomentumdilemma.

1.2. Canonical and kinetic pictures in free space
Besides theAbraham–Minkowski debate, themomentum andAMof light allow various descriptions even in free
space. There, it is also related to the ‘kinetic’ and ‘canonical’ quantities, but in a different sense. Namely, thewell-
knownPoyntingmomentum (1.1) corresponds to the kineticmomentumdensity, which appears in the
symmetrized (kinetic) energy–momentum tensor (EMT) of the electromagnetic field [36]. In this approach, the
total AMdensity is determined by the same Poynting vector [20–22, 36]:

r . 1.50 0 = ´ ( )

Despite its universal character, this formalism has several practical drawbacks. First, the Poyntingmomentum
andAMdonot describe separately spin and orbital degrees of freedom of light. In particular, the AMdensity (1.5)
is extrinsic, i.e. depending on the choice of the coordinate origin, and characterizing the spin (intrinsic)AM
density is problematic in the Poynting formalism. At the same time, spin and orbital AMarewidely explored as
independent degrees of freedom inmodern optics [37–43] and also in quantumfield theory [44, 45]. Second, the

6
For the conversion betweenGaussian and SI units see appendix 4 in [20]. For the quantities used in this work, this conversion is realized via

E E4 ,0pe H H4 ,0pm c 1 ,0 0e m M M4 ,0m p and e ej d j d, , , , 4 .0pe{ } { }
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Poynting vector looses its clear physicalmeaning in the case of structured (i.e., inhomogeneous) opticalfields,
where it cannot explain localmomentum transfer (including ‘super-momentum’) and optical radiation-
pressure forces [31–35, 41, 46, 47].

The spin–orbital decomposition of theAMof light, described in [48–54], appears naturally in the canonical
approach [35, 36, 41, 44, 45, 47, 54, 55]. Using the formalismdual-symmetric with respect to the electric and
magnetic fields [35, 41, 52, 54–57], the canonical momentumdensity of amonochromatic light in free space is
given by [35, 41, 54–56]:

g
P E E H H

2
Im . 1.60 * *= ⋅  + ⋅ [ ( ) ( ) ] ( )

Thismomentumdescribes only the orbital part of the AM,L0, while the spin part is provided by an independent
intrinsic quantity S0 [35, 41, 52, 54, 55, 57]:

g
L r P S E E H H,

2
Im . 1.70 0 0 * *= ´ = ´ + ´( ) ( )

Recently, it was shown that the canonical quantities (1.6) and (1.7) aremuchmore suitable for the description of
themomentum andAMproperties of free-space light than the kinetic Poynting characteristics (1.1) and (1.5). In
particular, the optical force and torque on a small electric-dipole particle or an atomare given by the electric
parts of the canonicalmomentum (1.6) and spinAM (1.7), respectively [35, 41, 46, 47, 58–60]. Thismakes
canonical quantities directlymeasurable and immediately explaining numerous experiments involving spin/
orbital AM [35, 41, 61–63] and structured lightfields [31–35, 46, 47, 64].Moreover, using canonical formalism
enabled prediction and description of unusual phenomena, such as unusual transverse spin AM in evanescent
and other structuredfields [35, 41–43, 46, 65–68] and super-momentum transfer higher than k0 per photon
[31–35].

The canonicalmomentumdensity (1.6) can bewritten as a local expectation value of the quantum-
mechanicalmomentumoperator p i ,= - ˆ and hence can be associatedwith the local phase gradient or local
wave vector k loc of thefield [33, 56]. This elucidates its canonical character, akin to theMinkowskimomentum
(1.4). However, in contrast to equation (1.4), valid for a single planewave, canonicalmomentum (1.6) describes
the local phase gradient in an arbitrary structured field, which can consist ofmultiple planewaves propagating in
different directions. In turn, the canonical spin AMdensity (1.7) describes the local ellipticity of the 3D
polarization of an arbitrary structured field.

The relation between the kinetic (Poynting)momentum 0 and canonicalmomentumP0 in free space is
given by the spin–orbital momentum decomposition [35, 41, 47, 55, 56]:

P P P S,
1

2
. 1.8S S

0 0 0 0 0 = + =  ´ ( )

Here the canonicalmomentumP0 describes the orbital part (which determines the orbital AM L0), while the spin
momentum PS

0 is related to the spin AM S0 via the non-local relation V Vr S Sd d ,1

2 0 0ò ò´  ´ =( ) valid for

any localized fields vanishing at infinity. Importantly, the spinmomentum vanishes for planewaves and does
not contribute to the integral (expectation) value of thewavemomentum for localized fields, so that the integral
kinetic and canonicalmomenta coincide:

P . 1.90 0á ñ = á ñ ( )

Here, V... ... d ,òá ñ = and hereafter it denotes suitable spatial integrals for localizedfields.

In terms of relativistic field theory, the canonicalmomentum and spin densities (1.6) and (1.7) originate
from the canonical energy–momentum andAM tensors, which are directly obtained fromNoether’s theorem
applied to the electromagnetic field Lagrangian [36, 44, 45, 54, 55]. Two points should be emphasized here. First,
the original formof these canonical tensors involves the gauge-dependent electromagnetic vector potentialA.
The standard procedure in this case is to consider only the ‘transverse’ (i.e., divergence-free) gauge-invariant
part of this potential, A ,^ which formonochromatic fields is expressed via thewave electric field

cA Ei w= -^ ( ) [44, 45, 47–50, 52, 54, 55, 60]. Second, the standard electromagnetic-field Lagrangian is not
dual-symmetricwith respect to the electric andmagnetic fields. Due to this, it results in double electric-field parts
of quantities (1.6) and (1.7), with nomagnetic-field parts [36, 44, 47, 60]. However, an alternative Lagrangian
formalism, dual-symmetrized between electric andmagnetic contributions [55, 69, 70], produces the symmetric
quantities (1.6) and (1.7), more natural for freeMaxwellfields [35, 41, 54–57, 59]. In this paper we employ the
dual-symmetric formalism [55] and show that it ismore consistent with the canonical optical properties in
media than the dual-asymmetric (electric-biased) approach.

While the symmetrized (kinetic)EMTcontains only the Poyntingmomentumdensity ,0 the canonical
EMT is non-symmetric, and contains both the Poynting vector ,0 acting as the energy flux density, and the
canonicalmomentumdensityP0. Remarkably, considering the EMT for electromagnetic waves in amedium,
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Dewar [11] and later Dodin and Fisch [18] found that the electromagnetic EMT in a (non-dispersive)medium
can bemodified to theMinkowski form,where the Poynting energy flux and canonicalmomentum are
substituted by the Abraham (Poynting) andMinkowskimomenta, A and ,M respectively. Schematically,
these different forms of the EMTs in free space and inmedia can be presented as follows:

ð1:10Þ

This provides a qualitative link between the Abraham–Minkowski and kinetic-canonical (in the relativistic field-
theory sense) dilemmas.

Summarizing the above considerations, one should associate the Poynting–Abrahamquantities with the
energy flux and group velocity of thewave-packet propagation, while the canonical andMinkowski quantities are
related to themomentumdensity carried by thewave and itswave-vector characteristics. At the same time, we
emphasize that the kinetic-canonical dilemma between 0 and P0 in the sense of relativistic field theory
originates from the separation of the spin and orbital degrees of freedom,while the Abraham–Minkowski
dilemma between A and M is related to the separation of themedium and field contributions to the
momentum. Therefore, one can consider the spin–orbital separation in bothAbraham andMinkowski
momenta in amedium, aswell as AbrahamandMinkowski forms of the kinetic and canonical (orbital)
momenta in amedium, i.e., four types ofmomenta in themedium. Inwhat follows, we use the ‘kinetic’ and
‘canonical’ characteristics in the field-theory sense of the spin–orbital separation, also explicitly indicating the
Abraham- andMinkowski-type quantities.

1.3. About this work
Herewe aim to provide a complete Abraham–Minkowski and kinetic-canonical picture of opticalmomentum
andAM in dispersive and inhomogeneous (but isotropic and lossless)media. For the reader’s convenience, we
summarize all the quantities under discussion in table 1, indicating their forms in free space, dispersion-free, and
dispersivemedia. Ourmain emphasis in this work is on theMinkowski-type quantities, because these
correspond to the actual wavemomentum, spin, andAM in themedium, in contrast to the Abraham-type
energyflux properties.

The paper is organized as follows. In this introductory section 1we provided a general overview of the
problem. In section 2, we discuss the generalmomentum andAMexpressions listed in table 1 and their
properties. Then, in section 3, we consider an explicit example of a SPPwave at ametal-vacuum interface.

This example (which to the best of our knowledge has never been considered in the Abraham–Minkowski
context)provides a perfect test for themomentum andAMproperties of structured opticalfields in dispersive
inhomogeneousmedia. Themultiple advantages of the SPP system are as follows:

(i) SPPwaves arewell studied and readily achievable experimentally.

(ii) Even a single SPP wave is a structured field, for which the simplified plane-wave equation (1.4) are not
applicable.

(iii) SPPs exist at interfaces, i.e. in essentially inhomogeneousmedia.

(iv) SPPs exhibit non-trivialmomentum andAMproperties, including super-momentum [31–35] and transverse
spin AM [35, 41–43, 46, 65–68].

(v) Dispersion of themetal is crucial for the SPP properties.

Thus, SPPs provide both an accessible and highly non-trivial system to study opticalmomentum andAM.
In section 3we apply the general expressions from table 1 to calculate themomentum andAMproperties of

SPPs. In particular, we present the first accurate calculations of the canonical andMinkowskimomenta, as well
as the transverse spin and orbital AMof a SPP.Notably, the integral canonical orMinkowskimomentumof SPP
exceeds k0 per particle, and this offers the first example of the integral super-momentum (previously known
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only locally).Moreover, the intrinsic orbital AMof the SPP vanishes, whereas the integral transverse spin AM
can change its sign depending on parameters.

Importantly, in section 4, we providemicroscopic calculations of themomentum andAM in SPPs. Taking
into account bothmicroscopic electromagnetic fields and themotion of free electrons in themetal, we obtain
theMinkowski and canonical quantities previously introduced usingmacroscopic phenomenological
considerations. This validates the use of these quantities for structured optical fields in dispersive and
inhomogeneousmedia.Moreover, themicroscopic theory predicts a transversemagnetization in themetal (i.e. a
magneticmoment for the SPP) as well as the corresponding directmagnetization current , which corresponds to
the difference between the Abraham andMinkowski-typemomenta.

Finally, in section 5, we briefly discuss issues related to the dual symmetry between electric- andmagnetic-
field contributions.We show that while integral electric andmagnetic conributions to themomentum and spin
are equal for localized fields in free space [52, 55], this is not the case for localized fields inmedia.Most
importantly, wefind that themicroscopic calculations of section 4 are only compatible with the dual-symmetric
(rather than electric-biased) forms of the canonical quantities.

We should also brieflymention precedingworks, which considered some of the above aspects of SPPs. First,
Nakamura [71] performedmicroscopic calculations of the transverse AMof SPPs. Although results of that work
are erroneous in several aspects (calculation errors,mixing of the spin and orbital AM, etc), itsmethodology
inspired us to performmicroscopic calculations presented in section 4. Second, Kim andWang aimed to
calculatedAbraham and ‘naïve’Minkowski (without dispersion terms) versions of the transverse spin AM in
SPPs [72–74]. However, their results are alsomisleading. First, the definitions in [72–74]do not describe the
Abraham-type spin, whichwas properly defined and calculated in [35, 65], andwhich corresponds to an energy-
flux property rather than the actual spin AMcarried by thewave. Second, the ‘naïve’Minkowski expressions are
not applicable towaves in dispersivemedia and lead to erroneous results. Thus, the first accurate calculation of
the transverse spin and other ‘canonical’ characteristics of SPPs are provided in the present work.

Table 1. Four possible pictures of the opticalmomentum andAMdensities in free space, non-dispersive isotropicmedia, and dispersive
(generally inhomogeneous)media. TheAbraham- andMinkowski-type, kinetic and canonical (spin–orbital) quantities are shown. In all
cases, the kinetic Abraham–Poyntingmomentumdensity A 0 = describes the energyflux and group velocity of thewave, whereas the
canonicalMinkowski-typemomentum and spin densities PM˜ and SM˜ provide a clear and self-consistent picture of themomentum andAM
carried by thewave. In turn, the kinetic-Minkowski and canonical-Abrahamquantities have less natural formswith cumbersome dispersive
and gradient corrections (indicated as {dispers.} and {grad.} here).

5
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2.MomentumandAMof light in dispersive inhomogeneousmedia

Throughout this paper we considermonochromatic electric andmagnetic fields: tr E r, Re e ti = w-( ) [ ( ) ]and
tr H r, Re e .ti = w-( ) [ ( ) ] Themain independent dynamical properties of light are: energy,momentum, aswell

as spin and orbital AM.One can also add here helicity, which is an independent conserved quantity
[55, 57, 59, 69, 70, 75–79]. Themomentum andAMcharacteristics, both kinetic and canonical, for
monochromatic free-space fields are given by equations (1.1) and (1.5)–(1.8). For completeness, here we add the
energy density [20–22]:

W
g

E H
2

. 2.10
2 2w

= +(∣ ∣ ∣ ∣ ) ( )

Wenow consider an isotropic lossless dispersive and inhomogeneousmedium,which is characterized by the
real frequency-dependent permittivity r,e w( ) and permeability r, .m w( ) In this case, the complex field
amplitudes satisfy stationaryMaxwell equations:

k
H H E0,

i
,

0

m m ⋅ = = -  ´( )

k
E E H0,

i
. 2.2

0

e e ⋅ = =  ´( ) ( )

Note that these source-free equations are used in the decomposition of the Poyntingmomentumdensity into
canonical and spin parts, equation (1.8).

The energy density of amonochromatic optical field in such amedium is described by thewell-known
Brillouin expression [20, 22]:

W
g

E H
2

, 2.32 2w
e m= +˜ (˜ ∣ ∣ ˜ ∣ ∣ ) ( )

where

d

d
,

d

d
. 2.4e e w

e
w

m m w
m
w

= + = +˜ ˜ ( )

Describing the opticalmomentumdensity in amedium is amore sophisticated problem.On the one hand,
the Abrahammomentum A preserves its Poynting-vector form (1.2) in themedium. By analogywith the
canonical decomposition (1.8), one can decompose it into orbital and spin parts,

P P P S ,A A A
S

A A
1

2
 = + = +  ´ where:

g g

g

P E E H H E E H H

E E H H

2
Im

4
Im Im

2
, 2.5

A
1 1 1 1

1 1

* * * *

* *

m e m e

e
m

e
m
e

m

= ⋅  + ⋅  -  ´ ´ +  ´ ´

+ ⋅  + ⋅ 

- - - -

- -
⎡
⎣⎢

⎤
⎦⎥

[ ( ) ( ) ] [ ( ) ( )]

( ) ( ) ( )

g
S E E H H

2
Im . 2.6A

1 1* *m e= ´ + ´- -( ) ( )

This spin–orbital decompositionwas introduced in [65] (up to themissing last term in square brackets in (2.5))
andwas used in [35, 46, 80] because of its convenience in homogeneousmedia. However, in inhomogeneous
media, the canonicalmomentumdensity (2.5) acquires cumbersome gradient terms.Moreover, the physical
interpretation of the quantities (2.5) and (2.6) is not quite clear. Indeed, as we discussed above, theAbraham
momentum A should be associatedwith the energy flux density and group velocity (1.10) rather thanwith the
wavemomentumdensity. Therefore, the Abraham-type quantities (2.5) and (2.6) correspond to the orbital and
spin parts of the energy flux density, but cannot be regarded as canonicalmomentum and spin densities in the
wave. In addition, at interfaces betweenmedia, the Abraham-type spin density (2.6) is discontinuous, and the
corresponding gradient terms in equation (2.5)produce singular delta-function contributions to the canonical
and spinmomentumdensities PA and PA

S [65]. Thismakes the Abraham-type spin–orbital decomposition
imperfect. Note also that, similarly to the free-space equations (1.8) and (1.9), the solenoidal spin part of the
energyflux does not contribute to the plane-wave and integral characteristics:

P . 2.7A Aá ñ = á ñ ( )

Therefore, in some plane-wave or integral calculations it could bemore convenient to use equation (2.5) as the
energyflux density.

To describe physicallymeaningfulmomentum andAMdensities in the opticalfield, one should use the
Minkowskimomentum. Its simple form (1.2) is not valid in the presence of dispersion, and several works

6
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discussedmodifications of theMinkowski-typewavemomentum in a dispersivemedium [12–14, 16, 17]. The
most general expression, suitable for structuredwavefields was derived by Philbin [16, 17] using the
phenomenological Lagrangian formalism andNoether’s theorem:

g
E E H H

2
Im

d

d

d

d
. 2.8M M  * *

w e
w

m
w

= + ⋅  + ⋅ 
⎡
⎣⎢

⎤
⎦⎥˜ ( ) ( ) ( )

Here, thefirst term is the ‘naïve’Minkowskimomentum (1.2), while the second termdescribes the dispersion-
related correction. For a planewave in a transparent homogeneousmedium, the Abrahamandmodified-
Minkowskimomenta A and M̃ yield simplified equation (1.4) [3–5, 7, 11–14, 16–18].

Since theMinkowski-typemomentum (2.8) represents ‘canonical’wave-vector properties of thewave, it
makes sense tofind the spin–orbital decomposition, similar to equation (1.8), and introduce the corresponding
canonical spin and orbital properties. In doing so, we apply the standard Poynting-vector decomposition (1.8) to
thefirst (Minkowski) term in equation (2.8) and add the second dispersive term to the orbital part (because of its
natural orbital form). This results in P P :M M M

S = +˜ ˜

g
P E E H H

2
Im , 2.9M * *e m= ⋅  + ⋅ ˜ [˜ ( ) ˜ ( ) ] ( )

g
P S S E E H H

1

2
,

2
Im . 2.10M

S
M M * *e m=  ´ = ´ + ´( ) ( )

Notably, the canonical (orbital) momentum density (2.9) has a nice form similar to the free-spacemomentum
(1.6)with the ẽ and m̃multipliers, exactly as in the Brillouin energy density (2.3). Furthermore, the
momentum (2.9) is free of cumbersome gradient terms, present in the canonical Abraham-typemomentum
(2.5). However, the quantity SM in equation (2.10) is the ‘naïve’Minkowski spin AMdensity, which lacks
dispersive corrections. As we show below, this is not the canonical spin AMdensity of the wave. Notably, in
the SPP example considered below, the quantity SM is continuous at the interface, and therefore the canonical
and spin parts of themodifiedMinkowskimomentumdensity, PM˜ and P ,M

S are free of delta-function
singularities. Thismakes theMinkowski-type spin–orbital decompositionmore appealing than the Abraham
one.

Akin to equations (1.8), (1.9), and (2.7), the solenoidal spinmomentum (2.10) vanishes for planewaves and
does not contribute to the integralmomentumvalues. Therefore, the integral values of the kinetic and canonical
Minkowski-typemomenta (2.8) and (2.9) coincide for localized fields:

P . 2.11M Má ñ = á ñ˜ ˜ ( )

Thus, one can use either of thesemomenta in calculations of the integral or plane-wave properties.
To determine the canonical spin and orbital AM in a dispersivemedium,we start with the kinetic (total)

Minkowski-type AM.Again, theMinkowski-type analog of equation (1.5) in a dispersivemediumwas found by
Philbin andAllanson [17]:

g
r E E H H

2
Im

d

d

d

d
. 2.12M M * *

w e
w

m
w

= ´ + ´ + ´
⎡
⎣⎢

⎤
⎦⎥˜ ˜ ( )

Importantly, theAMdensity (2.12) breaks the simple relation (1.5) between the kineticmomentum andAM
densities, r ,M M ¹ ´˜ ˜ and contains a dispersion-related correction of the spin-like local form. Substituting

P PM M M
S = +˜ ˜ with equations (2.9) and (2.10) into equation (2.12) and using the nonlocal relation between

the spinmomentum and spinAM, V Vr S Sd d ,M M
1

2ò ò´  ´ =( ) wederive the canonical orbital and spin

AMdensities in a dispersivemedium:

g
S E E H H L r P

2
Im , . 2.13M M M* *e m= ´ + ´ = ´˜ (˜ ˜ ) ˜ ˜ ( )

Here the dispersion terms from equation (2.12) correct the ‘naïve’Minkowski spin density S .M Remarkably,
equations (2.13)have a very nice form, similar to the free-space equation (1.7), but nowwith the same ẽ and m̃
multipliers as in the Brillouin energy density (2.3) and canonicalmomentumdensity (2.9). The integral values of
the kinetic and canonical AM (2.12) and (2.13) coincide for localized fields:
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S L . 2.14M M Má ñ = á ñ + á ñ˜ ˜ ˜ ( )

Equations (2.3), (2.9), and (2.13) constitute a set of canonical characteristics of amonochromatic light in a
dispersive and inhomogeneousmedium. Importantly, these can bewritten as local expectation values of
quantum-mechanical energy ,w( ) momentum p i ,= - (ˆ ) and spin-1 S(ˆ) operators [35, 54–56, 59]:

W P p S S L r p, Re , , Re , 2.15M M My w y y y y y y y= = = = ´˜ ( ∣ ∣ ) ˜ ( ∣ˆ ∣ ) ˜ ( ∣ˆ∣ ) ˜ ( ∣ ˆ ∣ ) ( )

using the followingwave-function:

g
M ME

H2
, ,

0
0 . 2.161 2y y y y y e

m= ¢ = = ⎜ ⎟⎛
⎝

⎞
⎠( )ˆ ( ∣ ) ˆ ˜

˜ ( )†/

Exactly the same formalism for electromagnetic bi-linear forms (including Berry connection and other
topological characteristics) in dispersivemediawas recently suggested inworks by Silveirinha [81–83]. Thus, the
above equations bring together approaches developed by (i)Philbin (kineticMinkowski-typemomentum and
AM in dispersivemedia) [16, 17], (ii)Bliokh et al (canonicalmomentum andAMpictures in free space)
[35, 41, 52, 55, 56], and (iii) Silveirinha (electromagnetic bi-linear forms in dispersivemedia) [81–83].

The natural formof the energy,momentum, andAM in equations (2.3), (2.9), (2.13), and (2.15) suggests that
the canonical formof theMinkowski-typemomentum andAMdensities ismore suitable for the description of
the opticalmomentum andAM than the previously used kineticMinkowski-type approach, equations (2.8) and
(2.12), and the Abraham-type quantities (2.5) and (2.6). For example, consider a polarized planewave
propagating in a homogeneous dispersivemedium. All field components have the same phase factor k rexp i ,⋅( )
the electric andmagnetic field amplitudes are related by E H ,2 2m e=∣ ∣ ∣ ∣ whereas the ellipticity of the
polarization can be characterized by the helicityσ, such that E E E kIm 2* s´ =( ) ∣ ∣ (and a similar equation for
themagneticfield), where kk k= characterizes the direction of thewave propagation. Using these simple
properties, from equations (2.3), (2.5), (2.6), (2.9) and (2.13), we readily obtain the ratios of the canonical
Abraham- andMinkowski-typemomentum and spin densities to the energy density of thewave:

W n n W W n n W

P k P k S
k

S
k

1
, ,

1
, . 2.17A

p g

M A

p g

M

w w
s
w

s
w

= = = =˜
˜
˜ ˜

˜
˜ ( )

Thefirst two of these equations exactly correspond to equation (1.4), whereas the other two equations provide
their counterparts for the spin AM (see [17, 84]). In thismanner, theMinkowski-typemomentum PM˜ and spin
AM SM

˜ correspond to the values k and ks per photon, as onewould expect for photons, the Abraham-type
momentum PA determines the group velocity (1.4), while the Abraham-type spin SA does not have a clear
physicalmeaning.

It is important to note that it is theMinkowski-typewavemomentum andAM that are conserved inmedia
with the corresponding translational and rotational symmetries. First, this follows in themost general form
from the results of [16, 17], where the kinetic quantities (2.8) and (2.12)were derived fromNoether’s theorem.
In view of equations (2.11) and (2.14), this is also true for the canonicalMinkowski-type quantities (2.9) and
(2.13). Second, in the plane-wave equation (2.17), theMinkowski-typemomentum and spin exactly correspond
to the tangent-momentum and normal-AMconservation laws in thewave refraction at an interface between two
media [20, 22, 25–30] (Snell’s law and optical beam shifts).

In this sectionwe presented amacroscopic phenomenological introduction of these quantities. Below,
considering SPPs at the vacuum-metal interface, we show that thismacroscopicmodel is in exact agreement
withmicroscopic calculations taking into account separate electron and field contributions. It should be also
noted that in the absence of dispersion, ,e e=˜ ,m m=˜ and both kinetic and canonical characteristics discussed
in this section acquire simplifiedMinkowski forms, shown in table 1.

3.Macroscopic calculations for a SPP

3.1. SPPfields and parameters
Wenow consider an explicit example of a structured opticalfield in a dispersive and inhomogeneousmedium: a
SPP at themetal-vacuum interface [23]. The geometry of the problem is shown infigure 1(a), where the interface
is the x=0 planewith the vacuum in the x>0 half-space (medium1) andmetal in the x<0 half-space
(medium2), whereas the SPPwave propagates along the z-axis with thewavevector kk zp p= (hereafter, x, y ,
and z denote the unit vectors of the corresponding axes). The permittivity and permeability of themetal are
given using the standard plasmamodel [23]:

1, 1 . 3.1
p
2

2
m e w

w

w
= = -( ) ( )
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Here, n e m4p
2

0
2w p= is the plasma frequency, where n0 is the volume density of free electrons in themetal,

e 0< is the electron charge, andm is the electronmass. Thus, themetal is a dispersivemediumwith
1 .p

2 2e w w e= + ¹˜ SPPs are electromagnetic surface TMwaves that exist at frequencies 2pw w< where
1e < - [23].

The electric andmagnetic fields of a single SPPwave can bewritten as [23, 24, 65]:

A
k

k z x x

k
k z x x

aE

x z

x z

i exp i , 0

1
i exp i , 0

3.2
p

p

p
p

1
1

2
2

k
k

e
k

k

=

- - >

+ + <

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( )

A

k

k
k z x x

k

k
k z x x

bH

y

y

exp i , 0

exp i , 0
3.2

p
p

p
p

0
1

0
2

k

k
=

- >

+ <

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )
( )

whereA is the field amplitude, whereas thewave number and spatial decay constants of the SPPfield are:

k k k k
1

,
1

1
,

1
. 3.3p 0 1 0 2 0

e
e

k
e

k
e

e
=

-
- -

=
- -

=
-

- -
( )

The vacuumpart of the SPPfields (3.2) and (3.3) is a free-space TM-polarized evanescent wavewith
k k .p

2
1
2

0
2k- = From equations (3.1) and (3.3), one can obtain the dependence kp w( ) and the dispersion of the

SPP, k ,pw ( ) shown infigure 1(b).

3.2. Energy, group velocity, andmomentumof SPPs
Substituting equations (3.2) and (3.3) into equation (2.3), we obtain the energy density distribution in the SPP
field:

W g A

x x

x x

exp 2 , 0

1
exp 2 , 0

. 3.42
1

2

2 2
w

k
e e
e

k
=

- >
- +

<

⎧
⎨⎪
⎩⎪

˜ ∣ ∣
( )

( )
( )

Note that the distribution (3.4) is discontinuous at the interface x=0. Since SPP field is localized along the x
coordinate, we can also calculate the integral ‘expectation value’ of the SPP energy integrating W̃ over x:

W g A
k

1 1

2
, 3.5

p

2
2

2

w e e
e e

á ñ =
- +

-
˜ ∣ ∣ ( )( ) ( )

where x... ... d .òá ñ º
-¥

¥
Inwhat follows, we express the integralmomentum andAMcharacteristics of SPPs

with respect to the energy (3.5), in order to highlight their values ‘per plasmon’. From the energy-density
distribution, we also find the position of the center of energy along the x-axis:

Figure 1. (a) Schematic picture of a surface plasmon-polariton (SPP)wave at themetal-vacuum interface [23]. The subluminal group
velocity (3.8), super-momentum (3.9), and the transverse spin (3.14) are schematically shown. (b)The dispersion of the SPP, k ,pw ( )
obtained from equations (3.1) and (3.3).
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x
W

x W x
k

1
d

1

2

1

1
. 3.6

p

2 3

2ò
e e
e e

á ñ º
á ñ

= -
+ +
+ --¥

¥

˜
˜

( )
( )

It follows fromhere that for 1.57pw w< the energy centroid is located in the vacuum: x 0,á ñ > while for
1.57 2p pw w w< < itmoves into themetal: x 0.á ñ < Dependences of the integral energy (3.5) and center-

of-energy position (3.6) on the SPP frequency are shown infigure 2.
TheAbraham–Poyntingmomentumdensity, or rather the energy flux, equations (1.1) and (1.2), for the SPP

fields (3.2) and (3.3) yields

g A
k

k

x x

x x
z

exp 2 , 0
1

exp 2 , 0
. 3.7A

p

2 0
2 1

2


k

e
k

=
- >

<

⎧
⎨⎪
⎩⎪

∣ ∣
( )

( )
( )

Note that thisflux is negative (backward) inside themetal, producing a vortex-like energy circulation in SPPwave
packets [24, 65, 85]. Nonetheless, the integral energyflux Aá ñ is positive, and, in ratio to the energy (3.5), it
determines the group velocity of SPPs [24, 86]:

c

W
c

k
v z z

1

1
. 3.8g

A

p

2 3 2

2

 e e
e

w
=

á ñ
á ñ

=
- - -

+
=

¶
¶˜

( ) ( )
/

Importantly, the absolute value of the group velocity (3.8) is always subluminal: v c,g < which corresponds
to the subluminal propagation of a SPPwave packet. This alsomeans that the integral Abrahammomentum is
smaller than k0 ‘per plasmon’. Although the plane-wave homogenous-medium equations (1.4) and (2.17) are
not directly applicable to the structured SPPwave at themetal-vacuum interface, the group velocity (3.8) can
bewritten in the form v c n ,g g

eff= wherewe introduced an effective phase refractive index for SPPs, np
eff =

k k 1,p 0 > and the corresponding effective group index n n nd d 1.g p p
eff eff effw w= + > This shows that the

relations (1.4) between the Abraham energy flux, group velocity, and refractive indices are rather general and can
be extended, using integral expectation values, to localized states in inhomogeneousmedia. The frequency
dependence of the SPP group velocity (3.8) is depicted infigure 3(a).

The orbital and spin parts of the energy flux (3.7), PA and P S ,A
S

A
1

2
=  ´ equations (2.5) and (2.6), have

been analyzed for SPPs in [65], andwe do not reproduce these here.We just recall that these parts have singular
delta-function contributions at the interface x=0 due to the gradient terms in equation (2.5) and discontinuity
of the Abraham spin (2.6) SA (shown below). These singular contributions are crucial to satisfy equation (2.7).

We now calculate theMinkowski-typemomentum for the SPPfields. It has amore natural form in the
canonical approach. Indeed, using equation (2.9), we readily obtain for thefield (3.2)with the common

k zexp i p( ) phase factor:

k
W

k
W

P z P z, . 3.9M p M p
w w

= á ñ =
á ñ˜ ˜ ˜ ˜

( )

Figure 2.The integral energy (3.5) and center-of-energy position (3.6) versus the SPP frequency .w
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Note that themomentumdensity PM˜ is positive both in the vacuumand inmetal, in contrast to the energyflux
(3.7).Moreover, it does not have delta-function singularities at the interface, in contrast to the canonical Abraham-
typemomentum PA [65].

Assuming that the energy is quantized as w ‘per plasmon’, equations (3.9)mean that the SPP carries super-
momentum k kp 0 > per plasmon. Remarkably, so far the super-momentumwas described only locally, in
evanescent waves or near optical vortices [31–35, 56, 87, 88]. At the same time, the integralmomentum for any
localizedwavefield in free space is always less than k0 per photon [33]. Equations (3.9) show an example of the
integral super-momentum.Of course, one can say that a canonicalmomentumhigher than k0 per photon
appears in anymediumwith phase refractive index n 1.p > Equations (3.9) can also bewritten in the formof

equations (1.4) and (2.17)with kk zp= and effective refractive index n k k 1.p p
eff

0= > However, in the case of

SPPwaves, this effective refractive index originates from the inhomogeneous evanescent character of surface
waves rather than from the high permittivity of themedium. Indeed, in the limit 2 ,pw w wehave

n ,p
eff  ¥ while 1.e  - Note that although in someworks the super-momentumwas interpreted as a

‘superluminal group velocity’ [33, 88], our present analysis shows that it should rather be considered as a pure
momentumproperty, while the group velocity is determined by the Poynting–Abraham energyflux and is
always subluminal. The frequency dependence of the ratio of the SPPmomentum (3.9) and energy is shown in
figure 3(b).

According to equation (2.11), the kinetic formof theMinkowski-typemomentum (2.8)has the same integral
value (3.9), but its local density does not exhibit the nice proportionality to the energy density as in
equation (3.9):

g A
k

k

x x

x x
z

exp 2 , 0

1 2

1
exp 2 , 0.

3.10M
p

2 0
2 1

2

2


k
e e

e e
k

=
- >

- +
+

<

⎧
⎨⎪
⎩⎪

˜ ∣ ∣
( )

( )
( ) ( )

Moreover, thismomentumdensity coincides with the Poynting–Abrahamone in the vacuum. Therefore, for
x 0,> c W c W k k 1,M A p0 = = <˜ ˜ ˜/ / / and the kineticMinkowski-typemomentum (3.10) cannot explain
the local super-momentum density in the vacuum evanescent field, c W k kP 1,M p 0= >˜ ˜/ / which is described by
the canonicalmomentum (3.9) and is observed experimentally [31–33]. Comparing equations (3.8)–(3.10),
togetherwith the singular character of the canonical Abraham-typemomentum PA [65], confirms that the
canonical picture ismore natural for the description of theMinkowski-typewavemomentum,while the kinetic
approach ismore suitable for the characterization of theAbraham-type energy fluxes, see table 1.

3.3. Spin and orbital AMof SPPs
Weare now in the position to determine the spin and orbital AMof SPPs. Akin to themomentumof SPPs, these
should be described using theMinkowski-type canonical picture. However, for completeness and comparison
with other approaches, wefirst calculate the Abraham-type spin density (2.6) and its integral value.With the SPP
fields (3.2) and (3.3), we obtain:

Figure 3.The group velocity (3.8) and integralMinkowski-typemomentum (3.9) of a SPP versus frequency.While the group velocity
is always sub-luminal, v c,g < the integralmomentumof SPP corresponds to the super-momentum k kp 0 > ‘per plasmon’.

11

New J. Phys. 19 (2017) 123014 KYBliokh et al



g A
k

x x

k
x x

S y

exp 2 , 0

exp 2 , 0
3.11A

p

p

2

1
1

2
2 2

k
k

k
e

k
=

- >

- <

⎧
⎨
⎪⎪

⎩
⎪⎪

∣ ∣
( )

( )
( )

W
S y

1

1
. 3.12A 2

e e
e w

á ñ =
- - -

+
á ñ( )

( )
˜

( )

This is the transverse helicity-independent spin,first described in [65] and now attracting considerable attention
[35, 41–43, 46, 66–68].Wewrote equation (3.11) using the kp1,2k factors to conformwith the known results for

the transverse spin in an evanescent wave in free space [35, 41–43]: SAy k

W

p

1= k
w

˜
for x 0.> Equation (3.11) shows

that the Abraham-type spin density SA is discontinuous at the interface x 0.= As a result of this, the canonical
and spin parts of theAbraham–Poynting energy flux have delta-function singularities [65], originating from the
gradient terms in equation (2.5). Note also that the integral value SAyá ñ is always positive and is in agreement with
calculations of [65] up to a factor of 2missing there. (Themissing factor of 2 in [65] originates from the improper

application of the relation x xS r P r Sd dA A
S

A
1

2ò òá ñ = ´ = ´  ´( ) ( ) to the z-delocalized SPPwave,

involving only the term S xAy¶ ¶ under the integral. In fact, this relation is valid only for localizedwave packets
involving two terms: S xAy¶ ¶ and S zAy¶ ¶ ). At the same time, calculations of the integral Abraham spin ‘per
particle’ for surfaceMaxwellmodes in [89] are not applicable in the SPP case because a dispersion-freemodel
without proper Brillouin energy (2.3)was considered there. The frequency dependence of the Abraham-type
spin (3.12) (in units of  ‘per plasmon’) is shown infigure 4(a).

We now calculate the properly defined canonicalMinkowski-type spin and orbital AM (2.13). Substituting
equations (3.2) and (3.3) into equation (2.13), wefind:

g A
k

x x

k
x x

S y

exp 2 , 0

2
exp 2 , 0.

3.13M
p

p

2

1
1

2
2 2

k
k

k e
e

k
=

- >

-
-

<

⎧
⎨
⎪⎪

⎩
⎪⎪

˜ ∣ ∣

( )

( )
( )

The spinAMdensity (3.13) is directed oppositely in the vacuum andmetal: S 0y < for x 0.< This agrees
with the opposite direction of rotation of the electric fieldE in themetal, equation (3.2a), but is in contrast to
what is obtained for the ‘naïve’Minkowski spin (2.10), positive in themetal: S 0My > for x 0< [72–74]. (Here
we do not show the distribution of S ,M equation (2.10), and only note that it is continuous at the interface x 0;=
this assures the non-singular character of the canonicalmomentum P ,M˜ equation (2.9), which does not have any
gradient corrections.)This proves that taking into account the dispersion-related corrections is crucial for
determining the transverse spin and other dynamical properties of light in a dispersivemedium. The integral
expectation value of the spin AM (3.13) becomes:

Figure 4. (a)The integral Abraham-type transverse spin (3.12) and proper canonicalMinkowski-type transverse spin (3.14) of the SPP
versus frequency. In contrast to the positive Abraham-type spin, theMinkowski-type spin can have different directions and vanishes
for 3 .pw w= (b)The frequency dependences of the intrinsic (3.15) and extrinsic (with respect to the interface x 0= ) (3.16)
orbital angularmomentum (AM) of the SPP. The vanishing intrinsic partmeans that the canonicalmomentumdensity (3.9)does not
exhibit any vortex-like circulation, in contrast to the Poynting–Abraham energyflux (3.7) [24, 65, 85]. In turn, the extrinsic orbital
AMoriginates from the shifted energy centroid of the SPP, equation (3.6) andfigure 2(b).
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W
S y

2

1
. 3.14M 2

e e
e w

á ñ =
- - -

+
á ñ˜ ( ) ˜

( )

Equation (3.14) provides the first accurate calculation of the transverse spin AM carried by a SPP. In contrast to
the Abraham-like spin (3.12) considered before, its direction can vary depending on the SPP frequency. Namely,
it is positive, S 0,Myá ñ >˜ for 3pw w< and negative, S 0,Myá ñ <˜ for 3 2 ,p pw w w< < so that it

vanishes at 3 .pw w= The frequency dependence of theMinkowski-type spin (3.14) (in units of  per
plasmon) is shown infigure 4(a). Note that its absolute value never exceeds 2 per plasmon; this is because of
the pure-electric origin of the transverse spin, with nomagnetic part. Interestingly, the critical zero-spin value

3 ,pw w= or 2,e = - corresponds to the elliptical x z,( )-polarizations of the electric field (3.2)with the axes
ratios 2 and 1 2 (i.e., identical ellipticities but different orientations), and opposite directions of the
rotation, in the vacuum andmetal, respectively.

The orbital AMdensity in the SPPfield is determined by equation (2.13) and the canonicalmomentum
density (3.9): L r P .M M= ´˜ ˜ This quantity is extrinsic, i.e., depends on the choice of the coordinate origin.
However, the expectation value of the orbital AM can have both extrinsic and intrinsic contributions [41]. The
intrinsic orbital AM is calculatedwith respect to the centroid of the energy density distribution. Using the
x-shifted centroid (3.6) and z-directedmomentumdensity (3.9), we calculate the y-directed intrinsic orbital AM
of the SPP:

x x P xL y d 0. 3.15M Mz
int òá ñ = - - á ñ =˜ ( ) ˜ ( )

Thus, the intrinsic orbital AMof SPP vanishes. This is because of the proportionality between the canonical
momentumdensity (3.9) and energy density (3.4), which in turn determines the centroid (3.6). The vanishing
intrinsic orbital AM (3.15) reflects the non-vortex character of the canonicalmomentum (3.9), in contrast to the
circulating Abraham-type energyfluxes [24, 65, 85]. The extrinsic part of the orbital AM, calculatedwith respect
to the interface x 0,= can bewritten as:

x P
W

L L L y y
1

2 1
. 3.16M M M Mz

ext int
2 3

2

e e
e e w

á ñ = á ñ - á ñ = - á ñá ñ = -
+ +
+ -

á ñ˜ ˜ ˜ ˜ ( )
( )

˜
( )

This quantity can change its sign depending on the sign of x .á ñ The frequency dependences of the intrinsic and
extrinsic parts of theMinkowski-type orbital AM, equations (3.15) and (3.16), (in units of  per plasmon) are
shown infigure 4(b).

Belowwe examine themicroscopicmodel offields and electrons in themetal, which confirms the above
phenomenological calculations andMinkowski-type picture of themomentum andAMof SPPs.

4.Microscopic calculations for a SPP

4.1.Microscopicfields andparameters of electron plasma
Themicroscopic approach is based on the separation of themicroscopic electromagnetic field (E,H) and
charges/currents inside themedium. In our case, themetal can be described using the Bloch hydrodynamic
model for electron plasma. In thismodel, the electron density is written as n t n tr r, , ,0 n= +( ) ˜ ( ) where n0 is
the uniformunperturbed density of free electrons (which neutralizes positive charges of backgroundmotionless
ions), and ñ is a small perturbation of the electron density caused by the interactionwith electromagnetic wave
fields. The local electron velocity is given by tr, .( ) Considering amonochromatic linear problem,we
introduce complex amplitudes for perturbations of electron properties, t nr r, Re e tin = w-˜ ( ) [ ˜( ) ]and

tr v r, Re e ,ti = w-( ) [˜( ) ] and the time derivatives become t i ,w¶ ¶  - entirely similar to complex field
amplitudes.Microscopic electromagnetic fields always occur in free space (i.e., there is no effectivemedium,

1e m= = ), but theMaxwell equations aremodified by the presence of charges and currents [22]:

k
H H E0,

i
,

0

 ⋅ = = -  ´

en
k

en
E E H v4 ,

i
i
4

. 4.1
0

0p
p
w

 ⋅ = =  ´ -˜ ˜ ( )

These equations describe the influence of the electrons on thefields. The back action is described by the
hydrodynamic equation for the electron gas [71]:

n m en m nv Ei . 4.20 0
2w b- = - ˜ ˜ ( )
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This equation is a classical equation ofmotion of the electron in the electric fieldE (the Lorentz force from the
magnetic field vanishes in the linear problem)with the additional quantumpressure term involving the
coefficient v3 5 ,2

F
2b = ( ) where vF is the Fermi velocity of electrons. Our classical treatment of the SPPwave

implies the limit 0.2b  However, we cannot omit the last term in equation (4.2) from the beginning because it
is crucial to satisfy the boundary conditions at themetal-vacuumdiscontinuity, x 0.=

Solving equations (4.1) and (4.2)with standard boundary conditions at themetal-vacuum interface
(continuity of E ,x E ,z H ,y and vanishing of vx) yields themicroscopic electric andmagnetic fields as well as
electron plasma properties in the SPPwave. Themagnetic field (both in the vacuum and in themetal) and
electric field in the vacuum are still described by themacroscopic equation (3.2)with parameters (3.1) and (3.3),
while the electric field inside themetal becomes:

A k
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Here k ,p
2 2 2 2g ew b= - we still use e as a parameter given by equation (3.1), and 02b  implies .g  ¥

The electron density and velocity perturbations in SPPs are given by:

n
A

e

k
k z x

4

1
e exp i , 0, 4.4

p x
p
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p
e
e

g
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=
-

- <g
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⎞
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A e

m

k

k
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p

x
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e w g
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⎛
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⎠⎟

⎤
⎦
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Wecan now consider the classical limit .g  ¥ Since the γ-terms appear only in themetal half-space
x 0,< one can use the limiting transition x xexp ,g g d( ) ( ) where the delta-function describes surface effects
at the interface. After doing so, the electric field (4.3) becomes equal to themacroscopic one, equation (3.2), while
the electron density vanishes in the volume, n 0=˜ for x 0,< and acquires a surface delta-function singularity:

n
A

e
k z x

4

1
exp i . 4.6p

p
e
e

d=
-˜ ( ) ( ) ( )

Aswe showbelow, this singularity is cancelled by another singularity infield gradients, and all dynamical
properties of the SPPwave are determined by volume contributions in themetal and in the vacuum. Finally, the
electron velocity (4.5) becomes proportional to the electric field (3.2) (which follows from equation (4.2) at
β=0):

A e

m k
k z x

e

m
xv x z Ei i exp i

i
, 0. 4.7

p
p

2
2

e w
k

k
w

= + + = <
⎛
⎝⎜

⎞
⎠⎟˜ ( ) ( )

Note that it is the vanishing of the electron density perturbation ñ in volume thatmakes themicroscopic fields
‘transverse’, i.e., divergence-free: E 0. ⋅ = Because of this, we do not need to consider contributions of
‘longitudinal’ (i.e., curl-free)fields to the energy,momentum, andAM [90].

In addition to the point-charge features of electrons, wewill need their electric-dipole properties. Since
velocity is a time derivative of the position of the electron, we canwrite the complex amplitude of the electron

displacement as a v.i=
w

˜ ˜ Fromhere, the complex amplitude of the density of the electron dipolemoment is:

n e
n e

d a v
i

. 4.80
0

w
= =˜ ˜ ˜ ( )

Substituting here equation (4.7), we canwrite the dipole-moment density (4.8) as:

n e

m
d E,

1

4
. 4.90

2

2
a a

w
e

p
= = - =

-˜ ( )

Hereα is the dipole polarizability of the electron gas, and the last equality shows that it is in perfect agreement
with themacroscopic theory based on the permittivity e [22]. Indeed, substituting the velocity (4.7) into
Maxwell equation (4.1) formicroscopic fields, we immediately obtain the source-freeMaxwell equation (2.2) for
macroscopic fields with permittivity .e

4.2.Microscopic calculations of energy andmomentumdensities
In the vacuumhalf-space x 0,> themicroscopic andmacroscopic electromagnetic fields and their properties
coincide, sowe have to compare only themacroscopic andmicroscopic properties in themetal. Hereafter, we
consider all quantities only in the x 0< half-space.

The cycle-averaged energy density in the systemofmicroscopic electromagnetic fields and electrons can be
written as:
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W
g n m

W WE H
v

2 4
. 4.102 2 0

2

0 mat
w

= + + º +˜ (∣ ∣ ∣ ∣ ) ∣˜ ∣ ( )

Here thefirst term is themicroscopic-field energy (written as for free-space fields, equation (2.1)), and the
second term is the kinetic energy of electrons. Note that the latter can also be presented as the energy of the
dipole (4.8) and (4.9) in the electric field:W d E ERe .mat

1

4

1

4
2* a= - ⋅ = -( ˜ ) ∣ ∣ Substituting fields (3.2) and

velocity (4.7) into equation (4.10) results in themacroscopic energy densityW ,˜ equation (3.4), at x 0.< Thus,
themicroscopic andmacroscopic calculations are in perfect agreement. Thefield and electron contributions in
themetal are:

W W W W
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2 1
,

1

2 1
. 4.110

2

2 mat

2

2

e
e e

e
e e

=
+

- +
=

-
- +( )

˜ ( )
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˜ ( )

Themomentumdensity in themicroscopic approach is also the sumof thefield and electron contributions.
The velocity of electrons in external fields is associatedwith the kinetic rather than canonicalmomentumof
electrons, and, therefore, we consider the corresponding kineticmomentumdensity of thefield. (It is worth
noticing that the canonical electronmomentum in themetal vanishes: m mp v A v Ei 0,e

c

e= + = - =
w

˜ ˜
wherewe used the relation A Ei c= -

w
for the transverse vector potential and equation (4.7).) For the

microscopic field, the kineticfieldmomentum is given by the Poynting vector (1.1), i.e. the Abraham
momentum. Belowwe show that adding it to the kinetic electronmomentumyields the kineticMinkowski-type
momentumdensity (2.8) suggested by Philbin [16, 17]:

gk E HRe . 4.12M 0 mat 0 mat   *= ´ + = +˜ ( ) ( )

The calculation of the electron contribution mat requires amore sophisticated approach. Indeed, the simple
expression n mv Ei en

0
0=

w
˜ (with oscillating, zero-average ṽ ) for point electrons does not provide ameaningful

result; instead of this, one has to consider an optical force acting on electric dipoles (4.8) and (4.9).We follow the
formalismdescribed in the review [4], section 5.1 therein.

Namely, we consider a long but finite wave packet instead of amonochromatic continuouswave.
Afterwards, the length of thewave packet can be tend to infinity. Introducing slowly varying amplitudes

tE r E r, ,( ) ( ) tH r H r, ,( ) ( ) etc, with the typical scale of the t-variationsmuch larger than ,1w- involves
the corresponding narrow butfinite frequency Fourier spectrum centered at .w This produces the first-order
Taylor-series correction to the relation (4.9) between the dipolemoment and electric field:

t t
t

t
d r E r

E r
, , i

d

d

,
. 4.13a w

a
w

= +
¶

¶
˜( ) ( ) ( ) ( ) ( )

Next, we consider the cycle-averaged force density acting on the dipolemoment (4.13) in an external
electromagnetic field [4]:

c t
F d E d E d H

1

2
Re

1
. 4.14* * *= ⋅  + ´  ´ +

¶
¶

´
⎡
⎣⎢

⎤
⎦⎥( ˜ ) ˜ ( ) ( ˜ ) ( )

Substituting here equation (4.13), after some transformations the force can bewritten as:

W
t c

F E E d H
1

4

d

d
Im

1

2
Re , 4.15mat * *a

w
= - +

¶
¶

⋅  + ´{ }[ ( ) ] ( ˜ ) ( )

whereW E 4.mat
2a= - ∣ ∣ Thefirst term in equation (4.15) represents the gradient force, while the two terms

subject to the time derivative should be associatedwith themomentumdensity carried by the electrons, i.e., mat
of equation (4.12). Expressing the dipole-moment density and polarizability via the electric field and ,e
equation (4.9), we arrive at:

g
gkE E E H

2

d

d
Im 1 Re . 4.16mat 0 * *

w e
w

e= ⋅  + - ´[ ( ) ] ( ) ( ) ( )

Here the second term is associatedwith the ‘Abraham force’ [22].
Substituting the electronmomentumdensity (4.16) into equation (4.12), results in the kinetic formof the

Minkowski-typemomentumdensity (2.8) (forμ=1):

ð4:17Þ

Thus, usingmicroscopic calculations for the SPP, we rigorously derived the kineticmomentumdensity (2.8)
suggested previously from a phenomenological formalism [16, 17].

We now trace the decomposition of the kineticmomentum (4.17) into the canonical (orbital) and spin parts
(2.9) and (2.10). In principle, one substitutes the electron velocity e mv Ei w=˜ ( ) into themicroscopicMaxwell
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equation (4.1), which results in themacroscopicMaxwell equation (2.2)with permittivity .e Then, the
decomposition becomes straightforward as described in section 2.However, it is instructive to trace this
decomposition at themicroscopic level. For this purpose, we decompose the Poynting-like part of the kinetic
momentum (4.17) into canonical and orbital parts using themicroscopicMaxwell equation (4.1). The presence
of sources, ñ and v,˜ modifies this decomposition as compared to the free-space case (1.6)–(1.8):

ð4:18Þ

Herewe ascribed the two source-related terms to the canonical and spin parts such that the final result will
coincidewith themacroscopic equations.

First, for the SPP fields (3.2) and velocity (4.7) the velocity-related term contains only the canonical-type
contribution (because H HIm 0* ´ =( ) in SPPs):

n e

c
H v H HIm

1

4
Im . 4.190 * *

e
pe

- ´ =
-

⋅ ( ˜ ) [ ( ) ] ( )

Combining the canonical part of equation (4.18)with equation (4.19) and the second term in equation (4.17), we
obtain themacroscopic canonicalMinkowski-typemomentum (2.9) (withμ=1):

g
P E E H H

2
Im . 4.20M * *e= ⋅  + ⋅ ˜ [˜ ( ) ( ) ] ( )

Second, the curl of the free-space-like spin S0 for the SPP fields (3.2) contains a delta-function singularity at
themetal-vacuum interface x=0. Remarkably, this singularity is exactly cancelled by the singularity (4.6) in the
electron density distribution, so that the spin part in equation (4.18) becomes non-singular. This confirms the
non-singular character of the spin–orbital decomposition in theMinkowski-type approach, in contrast to the
Abrahamone [65]. In the bulk, x 0,< the spin part of equation (4.18) substituted in equation (4.17)
immediately yields the corresponding part of themacroscopicMinkowski-typemomentum involving the
‘naïve’Minkowski spin (2.10):

g
P S S E E

1

2
,

2
Im . 4.21M

S
M M *e=  ´ = ´( ) ( )

Thus, we have obtained themacroscopicMinkowski-typemomentumdensities (2.8)–(2.10), both kinetic
and canonical, usingmicroscopic calculations in themetal with separated field andmatter contributions.

4.3.Microscopic approach to the spin and orbital AM
Itmight seem that the description of the AMquantities in dispersivemedia, given in section 2, is somewhat
‘inconsistent’with the correspondingmomentumquantities. Indeed, theMinkowski-type kinetic AM (2.12) is
not simply determined by the corresponding kineticmomentum, r ,M´ ˜ but contains additional dispersion-
related terms. Furthermore, the spinmomentum (2.10) is determined by the naïveMinkowski spin density SM,
while the proper canonical spinAM S ,M

˜ equation (2.13), differs from it in a dispersivemedium. The
microscopic approach sheds light on these ‘inconsistencies’.

Namely, the localmotion of electrons provides an intrinsic contribution to theAMdensity [71], in fact, to its
spin part. Using the electron displacement a,˜ equation (4.8), and velocity v,˜ equation (4.7), one canwrite this
part of theAMdensity as:

n m n e

m

g
S a v E E E E

2
Re

2
Im

2

d

d
Im . 4.22mat

0 0
2

3
* * *

w
w e

w
= ´ = ´ = ´(˜ ˜ ) ( ) ( ) ( )

This term exactly describes the dispersion-related addition in theMinowski-type kinetic AM (2.12) for the SPP
wave:

r S . 4.23M M mat = ´ +˜ ˜ ( )

Thus, akin to themomentumdensity (2.8) and (4.17), microscopic calculations justify the kinetic AMdensity
(2.12), previously obtained by Philbinwithin a phenomenological approach [17].

Consider now the spin and orbital AMdensities. The orbital AMdensity is straightforwardly determined by
the canonicalmomentum (4.20): L r P ,M M= ´˜ ˜ andwe have already described its properties in section 3. At the
same time, the intrinsic electron contribution (4.22) elucidates the difference between the naïveMinkowski spin
density (4.21) and canonical spin density (2.13):

g
S S S E E

2
Im . 4.24M M mat *e= + = ´˜ (˜ ) ( )

This justifies the use of the canonical spin AM in dispersivemedia and the transverse spin of a SPP calculated in
equations (3.13) and (3.14),figure 4(a). The dispersion-related contribution is absolutely crucial in the case of
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SPPs, because 0,e < 2 0,e e= - >˜ and it changes both themagnitude and sign of the spin AMdensity in the
metal.

4.4.Magnetization,magnetization current, andAbrahammomentum
The electron contribution (4.22) to the spin AMof a SPP corresponds to themicroscopic circularmotion of
electrons in the SPPfield. Thismicroscopic orbitalmotion of the electrons producesmultiple circulating
currents, and, hence, the constant (non-oscillating)magnetization of themetal. Using the standard
gyromagnetic ratio, we obtain themagnetization density in themetal:

e

mc

ge

mc
M S E E

2 4

d

d
Im . 4.25mat *

w e
w

= = ´( ) ( )

This equation exactly coincides with the results [91, 92] obtained for themagnetization of plasma by
electromagnetic radiation and the inverse Faraday effect [22, 93]. For the SPP fields (3.2) and (3.3), wefind:

g A
e

mc
xM y

2

2 1
exp 2 . 4.262

2 2
e e
e

k=
- - -∣ ∣ ( ) ( ) ( )

Thus, themetal ismagnetized along the positive-y direction (e<0).
Themagnetization (4.26)means that the SPP, being amixed photon-electron excitation, carries a non-zero

magneticmoment. To characterize thismagneticmoment ‘per plasmon’, we calculate the integralmagnetization
(4.26):

e

mc

W
M y

2

2

1
. 4.27

2

e
e w

á ñ =
- -

+
á ñ˜

( )

This corresponds to themagneticmoment yB
2

1 2m m= e
e
-

+
per plasmon, where e mc2B m = ∣ ∣ is the Bohr

magneton. The absolute value of thismagneticmoment grows from0 to Bm as the SPP frequency w changes
from0 to 2 .pw

Moreover, the inhomogeneousmagnetization (4.26) generates the correspondingmagnetization electric
current cj M:magn =  ´

g A
e

m
xj z

2 1
exp 2 . 4.28magn

2
2 2 2
e e
e

k k=
- - -∣ ∣ ( ) ( ) ( )

This is a direct currentwhich flows in themetal in the z direction, i.e., along the SPP propagation. It should be
emphasized that the current (4.28) is obtained as a quadratic formof the SPPfields. Indeed, the linear-
approximation current is determined by the electron velocity ṽ and vanishes after cycle averaging.

We also note that themagnetization current is solenoidal (divergenceless). Therefore, it does not contribute
to the charge transport and cannot bemeasured by an ammeter or voltmeter. Nonetheless, one can determine
the electron velocity env jmagn magn 0= andmomentumdensity mn m ev jmagn 0 magn magn = = ( )
corresponding to the direct current (4.28). Using equation (3.3), wewrite it as:

g A
k

k
x z

2 1

1
exp 2 . 4.29

p
magn

2 0
2

2 e
e

k= -
-

- -
∣ ∣ ( ) ( ) ( )

Thus, themagnetizationmomentum (4.29) is directed oppositely to the SPP propagation. Remarkably, it is
exactly equal to the difference between the kinetic AbrahamandMinkowski-typemomentumdensities in the
metal, equations (3.7) and (3.10):

. 4.30A M magn  = +˜ ( )

Equation (4.30) completes themicroscopic picture and explains the origin of the difference between the
AbrahamandMinkowskimomenta in themedium. Since this difference is producedby thedirectmagnetization
current, it cannot be attributed to thewave (Minkowski-type)momentumbut it does contribute to the energyflux
(Abraham–Poyntingmomentum) and the group velocity of SPPs.Note that theAbrahammomentumdensity can
also beobtained as a puremicroscopic-fieldmomentum ,A 0 = see equation (4.12) [19]. It follows fromhere that
the totalmomentumof themetal vanishes in the problemunder consideration: the electron contribution to the
wavemomentum is exactly cancelled by themagnetization-currentmomentum: 0.mat magn + =
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5.Helicity and duality aspects

5.1.Helicity density andflux in amedium
Herewe briefly consider problems related to the dual symmetry between electric andmagnetic fields inMaxwell
equations [52, 54–57, 69, 70, 75, 76, 79]. This symmetry is exact in free-spaceMaxwell equations, but the
presence of electric charges and currents inmatter breaks it. The dual symmetry corresponds to the conservation
of electromagnetic helicity viaNoether’s theorem [55, 57, 69, 70, 75, 76, 94–97]. Using the same
phenomenological Lagrangian formalism as for the derivation ofMinkowski-typemomentum andAM
densities (2.8) and (2.12), Philbin obtained the helicity density in a dispersivemedium [77]:

K
g

E H
2

Im . 5.1*
e
e

m
m

= + ⋅
⎛
⎝⎜

⎞
⎠⎟

˜ ˜ ˜ ( ) ( )

In a dispersion-freemedium, e e=˜ and ,m m=˜ and equation (5.1) yields the free-space result
K g E HIm *= ⋅( ) [55, 57, 59, 69]. It should be emphasized that K̃ is the helicity density, but not the chirality
density (Lipkin’s zilch); these quantities are simply proportional to each other only in free space [57, 77, 98–102].
Similarly to equation (2.17), for a planewave in a homogeneous transparentmedium, equation (5.1) yields:

K

W n

1
. 5.2

p

s
w

=
˜
˜ ( )

Thismeans that the helicity ‘per photon’ in units of  is limited in themediumby the n n,p p
1 1- - -( ) range. This is

a strange result without clear physicalmeaning. Using the quantumwavefunction formalism (2.15) and (2.16)

with the helicity operator [55, 59] K 0 i
i 0

=
-

⎜ ⎟
⎛
⎝

⎞
⎠ˆ would produce amore natural result:

K

W
, 5.3

s
w

=
˜
˜ ( )

but only in the case of a non-dispersivemedium. Therefore, the helicity density in a dispersivemedium is still
controversial and requires further investigation. In any case, for the SPPfields (3.2), the helicity vanishes [65] due
to the orthogonality of the electric andmagnetic fields.

Note also that in free space the dual-symmetric spin AMdensity (1.7) determines the helicity flux density
[55, 57, 69, 70, 99]. In a dispersivemedium, calculations in [77] showed that the flux density of the helicity (5.1) is
determined by theAbraham spin density S ,A equation (2.6). In this case, the helicityflux density does not
coincidewith the properMinkowski-type spin AMdensity (2.13) in amedium, and these are two different
physical quantities. Even considering the Lipkin’s chirality density, itsflux becomes proportional to the ‘naïve’
Minkowski spin density SM [77, 101], which is different from the canonical spin density (2.13) in dispersive
media.

5.2.Dual-symmetric and asymmetric quantities
So far, we considered all definitions of the optical energy,momentum, andAMusing forms symmetric with
respect to the electric andmagnetic fields (and, correspondingly, indices e andμ) [35, 41, 42, 46, 52, 54–57,
59, 65, 69, 70]. However, in standard electromagnetic field theory (orQED) thefield Lagrangian is not dual-
symmetric [36, 44, 55, 69, 70]. Due to this, the canonicalmomentum, spin, and orbital AMdensities are often
defined using dual-asymmetric field-theory expressions, which contain only the electric-field parts [36, 44,
47–50, 60, 90]. In such ‘standard’ formalism in free space, the energy density and kinetic Poyntingmomentum
density are still given by the dual-symmetric expressions (1.1) and (2.1), whereas the canonicalmomentum,
spin, and spinAMdensities (1.6)–(1.8) become [54, 55]:

gP P E E2 Im , 5.4e
0 0 *¢ = = ⋅ [ ( ) ] ( )

gL r P S S E E, 2 Im . 5.5e
0 0 0 0 *¢ = ´ ¢ ¢ = = ´[ ] ( )

Here, we introduced the electric andmagnetic parts of themomentum and spin densities (1.6) and (1.7):
P P Pe m

0 0 0= + and S S S .e m
0 0 0= + Adopting the definitions (5.4) and (5.5)wouldmean that only the phase

gradients of the electric (but notmagnetic)field producemomentum and orbital AM, and only rotations of the
electric (but notmagnetic)field generate the spin AM.On the one hand, this is not satisfactory from a general
physical perspective, where electromagnetic waves involve electric andmagnetic fields on equal footing [52,
55–57, 81–83]. On the other hand, the electric-biased quantities (5.4) and (5.5) can be useful in some practical
problems considering interactions offields with electric-dipole particles or atoms, which are not sensitive to
magnetic fields [47–49, 59, 60]. However, formagnetic-dipole particles, the electric-biased quantities (5.4) and
(5.5) do notmake sense.

Note that in free space, the dual-asymmetric densities (5.4) and (5.5) do not cause significant problems
because: (i) the Poynting-vector decomposition still has the same form (1.8): P S ,0 0

1

2 0 = ¢ +  ´ ¢ and (ii) the

18

New J. Phys. 19 (2017) 123014 KYBliokh et al



integral values of all these quantities for localized free-space fields coincide with the dual-symmetric definitions
[52, 55]:

P P S S, . 5.60 0 0 0 0á ¢ ñ = á ñ = á ñ á ¢ ñ = á ñ ( )

However, in amedium, which is dual-asymmetric e m¹( ) in the generic case, the difference between the
dual-symmetric and asymmetric definitions becomes crucial.We again consider the example of a SPPwave at a
metal-vacuum interface. First, the electric andmagnetic contributions to the energy density (2.3) and (3.4) for
themacroscopic SPPfields (3.2) equal:
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Obviously, these contributions are different and result in different integral electric andmagnetic energy parts:
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Then, the electric andmagnetic parts of the canonicalMinkowski-typemomentum (2.9) and (3.9) become
proportional to the corresponding energy parts:
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Fromhere and the difference in the integral electric andmagnetic energies (5.8), it follows that using an electric-
biasedmomentumdensity similar to equation (5.4), gP P E E2 Im ,M M

e *e¢ = = ⋅ ˜ ˜ [˜ ( ) ] would yield:
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Thus, the dual-asymmetric definitions in amediumdo not satisfy the convenient free-space relations (5.6). In
the case of equation (5.10), this breaks the natural proportionality (3.9) and themomentumof the SPP becomes
not equal to kp per plasmon.Obviously, this is a physically unsatisfactory result. Therefore, we conclude that
dual-symmetric definitions ofmomentum andAMdensities are crucial for structured waves in inhomogeneous
opticalmedia.

Moreover, the validity of the dual-symmetric (rather than electric-biased) formalism follows from the
microscopic calculations of section 4. Indeed, the dispersion-relatedmaterial correction in equation (4.17) has
the form P ,ed

d 0w e
w

independently of the formalism. It is naturally combinedwith the corresponding electric term

Pe
0e of the dual-symmetric spin–orbital decomposition of the first termof (4.17), yielding the electric part of the

canonical dual-symmetricMinkowski-typemomentum (2.9): P P ,M
e e

0e=˜ ˜ see equations (4.18)–(4.20).
However, using the electric-biased decomposition (5.4) and (5.5)doubles the non-dispersive term: P2 ,e

0e and
then it cannot be combinedwith the same dispersive term into ameaningful result proportional to .ẽ The same

situation occurs in themicroscopic derivation of the spin AM.The dispersivematerial term Sed

d 0w e
w

(4.22) is
naturally combinedwith the electric part of the dual-symmetric spin density S S ,M

e e
0e= producing the electric

part of the canonical dual-symmetricMinkowski-type spin (2.13): S S ,M
e e

0e=˜ ˜ see equation (4.24). In turn, the
electric-biased non-dispersive spin S2 e

0e cannot be combinedwith thefixed dispersive term. Thus, the dual-
symmetric forms of the canonical momentum andAMdensities are justified on themicroscopic level by fixed
dispersivematerial terms in themomentum andAMdensities.

The transverse spin AMof SPPs is a quantity which is extremely sensitive to the duality. Indeed, for the
metal-vacuum interface considered here, the transverse spin has a purely electric nature: only the electric field
rotates in solutions (3.2), while the transversemagnetic field yields no contribution to the spin AM [65]. Using
an electric-biased definition of the spin AM, similar to equation (5.5), gS S E E2 Im ,M M

e *e¢ = = ´˜ ˜ (˜ ) wewould

obtain a transverse spin twice as large as equations (3.13) and (3.14): S S2 .M Má ¢ ñ = á ñ˜ ˜ However, one could also
consider surfacewaves at an interface between the vacuumand amagneticmediumwith 1e = and 1.m < - In
this case, the surface wavewould be given by equation (3.2)with swapped electric andmagnetic fields, and the
transverse spinwould have a purelymagnetic nature. Obviously, the electric-biased definitionwould yield no

spinAMat all: S 0.Má ¢ ñ =˜ This is a clear evidence that the equality of integral electric andmagnetic spins for
localized states in free space [52] does not hold true inmedia:
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S S . 5.11M Má ¢ ñ ¹ á ñ˜ ˜ ( )

Overall, we conclude that only the dual-symmetric definitions of themomentum, spin, and orbital AM
properties of optical fields in dispersivemedia provide physically consistent and satisfactory results.

6. Concluding remarks

Wehave examinedmomentum andAMproperties ofmonochromatic opticalfields in dispersive and
inhomogeneousmedia. The twomajor problems that lie at the heart of this study are: (i) the Abraham–

Minkowski dilemma and (ii) the canonical spin–orbital decomposition of opticalmomentum andAM.Wehave
shown that, in principle, one can formulate fourmomentum-AMpictures usingAbraham-type and
Minkowski-type quantities in kinetic (i.e. Poynting-like, without spin–orbital separation) and canonical (i.e.
with spin–orbital separation) approaches. These four pictures are summarized in table 1.However, two of these
sets of quantities aremore physicallymeaningful.

First, the Abraham–Poynting kineticmomentumdensity (1.1) and (1.2), ,A 0 = should be associated
with the energy flux density rather than themomentumdensity. This quantity determines the energy transport
and group velocity of awave packet in themedium.

Second, the canonicalMinkowski-typemomentumdensity (2.9), P ,M˜ togetherwith the corresponding spin
and orbital AMdensities (2.13), SM

˜ and L r P ,M M= ´˜ ˜ provide a physicallymeaningful and self-consistent
description of themomentum andAMof light in themedium. To the best of our knowledge, these quantities
were derived for thefirst time in the present work, but these are consistent with several previously used
approaches. On the one hand, the kinetic counterpart of this canonical picture,momentum (2.8), ,M̃ and total
AM (2.12), ,M̃ exactly coincidewith those obtained in themost general formby Philbin andAllanson [16, 17].
On the other hand, our canonical characteristics (2.9) and (2.13)have amore elegant form, exhibiting a pleasing
similarity with the Brillouin energy density (2.3),W ,˜ in themedium. As a result, the energy,momentum, spin,
and orbital AMdensities in themedium can bewritten in a laconic unified form (2.15) using the corresponding
quantum-mechanical operators and proper inner productmodified by the ẽ and m̃ indices of themedium. This
coincides with the general approach to electromagnetic bi-linear forms developed by Silveirinha [81–83].

We applied the above general theory to a SPPwave at ametal-vacuum interface. This example provides a
deep physical insight because it involves essentially inhomogeneous fields as well as an inhomogeneous, non-
transparent, and dispersivemedium. This is in sharp contrast to planewaves in homogeneous transparentmedia,
which are considered in themajority of the Abraham–Minkowski studies.We have shown that in the non-trivial
SPPfield, the integral Abraham–Poyntingmomentum Aá ñdescribes the group velocity v k cg pw= ¶ ¶ < of

SPPs, equation (3.8), while the integral canonicalmomentum PMá ñ˜ corresponds to the super-momentum
k kp 0 > per plasmon, equation (3.9). This is thefirst example of awave, which carries an integralmomentum
larger than that of a photon in vacuum, and this originates from the inhomogeneous-evanescent character of the
surfacewave rather than from themedium refractive index (kp  ¥ at 1e  - in themetal).

We have also provided thefirst accurate calculation of the transverse spin SMá ñ˜ of a SPP, equation (3.14). The
result differs considerably fromprevious calculations using the Abraham-type definition of the spin [65]. In
particular, the integral transverse spin AMof a SPP can vanish (at 3pw w= ), change its sign and reach the
value 2- per plasmon, figure 4(a). In turn the intrinsic orbital AM (calculatedwith respect to the center of
energy) of a SPP vanishes, equation (3.15). This agrees with the non-vortex character of the canonical
momentumdensity (phase gradient) in the SPPfield, and is in contrast to the Abraham–Poynting circulating
energyflux [65].

Thus, the SPP example shows that the Abraham-type kinetic andMinkowski-type canonical properties
provide intuitively clear and consistent description of complex opticalfields in complexmedia. Importantly, we
have also providedmicroscopic calculations of themomentum andAMdensities for the SPPfield, considering
themicroscopic electromagnetic fields andmotion of free electrons in themetal. These calculations resulted
precisely in theMinkowski-typemomentum andAMdensities, previously suggested frommacroscopic
phenomenological approaches [16, 17]. This proves the validity of our approach and illuminates its physical
origin. Importantly, the dispersion e w( ) in themetal was absolutely crucial in the above calculations, affecting
not only themagnitudes but also the signs of the dynamical quantities (because of 0e < and 0e >˜ ).

Using themicroscopic theory, we have also predicted a transversemagnetization of themetal (the inverse
Faraday effect) corresponding to the transverse spin of a SPP. Thismeans that a SPPwave carries not only the
spin AMbut also the transversemagneticmoment, up to a Bohrmagneton per plasmon. Furthermore, an
inhomogeneousmagnetization produces the directmagnetization current flowing along themetal surface in the
SPP propagation direction. Remarkably, themomentumdensity corresponding to this current is exactly equal
to the difference between the Abraham andMinkowski-typemomenta in themetal, thereby providing onemore
‘resolution’ of this longstanding problem [1–7].
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Finally, we briefly discussed the optical helicity and duality problems in dispersivemedia. The analysis of the
SPP example leads us to conclude that the dual-symmetric description of the canonicalmomentum, spin and
orbital AM,with symmetric electric- andmagnetic-field contributions, is crucially important for the physically
meaningful and consistent picture of these properties in dispersivemedia. In particular, we found that
microscopic calculations, including dispersion-relatedmaterial terms, are consistent with the dual-symmetric
(rather than electric-biased) formalism.

Thus, the present study provides a complete analysis and description of themomentum andAMof light in
dispersive and inhomogeneos (but isotropic and lossless)media.We have considered SPPs only as the simplest
example of the application of our theory, where other approaches fail. Taking into account bothmaterial and
structured-light properties is crucial in a variety of nanooptical and photonic systems, including photonic
crystals,metamaterials, and optomechanical systems. Our theory provides an efficient toolbox for the
description of dynamical properties of light in such systems. One of themain tasks for future studies is to extend
this analysis to other classes ofmaterials, including dissipation or gain and anisotropy. In particular, it is not
clear if one can separate the spin and orbital degrees of freedom in anisotropicmedia. Close correspondence of
our approach to some of the results of [18, 81–83, 101] (dealingwith quite general bi-anisotropicmedia),
suggests that the analysis presented in this work can be extended tomore complex cases.

Another important direction for future consideration is whether the fundamental wave characteristics
introduced in this work can be observed in experiments. Therewere experimentsmeasuringMinkowski-type
momentum kµ( ) for planewaves in dispersivemedia [13, 103, 104]. In addition, the canonicalmomentum and
spinAMdensities in structured opticalfields in free space are directly observable via the optical force and torque
on dipole particles or atoms [31–35, 41, 46, 47, 59–63, 66]. Therefore, now it would be important to calculate
andmeasure optical forces and torques on small particles in dispersivemedia (e.g. liquids or gases), and check if
these are proportional to the canonicalmomentum and spin densities in dispersivemedia. Furthermore, it
would be important tofind an experimental setupwhere the integral super-momentum and transverse spin of
SPPs, derived in this work, could be detected. So far, only local densities of these quantities were accessible via
local free-spacemeasurements using small particles or atoms [31–35, 41, 66, 67, 105–108].
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