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Abstract
In this paperwe outline amethod for a compiler to translate any non fault tolerant quantum circuit to
the geometric representation of the lattice surgery error-correcting code using inherentmerge and
split operations. Since the efficiency of state distillation procedures has not yet been investigated in the
lattice surgerymodel, their translation is given as an example using the proposedmethod. The
resource requirements seem comparable or better to the defect-based state distillation process, but
modularity and eventual implementability allow the lattice surgerymodel to be an interesting
alternative to braiding.

1. Introduction

Performing any type of quantum computation is a delicate undertaking. Quantum systems are easily perturbed
due to environmental influences and/or imperfect control and thus lead to unwanted changes in the physical
qubits, whichwill in turn lead to computational errors.

Quantum error-correction (QEC)has become an extremely well developed component of quantum
information science and has shown how arbitrary quantumalgorithms can be realized provided physical error
rates of the hardware are below a certain threshold.While there aremultiple ways to implementQEC,with
numerous codes and fault-tolerant protocols available [1–3], quantum engineers need to consider hardware
constraints when designing practical large-scale hardware that will not require a physically unreasonable
number of physical qubits or computational time to realize an error-corrected algorithm [4–6].

The toric code [7]was thefirst topological quantum error-correction code discovered that had the potential
for a realistic hardware implementationwhile also having comparatively good performance (in terms of the
fault-tolerant threshold). In this code, physical spins are arranged on a two dimensional lattice with periodic
boundary conditions. A set of commuting quantumoperators, called stabilizers, is chosen andmeasured
continuously. The stabilizers are defined locally over a group of four neighboring spins and the continuous
measurement of the eigenvalue of these stabilizers enables the detection and correction of errors on physical
spins. For aN-qubit toric code, there are -( )N 2 linearly independent stabilizers, hence there are two degrees of
freedom that can be used to encode information. Thus, the toric code can be used to encode two logical qubits.

1.1. Toric code
The structure of the toric code (most notably the periodic boundary conditions)makes this code difficult to
implement in realistic hardware. Luckily, this code can be generalized to other variants. Themost common is the
surface code [8–10], which is still defined on a 2D lattice of qubits, but does not require periodic boundary
conditions. Additionally, the number of degrees of freedom (encoded qubits) can be greater than two, with a
sufficiently large array of physical qubits, by voluntarily switching off stabilizermeasurements. These are termed
defects and any computation can be performed by braiding them around each other [10, 11].
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1.2. Surface code
The surface code itself, and its performance, has been extensively studied [12–16], and due to both its
performance and comparative ease of implementation for physical hardware has recently become the code of
choice formost hardwaremodels under experimental development [17–22]. There has also been significant
work related to the classical compilation and control for a quantum computer operating under thismodel
[23–27]. Compiling fault-tolerant quantumalgorithms for thismodel essentially consists of generating a three-
dimensional geometric description of a topological circuit which has a certain space/time volume [28]. Resource
optimization requires the compaction of this structure using rules thatmanipulate and reduce this space/time
volume (and consequently the number of qubits/time required for computation)without changing the
functionality of the topological circuit [25]. However, this optimization problemhas so far proven to be difficult
[29] and the resource cost is still unclear for fully compiled and optimized quantum circuit.

1.3. Planar code
A second approach to achieve universal computationwith the surface code does not rely on topological braiding.
This type of toric code is the planar code [32]. It allows for the encoding of a single qubit of informationwithout
periodic boundary conditions; hence the computer nowbecomes an array of isolated 2Dpatches of surface code,
each representing a logical qubit. The toric code and its variants allow for a transverse application of the logical
CNOTgate (a transversal CNOT gate is where corresponding physical qubits in two logical blocks are interacted
via a physical CNOTgate), but a transversal logic gate eliminates the 2Dnearest-neighbor geometry that is
extremely desirable for hardware implementation. Tomitigate this problem a technique, called lattice surgery
[33], was developed, that re-introduces only 2Dnearest-neighbor interactions to achieve a logical CNOTgate
between two encoded qubits. These CNOTs are achieved by turning on (off) syndromemeasurements on the
boundary between adjacent qubits. Such operations are calledmerges (splits). A computation in this geometric
structure has to perform computation usingmerges and splits, which can emulate gates such as CNOTs.
Combining this with state-injection [34] allows for the realization of a universal set of quantum gates [33].

Circuit compilers have been developed that translate higher-level circuits into the appropriate geometric
forms for braid-based topological computation [29, 30]. Preliminary steps have beenmade to both benchmark
and optimize physical resources using thismodel [4], but the question remainswhether, ultimately, a lattice-
surgery-based approach to computationwill bemore resource efficient. Aswith braiding-based computation,
wefirst need a generalized set of protocols to compile an appropriate fault-tolerant circuit into a form
appropriate for lattice surgery, design optimization protocols for this form and ultimately compare physical
resources to braiding-based approaches. In this paper we take thefirst step and provide amethod thatwill
convert an appropriately designed high-level circuit into a physical layout and scheduling pattern for
implementation in a lattice-surgery-based topological quantum computer.

1.4. ICM representation
For this we start with the ICM representation [30], which is a formulation used to compile arbitrary circuits
using braid-based logic, and is divided into three distinct parts: Initializations,CNOTs andMeasurements. This
description operates at the logical level of the computation and is designed to be compatible with all
Calderbank–Shor–Steane-based error-correction codes [35, 36]. First, all qubits are initialized in one of four

Table 1.Overview between different topological error-correction techniques. Here, d denotes the error-correcting code distance. The space–
time requirements for lattice surgery are calculated at the end of this paper.

Toric code Surface code Planar code

(Lattice surgery)

Encoding qubits Loops around torus Defects Patch of planar codewith open

boundary conditions

Number of possible qubits 2 ¥ 1 per patch

Performing computation Memory only Braided logic Merge and split operations

between isolated planar codes

Compiler to geomentric Not applicable Was devised in Thiswork

representation [29, 30]
Optimization Not applicable Unsolved Conceptually simpler

Overall space/time requirements for ñ∣Y -state

distillation

Not applicable d140 3 [28] d280 3

Overall space/time requirements for ñ∣A -state

distillation

Not applicable d1500 3 [28] d1080 3

Overall space/time requirements Bravyi–Haah

+( )k3 8 -to-k state distillation for k=4
Not applicable d4688 3 [31] d2268 3
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distinct states. Secondly, CNOTs are applied to these qubits to perform entanglement operations; then in the last
step the qubits aremeasured.

This formalism incorporates not only the higher-level decompositions to convert a quantumalgorithm into
an appropriate Clifford+T gate library, compatible with fault-tolerant error-correction, but also includes
ancillary protocols such as state distillation [34, 37–39], which are needed for an operational computer. Our
formalismutilizes an inversemodel of ICM [40], where qubit initializations are restricted to two states, ñ∣0 and

+ñ = ñ + ñ∣ (∣ ∣ )0 11

2
, andmeasurements are performed in a rotated basis to achieve universality. The entangled

states before theirmeasurements in the inverted ICMrepresentation is similar to graphs states and their creation
using parity checks has been described in [41, 42]. Byworking in this inverted ICM representation, we can use
the natural operations exhibited by the lattice surgery protocol to realize a universal set of logic operations and to
layout and schedule an arbitrary quantum circuit for implementation on an actual error-correctedmachine.

The inverted ICM formalism follows a similar structure tomeasurement-based quantum computation
[43, 44]; however, our approachworks at the fault-tolerant error corrected level. This formalismprepares an
effective encoded graph state which is algorithmically specific given the original circuit specification.
Computation then proceeds via encoded rotated-basismeasurements on each qubit of this encoded graph.Our
method prepares such an entangled state in a completely fault-tolerantmanner during the initialization and
CNOT steps andmaintains the physical 2Dnearest-neighbor restrictions of the underlying hardware.

Thework presented in this paper is akin to the already existing compiler for the braided error-correction
scheme [29]. Using this wewill discuss its resource requirements on three exemplary state-distillation
algorithms that we have attempted to optimizemanually. As the bulk of operations in a fault-tolerant quantum
computer is related to ancillary protocols, such as state distillation, numerous techniques have recently been
investigated [45, 46]. To illustrate the translation, this is done explicitly, and its complexity is compared to the
braidingmethod.

Nevertheless, the three examples of state distillation circuits in this workwere implemented naively for
illustrative purposes and did not take advantage of recently proposedmethods of optimization [46, 47].
Additionally, there have been several papers that have further optimized the layout of encoded information
using the planar code [48, 49]. These proposed techniques are compatible with lattice surgery and hence the
results presented in this work can be improved upon such that the resource requirements decrease even further.
However, this analysis together with further scheduling optimizations are left for futurework.

1.5.Outline of the paper
Wewill now give a short outline on the structure of the paper and describewhat has been done throughout the
following sections. In sections 2 and 3we review previous literature and adapt their findings such that they can
be used in our translation. Afterwards, in section 4we describe the format inwhich a quantum algorithmhas to
be represented in order to use our translation. In section 5we outline thefirst part of ourmapping to the fault-
tolerant lattice surgerymodel. This description builds on the concepts presented in the previous sections.
Afterwardswe describe how to implement an algorithmically specific entangled state, which inmany error
correcting frameworks is described by the stabilizermatrix formulation. In section 6we describe howour
approach can be translated to this formalism,which allows easier comparison of the entangled states. Tofinish
the translation to lattice surgery, we describe the procedure ofmeasurement in section 7. This concludes the
translation and three example (state distillation) circuits are investigated under the devisedmethod in section 8.
Section 9 summarizes our results.

2.Quantum computing

In general, error-correction schemes are agnostic of the underlying hardware.While codes are often constructed
with hardware constraints inmind, any type of qubit in any type of appropriate hardwaremodel can be used. In
recent years,many advances in quantumhardware [50, 51] have beenmade such that lower error rates in
physical qubits were archived. Thus the threshold for surface code error-correctionwas surpassed and the
implementation of surface code corrected qubits is now, in principle, possible (there is still significantwork that
is needed to scale systems andmaintain low error rates). Thismakes the current investigations for thismethod of
error-correction an important task. It involves providing a classical framework at the hardware level [52] to
develop classical algorithms to track errors and correct them if necessary [26, 27, 53] and to optimize qubit and
time resources for a compiled, error-corrected algorithm [25, 28].

A universal quantum computer requires a certain, discrete, number of gates that can be used to construct any
arbitrary unitary operation.While there aremany universal gate sets, there are restrictions imposed by aQEC
code such that some sets are preferred over others.Most importantly, each element of a universal set needs a
fault-tolerant implementation on an appropriately chosen quantum code. Arguably, themost common
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universal set (and the one that is usedwith the surface code) is the Clifford+T set [54–57], which is generated by
the gates [36]:
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While not strictly required, this generating set is generally augmentedwith the =P T 2 gate (which combined
with theCNOTandHadamard gate generates the Clifford group), as there aremore efficient implementations
of this gate compared to using twoT-gates in sequence [34].

It is common towrite quantum algorithms in a circuit where each element is one of these operations. This is
a good representation on a conceptual level, but needs to be translated to lower hardware. Such a feat is done by a
quantum compiler. Among recent proposals [30, 40, 58], one proposed design stack consists of the following
steps:

1. Algorithm: high-level functions like quantum Fourier transform, which consist of many applications of
gates.

2. Non-fault-tolerant circuit with general gate set: this representation is akin to the description of quantum
circuits in textbooks.

3. Fault-tolerant circuit with a reduced gate set: using a subset of gates and a defined structure, which can be
implemented on the error-correcting code that will be used.One of these circuit classes is the ICM
representation [30].

4. Geometry: this is where the fault-tolerant circuits are translated into a geometric representation for braided
topological logic [29]. In this workwe address this step for the lattice surgery approach using planar codes.

5.Mapping: measurement operations of syndrome qubits are switched off and on in order to perform the
geometric algorithms [59].

6.Hardware: individual hardware instructions, e.g. laser pulses, that manipulate the state of single physical
qubits.

Ourmethod translates from level 3 to level 4, where a general quantum circuit is transformed to a lattice
surgery error-corrected algorithm. The description of the algorithmpresented in this paper is still agnostic to its
underlying hardware. For defect-based surface codes these algorithms already exist andwere proposed in [30].
However, the braided geometric representation has proven to be difficult to optimize [25] and has not been
studied in depth.

Themethod proposed in this paper, albeit a complex optimization problem, appears to bemore feasible to
optimize than the braided version, because it is relatively close to two problems, where one is the traveling
salesman problem and the other the sliding puzzle problem [60].

3. Computation using lattice surgery

Wewill now review the basic concepts of lattice surgery [33] and in section 3.4 describe amethod for
entanglement creation used throughout our translation. In lattice surgery each qubit is encoded in one patch of
error-correcting surface codewith open boundary conditions (commonly referred to as a planar code). Logical
X- andZ-operators are defined as chains of physical operators that span thewhole patch of code from either left
to right (logicalZ) or top to bottom (logicalX) (figure 1). Computation can be performed by allowing interaction
between different patches of code.

To interact two logical qubits, a line of data and syndrome qubits is added on the boundary between two
patches of code and stabilizers between them are either turned on or off. Switching on/off these stabilizers,
merging/splitting individual logical qubits, act as parity checks on the basis states of the logical qubits that
partake in the operation. Using these operations natively instead of emulating the true effect of CNOToperators
gives rise tomore efficient computation. The four newoperations are smooth/roughmerges and smooth/rough
splits. In the following, the effect of these operations is described, amore elaborate explanation can be found in
the original paper [33].

4
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3.1.Merge operations
Figure 2 shows the difference between a smooth and a roughmerge in the lattice surgerymodel. One can see that
this difference comes from stabilizermeasurements that have to be turned on as amediator between the
different patches of surface code. For a smoothmerge these areZ-stabilizers, whereas for a roughmergeX
stabilizers are used. As an example, we describe the roughmerge process. First, the intermediate (physical) data
qubits need to be prepared in the ñ∣0 state, then themeasurements of theX-stabilizers along the edge between the
two surfaces are turned on. Thesemeasurements will later be needed to precisely determine the state and
whether a correction operator needs to be applied.

Mathematically, if the initial states are given by y a bñ = ñ + ñ∣ ∣ ∣0 1 and f a bñ = ¢ ñ + ¢ ñ∣ ∣ ∣0 1 , the post-
merge state for a roughmerge evaluates to

y f a f b f
a y b y

ñ ñ = ñ + - ñ

= ¢ ñ + - ¢ ñ

∣ Ⓜ ∣ ∣ ( ) ∣
∣ ( ) ∣

1

1 ,

M

M

r

where f s fñ = ñ∣ ∣ ;x and Î { }M 0, 1 is the aforementionedmeasurement result of the intermediate stabilizers.
The effect of this operation is a paritymeasurement on both states, which decreases the number of possible
degrees of freedomby one. For the smoothmerge, one has to consider a basis transformation of the pre-merge
states to yñ = +ñ + -ñ∣ ∣ ∣a b and fñ = ¢ +ñ + ¢ -ñ∣ ∣ ∣a b . The post-merge state now evaluates to

y f f f
y y

ñ ñ = ñ + - ñ

= ¢ ñ + - ¢ ñ

∣ Ⓜ ∣ ∣ ( ) ∣
∣ ( ) ∣

a b

a b

1

1 .

M

M

s

Here the state f s fñ = ñ∣ ∣z is the negation in the±basis.

Figure 1.Adepiction of a patch of error-corrected distance-3 surface code encoding one logical qubit. Here, the syndrome qubits are
represented using small circles and data qubits are drawn in big circles. The application of a logicalX-operator is given by performing a
physical sx operator on all data qubits in the light gray box. The logicalZ-operator is performed by applying sz on all data qubits inside
the dark horizontal box.

Figure 2.Examples of themerge/split operation in lattice surgery codes. In this case, two stabilizermeasurements, represented by the
two gray circles are turned on (merge) or off (split). During themerge process these intermediate gray qubits need to be prepared in
either ñ∣0 for a roughmerge or +ñ∣ for a smoothmerge.
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3.2. Split operations
During a split operation a single logical qubit will be split into two. Again the boundary between the twonewly
created logical qubits will be used to discriminate between a smooth and a rough split. The individual qubits of
this border aremeasured out and the two remaining surfaces are then stabilized individually.

For a smooth split we can note that the removal of the qubits on the boundary will not change the outcome of
any of the jointZ-operators. Thus both states are in the same superposition of eigenstates of theZ-operator.
Mathematically, the smooth split will give

a b a bñ + ñ  ñ + ñ∣ ∣ ∣ ∣ ( )0 1 00 11 . 1s

For the rough split onewill get

+ñ + - ñ  ++ñ + --ñ∣ ∣ ∣ ∣ ( )a b a b . 2r

Performing a basis transformation on this last equationwill give us the effect of a rough split on an arbitrary state
in theZ-basis

a b a bñ + ñ  ñ + ñ + ñ + ñ∣ ∣ (∣ ∣ ) (∣ ∣ ) ( )0 1 00 11 2 01 10 2 . 3r

These split operations enable the creation of entanglement among the encoded qubits. One should note that
after performing a split ormerge one needs d rounds of error-correction cycles to compensate for faulty physical
measurements in the computer. However, thismight be reduced bymaking use of the fact that the errors are
likely concentrated along the boundary of the split andmerge, and this is currently under investigation.

3.3.Multi-target CNOT
Wenow turn our attention to the implementation of logical operations. In the following, we introduce an
implementation of fanouts ormulti-target CNOTgates. These operations will form the core of our compiler. In
order to properly perform amulti-target CNOT in lattice surgery, we expand the original description of [33] on
how to performCNOTs.Here, one needs an additional encoded ancilla qubit for each target qubit. In the
following derivation, we consider a general control qubit given by y a bñ = ñ + ñ∣ ∣ ∣0 1 . As depicted infigure 3,
we prepare all encoded ancilla qubits in one single +ñ∣ state and perform a smoothmerge between the ancilla
qubit and the control qubit. After d rounds of error-correction this combined qubit is split smoothly into +N 1
qubits, whereN is the number of target qubits. The resulting state is given by a bñ + ñ∣ ∣0 0 1 1  . Now for
each of theN target qubits a roughmergewith one of the entangled qubits from the smooth split is performed.
This results in the state:

y a bñ = ñ Ä ñ ñ ñ ñ + ñ Ä ñ ñ ñ ñ∣ ∣ [(∣ Ⓜ ∣ ) (∣ Ⓜ ∣ )] ∣ [(∣ Ⓜ ∣ ) (∣ Ⓜ ∣ )]T T T T0 0 0 1 1 1 .N Nr 1 r r 1 r 

The resulting state from the roughmerge is given by

y a bñ = ñ Ä ñ Ä Ä ñ + ñ Ä ñ Ä Ä ñ∣ ∣ ∣ ∣ ∣ ∣ ∣T T T T0 1N N1 1 

which is exactly the effect of amulti-target CNOT. Amore resource-friendly implementation is discussed in the
next section.

3.4. Split andmerge circuit
Themulti-target CNOT implementation introduced in the previous sectionworkswell but requiresmany
ancillary patches. In this sectionwe devise a shorthand implementation for entanglement creation by providing
an example circuit infigure 4. The drawback of this implementation is, however, that it is restricted to only ñ∣0
and +ñ∣ input states. The output state of this circuit is given by

Figure 3.This figure illustrates the application ofmulti-target CNOTs in lattice surgery. The patch denoted byC corresponds to the
control qubit and patches withTi denote the ith target. Furthermore, patches denoted byH are ancillary patches. In a first step, a
vertical patch composed of all ancillas is initialized to +ñ∣ and using a smoothmerge the control qubit ismerged to this patch.
Afterwards, this large section is split into individual patches and in thefinal step each ancilla ismerged to one target. This operation
results in the same state as amulti-target CNOT.
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y ñ = ñ + ñ + ñ + ñ∣ (∣ ∣ ∣ ∣ )1

2
000 110 011 101 .out

It can be seen in the following that the application of two splits and onemerge has the same effect as this circuit.
A graphical representation of this is given in figure 5. Two encoded qubits are both initialized to +ñ∣ . Since these
are encoded in rectangular patches of surface code, our schematic representation of this will be boxeswhich can
bemerged and split. Both of these qubits will nowbe split using a smooth split. This will lead to an intermediate
state given by:

y ñ = ñ + ñ Ä ñ + ñ∣ (∣ ∣ ) (∣ ∣ ) ( )1

2
00 11 00 11 . 41

Using a roughmerge between two of these patches, onewill also obtain y ñ∣ out .
Themeasurement during the split operations corresponds tomeasuring the operator X XL L on the two

qubits. Here, themeasurement outcome is completely determined, and onewill always obtainM=1, because
the initial states are already prepared in the eigenstate =X 1L . One has to note that thismethod onlyworks if the
qubit states are in +ñ∣ ; otherwise therewill be a nonzero chance to obtain themeasurement output = -M 1.
The post-measurement state of that output is not the correct entangled state and cannot be used anymore. This
is the reasonwhy the ICM representation is incompatible and has to be replaced later on by an inverted ICM
representation.

Thus, one can see that any state which can be preparedwith +ñ∣ and ñ∣0 andCNOTs can also be prepared
using split andmerge operations.Here, one does not need the logical ancilla qubit that would be requiredwhen
applying the full CNOT circuit. States that can be prepared using ñ∣0 and +ñ∣ inputs andCNOTgates are subsets
of states known asCalderbank–Shor–Steane stabilized states [36]. These stabilized states are characterized as
having two sets of stabilizers, one consisting purely ofX operators and one purely ofZ. As a further remark, this
derivation can similarly be performed by usingmulti-target CNOTs.

4. ICM representation

The compilation procedure presented in this paper requires an input circuit that is given by a fault tolerant
circuit with a reduced gate set (stage 3 of the proposed design stack in the introduction). To this endwewill
introduce the ICMmodel that was devised in [30]. Circuits in the ICMmodel performfirst an initialization of all
qubits then an array of CNOTs is applied andmeasurements are performed in the end. A sample schematic of
this is shown infigure 6. Any higher-level circuit can be rewritten in this form,which includes all necessary
ancilliary protocols for fault-tolerant quantum error-correction. A required gate set for the ICM representation
is given by the gates: CNOT,H,P andT. Themain idea of the ICMmodel is to use quantum teleportation to
implement the operatorsH,P andT at the cost of introducing specially prepared ancilla qubits. This allows an
arbitrary circuit to be constructedwith a deterministic number of logical qubits and array of CNOTgates. The left
parts offigures 8 and 9 show two teleportation circuits. The teleportation-based circuits are probabilistic, such

Figure 4.This circuit will be used as an example to see howCNOTs can be implemented in lattice surgerywith less overhead.
Furthermore, this can be extended tomulti-target CNOTs.

Figure 5. Implementation of the circuit infigure 4 using the shorthand implementation of themulti-target CNOToperation (in this
case only 1 target) for qubits. Three steps are needed: first, an initialization of twopatches to +ñ∣ ; these correspond to the control
qubits of eachCNOT. Then, two smooth splits, represented by the horizontal line in the second frame, creating two two-qubit
entangled states. In the end, a roughmerge between two qubits connects two patches, such that thefinal state of the 3 remaining
patches is the same as for the circuit in figure 4.

7
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that correctional gatesmight need to be applied after themeasurement of the ancilla qubit. This would require a
dynamically changing quantum circuit, depending on themeasurement result of the ancilla qubits during
teleportation. Yet the ICMmodel shows away tomitigate this problemby introducingmore ancilla qubits and
performing selective target teleportation and selective source teleportation circuits [61], such that the ICM
model achieves a deterministic gate array for fault-tolerant, error-corrected computation.

This formof ICMrequires a simulation of CNOTs using splits andmerges, which requires further ancillary
regions. This is due to the requirement to initialize some logical qubits in the ñ∣A or ñ∣Y state for teleportedT-
andP-gates.Wewant to obtain an algorithmically specific entangled statewith as few ancillas as possible. Thus,
we devise a similar representation to ICM,which uses themerge and split operation natively. An example has
already been given in section 3.4, butwewill now formalize this such that arbitrary circuits can be implemented.

4.1. Inverse ICM
Using the shorthand implementation ofmulti-target CNOTs, amerge is only guaranteed to result in the same
transformation as a full CNOT gate if the initial qubits are given in the states +ñ∣ or ñ∣0 . Thus, the ICM
formulation cannot be used as is and an invertedmodel is required, where the initialization step only prepares
these two states (figure 7). A translation to this formhas already been described in [40] andwill be outlined here.
For this discussionwewill use a phase state qñ = ñ + ñq∣ (∣ ∣ )0 e 11

2
i and an arbitrary state y a bñ = ñ + ñ∣ ∣ ∣0 1 to

show equivalences, which then apply for q p p= { }4, 2 , for the ñ∣A and ñ∣Y states needed in a fault-tolerant
implementation. In order to prove the equivalence of ICMand inverted ICM, only two cases need to be
considered. These cases are given infigures 8 and 9. An inverted ICMcircuit can be constructed by combining
these sub-circuits, such that initialization is only in the ñ∣0 or +ñ∣ state andP- andT-gates are realized through
rotated basismeasurements.

Thefirst equivalence is shown infigure 8.Depending on themeasurement outcome, the output state of the
second qubit is either given by y a b a bñ = + ñ + + ñq q∣ ( )∣ ( )∣e 0 e 1out

i i or
y a b a bñ = - ñ + - ñq q∣ ( )∣ ( )∣e 0 e 1out

i i . This holds true for both circuits shown.
The equivalence offigure 9 is not as straightforward as for the one before because the output state needs to be

corrected. For the following argumentwe calculate the effect of the circuits only for the case of an ñ∣A state. The
ñ∣Y state can be calculated analogously. The output states for the ICMcircuit (left) are either

y a bñ = ñ + ñ
p∣ ∣ ∣0 e 1out

i
4 , for a ñ∣0 measurement, or y b añ = ñ + ñ

p∣ ∣ ∣0 e 1out
i

4 , when themeasurement is ñ∣1 . That
is, if wemeasure ñ∣1 , a †T -gate is applied instead of aT-gate. Thus theP-gate needs to be applied in order to

Figure 6.The circuit here is divided into three distinct steps. First in the initialization stage (I), the qubits will be initialized in one of the
following states: ñ∣0 , +ñ∣ , ñ∣Y or ñ∣A . In the second step (C), a layer of CNOTs is applied to these states. In the last step, staggered
measurements (M) in theX- orZ-basis are applied, where each basis is chosen depending on the previousmeasurement results.

Figure 7. Similarly to the ICMcircuit, this inverted ICMcircuit has three steps: initialization (I), CNOT (C) andmeasurement (M).
This time, the initialization step only prepares states in ñ∣0 and +ñ∣ . This comes at the expense thatmeasurements have to be
performed additionally in theY- andA-basis. This form is now compatible with the split andmerge operations from lattice surgery.
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correct for this error, as =†PT T . This error cannot be tracked and needs to be applied using the previously
mentioned selective destination teleportation algorithms [61]. After that, the qubit is in a state of yñ∣XZ , where
the Pauli operators can be tracked classically. TheP-gate has a similar correction, but as this is a simpleZ-gate,

=†ZP P , this can be classically trackedwithout any further correction.
The inverted ICMmeasurement has the advantage that this correction is not needed. For a ñ∣0 measurement

the state is the same as for the ICMcircuit. However, if the inverted ICMmeasurement returns a ñ∣1 , the output

state will be y a bñ = ñ - ñ
p∣ ∣ ∣0 e 1out

i
4 for theT-gate and y a bñ = ñ - ñ∣ ∣ ∣0 i 1out for theP-gate, which only

requires a PauliZ-correction.
These circuits can nowbe stacked together such that any circuit given in ICM format can be translated by

removing all the rotated state initializations and replacing these by rotatedmeasurements. However, the
implementation of suchmeasurements are not fault-tolerantly protected in the surface code and basis
transformations given byT- andP-gates need to be performed. For these gates, state injection is needed.
Furthermore, aT-basis transformation is probabilistic and requires further correctional ñ∣Y states.

5. Implementation of I andC

Using the inverted ICMmodel, we can nowderive an algorithm that prepares the required logically entangled
states using purely the native split/merge operations in the lattice surgerymodel. The (I) and (C) parts of the
circuit create a specificCalderbank–Shor–Steane stabilized state that reflects the overlying algorithm, after
which rotated logicalmeasurements are performed (in an identical way to the original description of cluster state
quantum computation [43], were all Paulimeasurements aremade on a 2D cluster state resource, defining an
algorithmically specific graph state consisting of rotated basismeasurements and feedforward). Since the inverse
ICMmodel is a universalmodel for fault-tolerant, error-corrected quantum computation, so is the presented
model, with the proposed translation. The translated circuit relies on smooth split operations followed by rough
merge operations. After this, the qubits are in an algorithmically specific encoded state, ready formeasurements
and feedforward to be performed.

5.1. Classical algorithm
The classical algorithm given as additionalmaterial can be used to translate the circuit to a representation that
can be implemented by the lattice surgerymodel. It reduces the number of (multi-target)CNOTs to a
minimum. The algorithm relies on three simple circuit-modification rules:

1. AnyCNOT that targets an unentangled +ñ∣ has no effect, as this is the eigenstate with eigenvalue 1.

2. ACNOTwhose control qubit is in ñ∣0 does not have any effect.

3. ACNOTwith the same target and control qubits as its neighbor acts like the identity.

Furthermore, we use the commutation relations between different non-commuting CNOTs shown in
figures 10 and 11.

Figure 8.The circuit on the left is one part of the ICMcircuit whereas the circuit on the right constitutes the corresponding inverted
ICMmodel. These two circuits are identical for any state of the form qñ = ñ + ñq∣ (∣ ∣ )0 e 11

2
i and a general yñ∣ , which ismapped to

y q yñ = ñ∣ ( )∣Rzout .

Figure 9.The ICMcircuit on the left is again reformulated to the inverted circuit on the right. Depending onwhich state ñ∣Y or ñ∣A was
given in the original circuit, a different correction needs to be applied. For the ñ∣Y state aX-correction is required, while for the ñ∣A
state a SX error occurs, which can be correctedwithout violating any requirements of the inverted ICM formulation. TheY- andA-
basismeasurements are achieved via aP- orT-gate, followed by anX-basismeasurement.

9

New J. Phys. 19 (2017) 013034 DHerr et al



Using the rules above, the algorithmnowproceeds as follows: in a first step, all CNOTs that target a qubit
initialized to +ñ∣ are permuted to the beginning and using rule 1 theCNOTs are deleted. Then all CNOTswith a
target qubit that initialized to the ñ∣0 state are alsomoved to the front individually and are deleted using rule 2.
Due to the commutation relations given infigures 10 and 11 newCNOTs are created, but their control qubit is
not located on a ñ∣0 state. This reduces the circuit to onewhere eachCNOThas a control qubit initialized to the
+ñ∣ state at the beginning.Many redundant CNOTswere introduced during the permutation actions, which
need to be cleaned up. Thus in afinal step all CNOTs operating on the same pair of qubits aremoved together
and are annihilated using rule 3. Because of rule 1 the control qubit of anyCNOT is not targeted by any other
CNOT such that eachCNOT commutes with the others. Thus the cleanup can be performed easily.

5.2. Lattice surgery translation
Nowany circuit can be translated to a circuit that has somenumber ofmulti-target CNOTs, whose control
qubits are in the +ñ∣ state. A circuit of this form is easy to translate to the lattice surgerymodel. Its procedure
requires four distinct steps. First, all the initial +ñ∣ states are prepared. Using smooth splits these qubits will, in a
second step, be split into independent groups of entangled logical qubits, depending on the number of target
qubits eachCNOThas. In order to connect these independent blocks onewill (in the fourth step)merge
corresponding qubits from each independent block. Thismerging operation has to occur on neighboring blocks
in the lattice surgerymodel, such that in an intermediate third step one needs to shrink or grow the size of the
surface code patches ormove them to another location.

An example for this translation is shown infigure 12.Here a circuit with threemulti-target CNOTs is
translated to the lattice surgerymodel with no optimization. First, a vertical patch of the surface code is
initialized to +ñ∣ for eachmulti-target CNOT. Thefirstmulti-target CNOTconsists of qubits 1, 6 and 7. Thus,
thefirst patch is split into 3 patches, which can be labeled 1, 6 and 7 indicating which patch corresponds towhich
qubit in the circuit. It should be noted, that the ordering of these labels is arbitrary, because, so far, each patch
encodes the same state. However,multiple patches corresponding to the same qubit exist (labeled by the same
number), such thatmerges are necessary between them. This unoptimized illustration assigns each qubit an
individual row, such thatmerges are always possible. Thismakes it clear that the space-cost in this representation
is upper-bounded by the number of logical qubits times the number ofmulti-target CNOTpatches. For the
circuits, later onwewill optimize the placement of these patchesmanually.

For a large quantum circuit, the placement of these logical regionswithin the overall computer and how they
are split/merged and shifted aroundwill dictate overall resource costs in terms of physical qubits and
computational time.We illustrate three explicit examples for state distillation circuits that are extensively used in
surface code computation, but themore general problemof scheduling and resource optimization using this
technique is relegated to future work. Amore detailed analysis, combinedwith recent results reducing physical
resources in the lattice surgerymodel [46, 48, 49] is anticipated to result in better performance than topological
braiding (Note: the optimization problemhas not yet been solved for braiding-based logic, so an ultimate
comparisonwill only be fair when both problems arefinally solved).

Figure 10.CNOT commutation relations. The circuit on the left has the same effect as the circuit on the right, such that this identity
can be used to reformulate circuits.

Figure 11.CNOT commutation relations, which can be used to reformulate circuits and achieve the form required by lattice surgery.
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6. Stabilizermatrix

The inverted ICMmodel is designed to create an algorithmically specific Calderbank–Shor–Steane-stabilized
state [35, 36] that is compatible with fault-tolerant and error-correction protocols. The split andmerge
operations in lattice surgery can also be re-written in terms of stabilizer transformations, which allows us to link
the two in a straightforwardmanner.

6.1.Merge operation
During amerge between two encoded qubits, the number of encoded degrees of freedomdecreases by one. For a
roughmerge the rules are given as follows





[ ] [ ]
[ ] [ ]
[ ] [ ]

X I X
I X X
I I I .

For the logicalZ-operators, this action is not as easy, since itmight be that stabilizers need to bemerged. If there
are noZ stabilizers acting on the two qubits that partake in themerge operation, nothing has to be done. If only
one of the qubits is affected by aZ stabilizer, the post-merge rule for themerged qubit is given by

 [ ] [ ] [ ] [ ]Z I Z I Z Z .

For a general stabilizermatrix,manyZ stabilizersmight act on the same qubit. Since any linear combination of
these stabilizers gives an equivalent stabilizer description, one can add and subtract stabilizer rowswithout
changing the behavior of the stabilizer. If the two qubits are acted upon usingmore than twoZ stabilizers, one
can always find a representation inwhich only oneZ operator exists in each columnof themerging qubits. The
two stabilizer rows aremerged using the following rules:

 

 

[ ] [ ]

[ ] [ ]

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Z
I

Z I
Z

Z

I
I

I Z
Z

I .

6.2. Split operation
The physical result of a general split operation is given in equation (2) for a rough split and equation (3) for a
smooth split. Due to the creation of a new encoded qubit during the process of the split operation, a new column
has to be created in the stabilizermatrix. Since the created qubit is linked to the pre-split state, a new stabilizer
rowhas to be created aswell. This new stabilizer is given byZZ, for a smooth split at the position of the two
affected qubit positions. Furthermore, any pre-split stabilizer will transformusing the following rules

  [ ] [ ] [ ] [ ] [ ] [ ]Z Z I X X X I I I

for a smooth split. ExchangingXwithZ, onewill get the relations for a roughmerge.

Figure 12.This illustrates what operations have to be implemented to perform the I andCparts of any inverted ICMcircuit. First, each
CNOTgets its own vertical patch of surface code, initialized to +ñ∣ . Using smooth splits these CNOTs are split into their individual
qubits. Commonqubits among the different CNOTs aremerged, such that the output of the circuit looks akin to the right
configuration. Each number here indicates which qubit from the original circuit is encoded inwhich patch of surface code. In this case
no effort was spent on optimizationwhich reduces the number of steps to three: preparation, smooth splits and roughmerges.
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6.3. Example algorithm
The resulting state of the example circuit infigure 4will give the stabilizermatrix:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Z Z Z
X X I
I X X

.

Using the rules described abovewewill derive the stabilizermatrix using lattice surgerymoves. First, we start in a
state with two qubits each initialized individually intoX-eigenstates. Then both an additional column for the
additional qubit and an additional line for the stabilizer are created

 
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

X I
I X

X I

I X

X X I
Z Z I
I I X

.

After the same steps are performed on the other qubit, themiddle qubits aremerged.



⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

X X I I
Z Z I I
I I X X
I I Z Z

Z Z Z
X X I
I X X

.

The previouslymentioned procedures can nowperform the (I) and (C) steps of the inverted ICMmodel using
the inherentmerge and split operations of lattice surgery. The remaining part is to illustrate how the rotated
basismeasurements of the inverted ICMmodel can be performed in lattice surgery.

7.Measurement step

Having prepared an entangled state using I andCof the inverted ICMrepresentation,measurements need to be
performed. But for the 2D surface-code patches used in this paper, fault-tolerantmeasurements in arbitrary
bases are not possible. This requires the application of basis transformationswhich rely on the injection ofmagic
states. Themainwork during themeasurement step consists of the preparation and application of these basis
transformations, whichwe direct our focus to in the following.

Themethod described in the following can be applied to any phase gate, but in this paperwewill focus only
on theP- and the non-CliffordT-gate. In surface code implementations these gates are hard to implement, as
QECdoes not support their immediate application. Thus the common technique used so far is state-injection,
wheremagic states are prepared and used to perform such gates. Thesemagic states are given by

ñ = ñ + ñ∣ (∣ ∣ ) ( )Y
1

2
0 i 1 , 5

ñ = ñ + ñ
p( )∣ ∣ ∣ ( )A

1

2
0 e 1 . 6i

4

Amagic state is obtained bymanipulating a single physical qubit and then encoding it in the error-correcting
framework. Since this process is not fault-tolerant, the error on the resultant logical state is dominated by the
physical preparation of the ancilla and its encoding. To purify the state, a process called state distillation is
required [34]. Themain effort in the application ofP- andT-gates is spent distillingmagic states, such that an
efficient way to perform the distillation procedure will give an efficientP- orT-gate. At the end of this paper the
performance of these distillation algorithmswill be compared to braiding using the translation proposed in this
paper.

If a suitable (clean) ancilla qubit is available, the P- orT-gates can be applied by the circuits given in 8 and 9.
In fact, any quantum computer that aims at outperforming classical hardware has to rely on non-Clifford gates,
since any circuit without these can be simulated efficiently using classical hardware [62]. Thismakes a resource-
friendly application of theT-gate crucial.

One should note that the implementation of aP-gate requires one ancilla state set to ñ∣Y . Since these are
teleportation-based protocols, ameasurement has to be performed to apply the operator.With this
measurement, themagic state resource gets destroyed for both the P- and theT-gate. The destruction of
ñ∣Y -state ancillas can be avoided using a technique [63, 64]which requires directHadamard operations on a

planar code, which is possible using code-deformed techniques [65]. However, we do not explicitly consider this
here and instead look at distillation circuit constructions for the ñ∣Y state.

7.1. Special casesmerge
Herewewill explicitly calculate the post-merge state of a smoothmerge between an arbitrary phase qubit
ñ = ñ + ñ∣ ∣ · ∣P p0 1 and a general qubit f a bñ = ñ + ñ∣ ∣ ∣0 1 .With this wewill show that both the P- andT-gates
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can be efficiently implemented using a single smoothmerge operation and only require as a prerequisite the
magic state ñ∣Y or ñ∣A . In the conjugate basis, the states are given by

f
a b a b

ñ =
+

+ñ +
-

-ñ

ñ=
+

+ñ +
-

-ñ

∣ ∣ ∣

∣ ∣ ∣

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

P
p p1

2

1

2

2 2
,

such that we can insert this into the post-merge state:

f
a b a b

ñ ñ =
+

ñ + -
-

ñ∣ Ⓜ ∣ ∣ ( ) ∣⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠A P P

2
1

2
.M

s

If themeasurement result wasM=0, then this evaluates to:

f
a b a b

a b

ñ ñ = + +ñ + - -ñ

= ñ + ñ

∣ Ⓜ ∣ ∣ ∣

∣ ∣

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠A

p p

p

2 2 2 2

0 1 .

s

If themeasurement wasM=1, then the statewill be given by:

f
a b a b

b a

ñ ñ = + +ñ + - + -ñ

= ñ + ñ

∣ Ⓜ ∣ ∣ ∣

∣ ∣

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠A

p p

p
2 2 2 2
0 1 .

s

Setting p=i, we obtain an implementation for the P-gate. IfM=0, the effect of thismerge operation already
coincides with yñ∣P . But in this case ofM=1, a Pauli-X and Pauli-Z correction have to be applied.

Moreover, for an implementation of theT-gate we require = p
p ei 4 . Again, ifM=0 no corrections are

needed. Yet forM=1, instead of theT-gate the operator †XT was applied. This can be corrected by first
performing a Pauli-X operator and then aP-gate. TheP-gate correction needs to be physically applied and
cannot be tracked, and a selective source/destination teleportation algorithmhas to be employed. Thus this
lattice surgery implementation has the same drawbacks as the teleportation circuits whenwe perform the
rotated-basismeasurements.

One should note that the application of thismerge can be thought of a basis transformwhich is needed in the
measurement step of the inverted ICMmodel, wheremeasurements in theA- andY-basis are needed.

7.2. Encoding
The last part needed for universal computation is how to encode one of themagic states in a lattice surgery patch.
For completeness, a summary of the required steps from the original papers [33, 66, 67] is given in the following.

First a physical qubit is prepared in the desired state. All the other qubits of the error-correcting surface code
need to be initialized to the state ñ∣0 .

Using theCNOTs that are required for themeasurement of the planar code stabilizers, this state can be
transformed to a superposition state involving the original data qubits and the syndrome qubits immediately
above and below it. These syndrome qubits can nowbe swappedwith the data qubits on the opposite side of the
original qubit. This results in a state where a vertical line of three data qubits in the error-correcting surface code
are initialized to the state

y a bñ = ñ + ñ∣ ∣ ∣ ( )000 111 . 7

Now the stabilizers for a distance-three error-correcting surface patch around these specially prepared qubits
can be turned on, and thus an error-corrected state is obtained. The distance of these states can be increased by
performingmerge operations with neighboring regions. Here, the neighboring qubits need to be initialized to
ñ∣0 again.

8. Examples

This concludes the description of the compilation procedure. Any circuit that has been translated to the inverse
ICMrepresentation can nowbe implemented in the planar code using efficient operations that the 2D lattice of
surface code patches enables. After initialization, theCNOT step is entirely implemented usingmerge and split
operations; and the last step ofmeasurements uses state distillation and injection as described in the section 7. In
the following, we provide a translation to lattice surgery for three commondistillation protocols: the 7-qubit
Steane code, the 15-qubit Reed–Muller code, and finally a Bravyi–Haah distillation code. For all of these codes
we provide a hand-optimized placement of the surface code patches and estimate their resource requirements.
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8.1. Steane code for ñ∣Y -state-distillation
As afirst example, we showhow the state distillation algorithm for the P-gate can be translated to the lattice
surgerymodel. The underlying error-correcting code for the distillation is a 7-qubit Steane code given in
figure 13.One can see that this is already given in the inverse ICM format, if one replaces theP-gates andX-basis
measurements by a rotatedmeasurement.

For this algorithm, eight encoded qubit regions are needed, which are in the beginning prepared in an
entagled state using themulti-target CNOToperations. This distillation circuit now applies to seven encoded
qubits an error-prone P-gate. After that, the ancilla qubits aremeasured and depending on the outcome this
circuit will have a distilled version as output yñ = ñ+∣ ∣Yk 1 , where +( )k 1 denotes the output as a distilled ñ∣Y
state at +( )k 1 levels of concatenation. This algorithm can be used recursively until the desired precision is
reached.

At themeasurement stage, we are checking the eigenvalues of the three stabilizers

=

=

=

S M M M M

S M M M M

S M M M M .

X X X X

X X X X

X X X X

1
1 4 6 7

2
2 5 6 7

3
3 4 5 6

Only if all of these stabilizers return the trivial syndrome, then the distillation procedure works. Otherwise, the
state is discarded and another distillation run has to be performed. Furthermore, if the product of all
measurements is =M M 1X X

1 7 , then the output state is given by y sñ = ñ∣ ∣Yz , whoseZ-error needs to be
tracked.

Since themulti-qubit CNOTs of the Steane code prepare the system in aCalderbank–Shor–Steane-stabilized
state, one can easily translate this to split operations in the lattice surgerymodel. No further classical translation
is required. Using themethod described before, eachCNOTcorresponds to an instance of smooth splits, which
will then be connected by roughmerges. The placement of the individual qubits can be treated as an
optimization problem in order to place corresponding qubits close to each other.

Amethod to proceed is given infigure 14. The procedure starts with the initialization of four encoded
regions to the state +ñÄ∣ 4. Because smooth splits will be performed, these four regions have sufficient size to
accommodate four encoded regions each. Afterwards, in figure 14(b), the smooth splits are performed creating
all qubits that are needed in the original circuit given infigure 13. In the next step, qubit onewill bemoved one
space down and the leftmost qubit 7 will bemoved to the right. After that, all patches contributing to the same
qubit aremerged using a roughmerge. The result is visualized infigure 14(c).

At this point, we have prepared the entangled state between eight logically encoded regions that reflect both
the initialization andCNOTparts of the distillation circuit. The remaining operation is to perform each
individual logical P-gate on qubit regions one to seven andmeasure themout in theX-basis. For each of these
qubits we need to introduce ancillary ñ∣Y states.Without loss of generality, we assume that this is a level-one
concatenated circuit, end hencewe need to state-inject seven physical ñ∣Y states and encode them into encoded
regions. To free up lattice space, wefirst shrink qubit regions seven, six, four, and five and use the resulting lattice
space to inject and encode ñ∣Y states which are adjacent to the encoded regions that are needed infigure 13.
Finally, smoothmerges are performed and the resulting qubits will bemeasured such that only logical qubit 8
remains, which is our output, with the rest of the code space now free to be used in subsequent circuits.

Using this procedure recursively will exponentially decrease the errors associatedwith themagic state.
Therefore, one can obtain an arbitrary preciseY-state and thus the application of a arbitrarily precise P-gate is

Figure 13.This circuit is the Steane code, to be used for the distillation of ñ∣Y states. This is an iterative procedurewhere the error-
prone ñ∣Y are used during the application of theP-gates. The numbering used in this circuit coincides with the numbering of the
algorithm given in figure 14.
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possible. However, higher levels of such concatenations need ñ∣Y -states calculated before. The transportation of
these states complicates the geometry and further research is required.

8.2. Efficiency of the distillation
The total spatial requirements for one distillation run using the algorithmdescribed above are given by 5× 4
patches that encode a logical qubit each. If a rotated lattice is used, onewill need d2 data qubits, and -( )d 12

syndrome qubits [33] for a distance d surface code. This results in d2 2 physical qubits to leading order. The time
requirements are given by d-cycles for the initialization of the states +ñ∣ . Performing all the smooth splits in
figure 14(b)will need d-cycles. Themovement andmerge operations need d-cycles each. Shrinking the qubits
also needs d-cycles, while creating the injected ñ∣Y states needs at least d-cycles. Thefinal smoothmerges take
again d-cycles, such that the total time requirements sum to

=t d7 cycles.

Thiswill give a total requirement of ´ ´ =d d2 20 7 2803 3 space–time volumes, if a rotated lattice is assumed
(it should be noted that one step in time consists of two stabilizer rounds:Z-stabilizer andX-stabilizer). This
performsworse than using the braiding description, which needs a space/time volume of d140 3 [28].

8.3. Stabilizermatrix calculation
The previously outlined algorithm can be calculated alternatively using the stabilizermatrix formulationwith
the rules presented before. In the beginning only four encoded qubits, in the state +ñ∣ , exits, which can be

Figure 14.This figure shows the steps needed to perform lattice surgery. The numbers indicatewhich patch contributes towhich
qubit of the circuit infigure 13. Sincemerges and splits do not conserve the overall number of qubits,many patchesmight contribute
to the same qubit at intermediate steps. (a) For eachmulti target CNOTa vertical block of surface code is initialized to +∣ ⟩. The height
of these blocks is determined by the number of target qubits and how the circuit is optimized. (b)Each block is now separated into its
qubits using smooth splits. (c)A roughmerge connects the same target qubits of different CNOTs. (d)A shrink operation reduces the
size of the each patch of unitary in order tomake space for the ∣ ⟩Y states. (e)A smoothmerge between a ∣ ⟩Y -state and another qubit
performs injection, such that theZ-gate is applied.
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represented as:

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

X
X

X
X

.

Using four smooth splits on each of these qubits will result in a four qubit GHZ-state for each

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

X X X X
Z Z

Z Z
Z Z

X X X X
Z Z

Z Z
Z Z

X X X X
Z Z

Z Z
Z Z

X X X X
Z Z

Z Z
Z Z

7 8 4 5 6 4 5 3 7 6 4 1 7 6 2 5

.

In this stabilizermatrix, the numbers correspond to the labeling thatwas used infigure 14(b). Nowone has to
proceed using themerge operations. Thefirstmerge is performed on the qubit labeled 7:

Figure 15.This circuit implements a Reed–Muller codewhich is used to distill ñ∣A . However, it is not yet possible to implement this
circuit in lattice surgery since the last CNOThas a control qubit on a state that is targeted by other CNOTs.Using the classical
algorithmprovided in the supplementary, this circuit can be translated to a form that is implementable by lattice surgery.
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⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

X X X X
Z Z Z Z

Z Z
Z Z

X X X X
Z Z

Z Z
Z Z

X X X X
Z Z

Z Z
X X X X

Z Z
Z Z

7 8 4 5 6 4 5 3 6 4 1 6 2 5

.

Using similar transformations, sorting the numbers and swapping the stabilizer rows, one obtains:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

X X X X
X X X X
X X X X

X X X X
Z Z Z Z
Z Z Z Z
Z Z Z Z

Z Z Z Z

1 2 3 4 5 6 7 8

.

This stabilizermatrix describes the same state as the one given in [28], whichwas calculated using the circuit of
figure 13.

Figure 16.The last CNOTof the circuit infigure 15 has been eliminated resulting in an equivalent circuit that can be usedwith lattice
surgery.
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Figure 18.After the patches corresponding to the same qubits aremerged in figure 17, excessive patcheswere shrunk, allowing space
for state injection.Here, a possible layoutwith the correct positioning of ñ∣A -states and correctional ñ∣Y -states is given. In the next step
a smoothmerge is performed on every patch except the one labeled 16, whichwill store the output information.

Figure 17.This shows the layout after the smooth splits and after theirmovement to their designated vertical positions. Each column
represents onemulti target CNOTwith the qubits arranged in such away that in the next step themerge operation can be performed.
The empty spaces are initialized to 0, such that allmerge operations can be applied in d error-correcting cycles. As a side note, the
difference of a †T -gate to aT-gate is only a change in corrective gates.
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8.4. Reed–Muller code for ñ∣A -state-distillation
The distillation circuit for ñ∣A is given by figure 15. One can notice that the last qubit needs to be permuted to
the front of the circuit. This will be done using the algorithm included online [68]. The result of this
transformation is shown in figure 16. After the translated circuit is obtained, it can be implemented using
lattice surgery with the same steps as before. One choice for the layout of the patches is shown in figure 17 and
the locations to inject ñ∣A with their eventual corrective ñ∣Y states are shown in figure 18. One can see that
there aremany empty regions that exist during the preparation of the entangled state, which we anticipate can
be optimized further. The total spatial requirements for this circuit are given by 60 encoded regions. The time
complexity in this circuit depends on how often an erroneous T has been applied. If corrective P-gates have
to be applied, the total time effort is higher than for the P-gate. Two additional steps to inject andmerge
corrective ñ∣Y -states are needed, giving a space–time volume of d1080 3. This compares with a space/time
volume of d1500 3 for the braid-based logic [28].

8.5. Bravyi–Haah code for ñ∣A -state distillation
Another very promising class of distillationmethodswas introduced byBravyi andHaah [38]. These are based
on triorthogonal stabilizermatrices. In [31] an exemplary circuit that fulfills the triorthogonal requirementwas
already translated to the braiding framework.We use the same example, namely a +( )k3 8 -to-k distillation
code for ñ∣A with k=4 and compare our estimates with those for braiding. Our translation again requires a
circuit given in the inverse ICM format, whose CNOTs are thenmerged to as few as possiblemulti-target
CNOTs. The result of this translation is given infigure 19. This circuit can nowbe translated to lattice surgery

Figure 19.Circuit for the Bravyi–Haah +( )k3 8 -to-k distillation code for k=4. The original circuit for this codewas found in [31].
Using the algorithm given in the supplementary we translated it to this form,which can nowbe used for our translation to lattice
surgery.
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using a new row for eachmulti-target CNOT.We optimized the layout of patchesmanually and obtained a space
requirement of 7× 18 patches of surface code. The time requirements do not change compared to the Reed–
Muller code, such that this circuit needs d7 cycles for optimal performance, where no corrective P-gates are
needed, and d9 cycles for a worst case. This calculates to aworst-case space–time volume of d2268 3 in lattice
surgery. The braiding implementation of this circuit performsworse with a space–time volume of d4688 3. This
is a good result; however, further research is required to obtain the scalingwith k for lattice surgery. In braiding,
an efficient packing for arbitrary k has already been found, whereas herewe only performedmanual
optimization for this specific case.

9. Conclusion

In this paper we have provided amethod for compiling a fault-tolerant quantum circuit for a surface code
quantum computer based on lattice surgery protocols. Using the natural operations of the lattice surgerymodel
and a specific representation of a compatible, fault-tolerant circuit, we show via stabilizers how theClifford part
of the circuit can be directlymapped to lattice surgery protocols in the surface code. Further work is required to
optimize the arrangement andmovement of encoded regions in the computer to efficiently realize any given
circuit. Examples of state-distillation circuits were given, which have a comparable or better space/time volume
than braid-based circuit implementations andwith further optimizationwe expect this to decrease further. In
light of recent results [45–47] on improved state-distillation procedures, further analysis should be conducted
on how the resource cost changes with them applied to the lattice surgerymodel andwithmore efficient
encodings nowdeveloped for the surface code [48, 49], qubit resources for an arbitrary algorithmwill further
decrease.

Figure 20.Continuing from the circuit infigure 19, we translate eachmulti-target CNOT into a row of surface code patches using
smooth splits. The placement of these patches was again optimizedmanually.
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