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Abstract

We study Majorana bound states in a disordered chain of semiconductor quantum dots proximity-
coupled to an s-wave superconductor. By calculating its topological quantum number, based on the
scattering-matrix method and a tight-binding model, we can identify the topological property of such
an inhomogeneous one-dimensional system. We study the robustness of Majorana bound states
against disorder in both the spin-independent terms (including the chemical potential and the regular
spin-conserving hopping) and the spin-dependent term, i.e., the spin-flip hopping due to the Rashba
spin—orbit coupling. We find that the Majorana bound states are not completely immune to the spin-
independent disorder, especially when the latter is strong. Meanwhile, the Majorana bound states are
relatively robust against spin-dependent disorder, as long as the spin-flip hopping is of uniform sign
(i.e., the varying spin-flip hopping term does not change its sign along the chain). Nevertheless, when
the disorder induces sign-flip in spin-flip hopping, the topological-nontopological phase transition
takes place in the low-chemical-potential region.

1. Introduction

Majorana bound states (MBSs) [1, 2] in solid-state systems are recently attracting increasing interest, both
theoretically and experimentally. Proposed by Kitaev more than ten years ago in a spinless toy model [1], these
zero-energy bound states are expected to exist in several structures with spin, including nanowires with spin—
orbit coupling (SOC) in proximity to a superconductor (SC) [3-5], ferromagnetic atom chains on top ofa SC [6],
topological insulator/SC hybrid structures [7-12], quantum dot (QD) chains with SC in adjacence [13-15], as
well as cold-atom systems [16]. Experimentally, possible signatures of MBS have been reported in nanowires
[17-19], atom chains [20], and topological insulator/SC structures [21].

MBSs attract considerable attention partly due to their future potential applications in quantum information
[2, 22-24]. One attractive possibility would be to construct Majorana qubits based on MBS [22]. Majorana
qubits, among various qubit candidates [25-31], are supposed to be robust against local perturbations and hence
promising to store quantum information [13, 22, 32]. Moreover, arbitrary qubit rotations are expected to be
implemented, by means of topologically protected braiding operations [23, 33] in combination with other
nontopological operations assisted by, e.g., nanomechanical resonators [34, 35]. However, recent studies reveal
that the MBS are not completely robust against disorder in the Kitaev’s spinless model and in the systems with
spin [36—41] Moreover, the Majorana qubits are not totally protected from decoherence [42—-45].

Note that the studies investigating so far the effect of disorder on MBS focus solely on the spin-independent
disorder, without considering the spin-dependent one. In fact, the spin-dependent disorder, e.g., the
randomness in SOC, can be present inevitably in many solid-state systems and play an important role in the
spin-related dynamics [46—48]. Therefore, the effect of spin-dependent disorder on the existence of MBS
deserves to be investigated.

In this work, we systematically study the robustness of MBS against disorder, based on a concrete structure,
i.e., a QD chain in proximity to an s-wave SC [14]. Experimentally, such a QD chain system might have the
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Figure 1. Schematic diagram of a disordered chain of semiconductor quantum dots (shown in blue) in proximity to an s-wave
superconductor (in red), under a transverse magnetic field B. The on-site chemical potentials in the quantum dots, as well as the spin-
conserving and -flip hopping terms between neighboring quantum dots, can vary among the different sites.

advantage to be adaptively tuned, as suggested in [ 14]. However, in the absence of precise control, this system is
also very likely to be disordered due to, e.g., the inhomogeneity in QD sizes or QD confining potentials.
Therefore, we consider a QD chain as an ideal platform to study the influence of disorder. Concretely, we
calculate the topological quantum number by means of the scattering-matrix method on a tight-binding model,
to identify the topological property of a disordered chain in a relatively large parameter region. Apart from the
disorder in the spin-independent terms (including the chemical potential and the regular spin-conserving
hopping), we also consider the disorder in the spin-dependent term, i.e., the spin-flip hopping due to the Rashba
SOC. We find that the MBS are not completely immune to disorder in the spin-independent terms, especially
when the disorder is strong. Meanwhile, the MBS are relatively robust against disorder in the spin-flip hopping,
aslong as the spin-flip hopping is of uniform sign. Nevertheless, when the disorder induces sign-flip in spin-flip
hopping, a topological-nontopological phase transition in the QD chain takes place in the low-chemical-
potential region.

This paper is organized as follows. First, we describe the inhomogeneous QD chain in a tight-binding model.
Then we present the scattering-matrix method used to calculate the topological quantum number. Afterwards,
we numerically study the robustness of the MBS against disorder in the QD chain. Finally, we summarize our
results.

2. Model and Hamiltonian

A QD chain, as studied in [ 14], is schematically shown here in figure 1. An s-wave SCis in proximity to the QD
chain and a transverse magnetic field Bis applied along the z-axis. We assume that the QDs can be approximately
treated as one-dimensional along the chain-direction (x-axis) due to the strong transverse confinement. By
further assuming that the orbital level splitting in the QDs is much larger than both the Zeeman splitting and
Rashba SOC, we consider only the Kramers doublet closest to the chemical potential energy in each QD. The
general form of the tight-binding Hamiltonian describing such a chain of single-level QDs is written as [14]

H =2 S [~ p,805 + Blodadlf! £y + A S

2 naf3 n
+ > [tabag + it (0)aplf) f 15 + hoce. (1)
naf

Here, f;a is the creation operator for a spin-« electron in the nth QD. The Pauli matrices oy ,,, act on the spin
space. The chemical potential is labeled as 11,,. The term proportional to B is the Zeeman splitting while A stands
for the superconducting pairing due to the proximity effect. The nearest-neighbor hopping term has two parts,
i.e., the spin-conserving (#,,) and spin-flip (¢,°) ones. The spin-flip hopping can be caused by the SOC which
supplies an effective magnetic field during hopping. Here we only consider the Rashba type SOC, with its
effective magnetic field along the y-axis. Due to the inhomogeneity in the QD confining potentials as well as
other disorder sources such as charged impurities, both the spin-conserving terms, p,, and t,,, and the spin-flip
term, #,°, can be QD-site dependent.

In the Bogoliubov—de Gennes basis ¥, = (f

n

. 1 It f’jl , — fJT)’ the equation (1) can be rewritten as [6]

H = Y00+ (U Y + hee)], @

where
fln = — 1,007, + Bo, 15 + AopTy, 3)
ty = thooT, + it)0 0,7, 4)

and the Pauli matrices 7y ,,, act on the particle-hole space.

2



10P Publishing

NewJ. Phys. 18 (2016) 043033 P Zhangand F Nori

3. Scattering-matrix method

To identify the topological property of the QD chain, we study the scattering matrix S relating the incoming and
outgoing wave amplitudes at the Fermi level [49]

R T
S= . 5
( T R’) )
The4 x 4subblocks {R, R'} and { T, T'} are the reflection and transmission matrices at the two ends of the QD
chain, respectively. The Z, topological quantum number Qis given by [49]

Q = sgn Det(R) = sgn Det(R)). (6)

Here, sgn denotes the sign of the determinant Det. The MBS arise [49] at the ends of the QD chain only
whenQ = —1.

The scattering matrix can be obtained by the transfer-matrix scheme. Based on Hamiltonian (2), the zero-
energy Schrodinger equation gives [6]

~ ot
[ v L %)
Cpn+1 q)n
where
y 0 ol
Mn: a1 ~1r I (8)
—t, —1t, h,

Here @, is a four-component vector of wave amplitudes on the nth site. The above recursive relation
indicates that waves at the two ends (1 = 1 and N) of the nanowire are related by the transfer matrix

M = MyMy-_ ... Mo M,. ©

In the basis with right-moving and left-moving waves separated in the upper and lower four components, the
transfer matrix transforms as

M, = UM,U, (10)
where

1 (1 I

-5 ) (

In this basis, the reflection matrices R (R') and transmission matrices T(T") in the scattering matrix S (refer to
equation (5)) can be obtained via the relations

(6) =M} (5) = (1)

M = MyMy_1... Mo M,. (13)

where

Finally, the calculation of the topological quantum number Q is reduced to that of the transfer matrix M. In
the appendix, we present the numerical method for calculating M.

4, Results

We now numerically study” the topological property of the QD chain. For comparison, we first look into an ideal
homogeneous QD chain and reproduce the topological phase reported in the literature, and then take into
account disorder to investigate the robustness of the MBS.

4.1. Homogeneous QD chain

For ahomogeneous QD chain, we denote 1, = p, t, = tand £;° = t,,. In figure 2(a) we plot the phase
diagram, Det(R) (refer to equations (5) and (6)) versus x and B, of ahomogeneous QD chain typically with
t = Aand t,, = 0.5A. The blue region in this figure, with Det(R) = —1, stands for the topological phase
supporting MBS. It is found that this region is nicely enclosed by the white curve plotted in the figure, which
defines the topological region of a single-band homogeneous superconducting nanowire as [50, 51]

* The Fortran code for the numerical calculations in this paper can be found here: https://github.com/ppvastar/Majorana.
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Figure 2. (a) The determinant Det(R) of the reflection matrix R as a function of the chemical potential ;z and the Zeeman splitting B,
inahomogeneous QD chain with t = A and f,, = 0.5A. The blue region with Det(R) = —1 stands for the topological phase
supporting MBS. (b) The energy spectrum (with only the lowest four eigenstates close to zero energy plotted) versus the chemical
potential 1, when the Zeeman splitting Bis fixed as 2A. Note that in this figure, as well as in figures 3 and 4, the chain has N = 500
QDs, which is large enough for the numerical convergence.

J@t — |u)? + A2 < |B| < /2t + |u)? + A2, (14)

In figure 2(b), we further show the energy spectrum (for clarity, we present only the lowest four states close to the
zero energy) of this QD chain versus p when Bis fixed. It is clear (from the red and blue curves in figure 2(b)) that
when the QD chain enters the topological region, the zero-energy states (localized at the two ends of the QD
chain) which are separated from the higher-energy bulk states arise. Note that when varying the spin-flip
hopping f,,, the topological phase space in figure 2(a) remains invariant, consistent with the feature that t, is

absent from equation (14).
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Figure 3. (a) and (b) ((c) and (d)) Phase diagrams of disordered QD chains, where the chemical potentials 4, (spin-conserving
hoppings t,,) fluctuate in an interval (i — &, o1 + 8,) [(t — &é,, t + 6,)] withauniform distribution. Note that ¢, /A is setas 0.5 and
1.5, respectively, in (a) and (b), and &, /¢ is setas 0.2 and 0.6, respectively, in (c) and (d). (e) The ratio of the area of the topological
region for a disordered system (such as the blue regions in (a)—(d)) to the one for a clean system (the region defined by equation (14),
or, enclosed by the white curves in (a)-(d)), labeled as A, versus the fluctuation magnitude ¢, of the chemical potential 1 (red curve
with squares), and the fluctuation magnitude 6, of the spin-conserving hopping  (blue curve with circles). The calculations for each
curvein (e) are carried out by averaging over ten disordered samples.

4.2. Inhomogeneous QD chain with disordered chemical potential and spin-conserving hopping

From equation (14), one may infer that when the disorder is induced into the chemical potential x4 or the spin-
conserving hopping f,,, the topological phase space might change in the parameter space. Now we take into
account such disorder to investigate the robustness of MBS in the QD chain. We first consider disorder in the
chemical potential, which is modeled to perturb the p,,’s independently within a uniform distribution in the
interval ( — 8, ¢ + 8,), where 1 is now the mean value of the chemical potential and ¢, stands for the
fluctuation magnitude. Our calculations indicate that the topological phase is not completely immune to
disorder. In figures 3(a) and (b), we present the phase diagrams of the inhomogeneous QD chain calculated with
0,/A = 0.5and 6,/A = 1.5, respectively. The comparison between these two figures indicates the effect of
stronger disorder on the formation of the topological phase. To qualitatively present the effect of increasing
disorder, we further study the ratio of the area of the topological region with disorder (such as the blue regions in
figures 3(a) and (b)) to that without disorder (the region defined by equation (14)), labeled as A, versus the
fluctuation magnitude 8. This is a qualitative study because it is performed here in a finite parameter region,
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Figure 4. The phase diagrams of disordered QD chains where the spin-flip hoppings ¢,° fluctuate in an interval (ty, — s, fso + Or)
with a uniform distribution. The fluctuation magnitude 6, increases from (a) 0.1A to (d) A.

eg,0 < p < 5Aand 0 < B < 5A. This result is shown by the solid curve with squares in figure 3(e). This
curve shows that when the fluctuation magnitude of the chemical potential 8, is larger than the superconducting
gap A, the topological phase can be effectively destroyed.

We then consider disorder in the spin-conserving hopping, with the other terms treated as uniform. We
assume that the disorder causes the spin-conserving hopping to fluctuate in an interval (t — §,, t + ;) witha
uniform distribution (6; < t). Our calculations indicate that disorder in the spin-conserving hopping can also
be detrimental to the topological phase (especially when the disorder is strong), as shown by the phase diagrams
in figures 3(c) and (d). In figure 3(e), by the blue curve with circles, we also plot the ratio A of the area of the
topological region for a disordered system to the one for a clean system, versus the fluctuation magnitude 6;.
Also, the stronger the disorder is, the smaller the topological phase area becomes.

4.3. Inhomogeneous QD chain with disordered spin-flip hopping

We now focus on the robustness of the topological phase against disorder in the spin-flip hopping. Again, for
simplicity, we assume that due to disorder, the spin-flip hopping fluctuates in an interval (t;, — 6, tso + 0r,)
with a uniform distribution. We find that the topological phase is relatively robust against disorder in the spin-
flip hopping, as long as the spin-flip hopping is of uniform sign (i.e., 6, < f,,). Nevertheless, when disorder
induces sign-flip in the spin-flip hopping (6 > t,), a topological-nontopological phase transition in the QD
chain takes place in the low-chemical-potential region. This feature can be observed from figure 4, which
presents the phase diagrams of disordered QD chains with increasing ¢;_.

When the spin-flip hopping changes sign along the QD chain, a pair of zero-energy fermionic bound states
[40] arise at the interface between the neighboring domains with different signs of the spin-flip hopping. These
interface fermionic bound states can couple to other nearby bound states, including the MBS originally present
at the ends of the QD chain. These couplings can destroy the zero-energy MBS. To obtain a clear view of the
interface fermionic bound states and their coupling to the MBS, we further consider a simple case where a short
QD chain possesses a constant spin-flip hopping on one half of the chain but a varying spin-flip hopping on the
other half. Typically, we study a chain with 51 QDs connected by s-wave SCs. We set the spin-flip hopping
between the neighboring QDs from the 1st to 26th sites as a constant t,,, and adjust from t, to —t, the spin-flip
hopping ¢, on the remaining part. The curves in figure 5(a) show the energy spectrum of such an
inhomogeneous system (the lowest six eigenstates close to zero are plotted) versus the parameter ¢. It is clearly
shown that with the decrease and eventually the sign-flip of ¢ , the bulk gap in the QD chain gradually closes and
the zero-energy fermionic bound states located around the 26th QD arise. Accordingly, the topological quantum
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Figure 5. (a) Curves: energy spectrum (with only the lowest six eigenstates close to zero energy plotted) in an inhomogeneous QD
chain with a finite length (in the calculation we set the total number N of QDs to be 51), versus the variation of spin-flip hopping in one
half of the QD chain t{. Circles: the topological quantum number Q (in equation (6)) of this inhomogeneous QD chain (with the scale
on the right-hand side of the frame), versus the variation of spin-flip hopping in one half of the QD chain ¢ The spin-flip hopping in
the other half of the QD chain remains invariant as f;, = 0.5A. (b) Square of the wave function |¥|? of the state with its energy closest
to zero. The solid curve stands for the weakly coupled MBS in a homogeneous QD chain where t,, = g = 0.5A, while the dashed
curve stands for the state where the MBS have disappeared due to their coupling to the interface fermionic bound states in an
inhomogeneous QD chain. For the homogeneous QD chain, t,, = t5, = 0.5A; while for the inhomogeneous QD chain:

= —t5 = 0.5A.

tso

number Q changes from —1 to 1 (as shown by the open circles in figure 5(a)), indicating the disappearance of the
MBS due to their coupling to the fermionic bound states. In figure 5(b), we further present the square of the wave
function of the lowest eigenstate, for the cases with t§ = t,, and tg, = —t,,. [tis found that when ¢t = ¢, i.e.,
the QD chain is homogeneous, two weakly coupled MBS are present. However, when £ = —f,, a state
resulting from the coupling between MBS and the interface bound state replaces the original MBS.

5. Conclusion

In this work, we have studied the MBS in a disordered QD chain in proximity to an s-wave SC. We describe this
one-dimensional system by a tight-binding model. By calculating the topological quantum number based on the
scattering-matrix method, we can identify the topological property of such a QD chain. In our study, we take
into account disorder in both the spin-independent terms (including the chemical potential and the regular
spin-conserving hopping) and the spin-independent term, i.e., the spin-flip hopping due to the Rashba SOC.

We find that the MBS are not completely immune to disorder in the spin-independent terms, especially
when the disorder is strong. Meanwhile, the MBS are relatively robust against disorder in the spin-flip hopping,
aslong as the spin-flip hopping is of uniform sign. Nevertheless, when the disorder induces sign-flip in spin-flip
hopping, a topological-nontopological phase transition in the QD chain takes place in the low-chemical-
potential region. This study may provide insight into the search of MBS in solid-state systems.
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Appendix. Numerical method

As shown in section 3, the topological quantum number Q is determined by the reflection matrix R, which can
be obtained by the transfer matrix M via equation (12). However, the recursive construction (i.e., equation (13))
is numerically unstable [6, 52]. We stabilize it by using the method described in [52]. We briefly introduce this

process here.
Wedenote
M, = (i Z] (A1)
and define
M, = (?” g:) = M,M,_,.. MyM,. (A2)

Here {a,, b,, ¢, d,}and {A,, B,, C,, D,}are4 x 4subblock matrices. In such framework, M = My.
Further, according to equation (12), wehave R = —Dy'Cyand T = Ay — ByDy'Cx.
Based on equations (8) and (10), one finds that

Mz, =, 5= () (A3)

Therefore, one can construct a unitary matrix W, from the nonunitary matrix M, as
-1 -1
U, —d, c d
= (rn sn) - " ) (A4)
noon a, — b,d,; ¢, b,d,

U, VY
R. Su

Now let us define
)ZM@M—lu.Wz@Wh (A5)

where the operation @ is performed as

U Vo u "
(x2)e ()
_|mt vi(l — wps) Mpn (1 — ws) v, (A6)
n(l — siup)'n s34+ (1 — syup) sy,

In this way, W), is the unitary counterpart of M,, i.e.

- D,'C, D,
( uf’l VH) — n n . (A7)
Ry Su A, — B,D,'C, B,D,!
As aresult, for numerical stability, instead of calculating M,, by equation (A2), one can calculate the unitary
matrix W, based on equation (A5).

Finally, the topological quantum number Q can be obtained via the relation

Q = sgn Det(R) = sgn Det(—Dy'Cx) = sgn Det(Uy). (A8)
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