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Abstract
We studyMajorana bound states in a disordered chain of semiconductor quantumdots proximity-
coupled to an s-wave superconductor. By calculating its topological quantumnumber, based on the
scattering-matrixmethod and a tight-bindingmodel, we can identify the topological property of such
an inhomogeneous one-dimensional system.We study the robustness ofMajorana bound states
against disorder in both the spin-independent terms (including the chemical potential and the regular
spin-conserving hopping) and the spin-dependent term, i.e., the spin-flip hopping due to the Rashba
spin–orbit coupling.We find that theMajorana bound states are not completely immune to the spin-
independent disorder, especially when the latter is strong.Meanwhile, theMajorana bound states are
relatively robust against spin-dependent disorder, as long as the spin-flip hopping is of uniform sign
(i.e., the varying spin-flip hopping termdoes not change its sign along the chain). Nevertheless, when
the disorder induces sign-flip in spin-flip hopping, the topological-nontopological phase transition
takes place in the low-chemical-potential region.

1. Introduction

Majorana bound states (MBSs) [1, 2] in solid-state systems are recently attracting increasing interest, both
theoretically and experimentally. Proposed byKitaevmore than ten years ago in a spinless toymodel [1], these
zero-energy bound states are expected to exist in several structures with spin, including nanowires with spin–
orbit coupling (SOC) in proximity to a superconductor (SC) [3–5], ferromagnetic atom chains on top of a SC [6],
topological insulator/SChybrid structures [7–12], quantumdot (QD) chains with SC in adjacence [13–15], as
well as cold-atom systems [16]. Experimentally, possible signatures ofMBShave been reported in nanowires
[17–19], atom chains [20], and topological insulator/SC structures [21].

MBSs attract considerable attention partly due to their future potential applications in quantum information
[2, 22–24]. One attractive possibility would be to constructMajorana qubits based onMBS [22].Majorana
qubits, among various qubit candidates [25–31], are supposed to be robust against local perturbations and hence
promising to store quantum information [13, 22, 32].Moreover, arbitrary qubit rotations are expected to be
implemented, bymeans of topologically protected braiding operations [23, 33] in combinationwith other
nontopological operations assisted by, e.g., nanomechanical resonators [34, 35]. However, recent studies reveal
that theMBS are not completely robust against disorder in theKitaev’s spinlessmodel and in the systemswith
spin [36–41]Moreover, theMajorana qubits are not totally protected fromdecoherence [42–45].

Note that the studies investigating so far the effect of disorder onMBS focus solely on the spin-independent
disorder, without considering the spin-dependent one. In fact, the spin-dependent disorder, e.g., the
randomness in SOC, can be present inevitably inmany solid-state systems and play an important role in the
spin-related dynamics [46–48]. Therefore, the effect of spin-dependent disorder on the existence ofMBS
deserves to be investigated.

In this work, we systematically study the robustness ofMBS against disorder, based on a concrete structure,
i.e., aQD chain in proximity to an s-wave SC [14]. Experimentally, such aQDchain systemmight have the
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advantage to be adaptively tuned, as suggested in [14]. However, in the absence of precise control, this system is
also very likely to be disordered due to, e.g., the inhomogeneity inQD sizes orQDconfining potentials.
Therefore, we consider aQDchain as an ideal platform to study the influence of disorder. Concretely, we
calculate the topological quantumnumber bymeans of the scattering-matrixmethod on a tight-bindingmodel,
to identify the topological property of a disordered chain in a relatively large parameter region. Apart from the
disorder in the spin-independent terms (including the chemical potential and the regular spin-conserving
hopping), we also consider the disorder in the spin-dependent term, i.e., the spin-flip hopping due to the Rashba
SOC.Wefind that theMBS are not completely immune to disorder in the spin-independent terms, especially
when the disorder is strong.Meanwhile, theMBS are relatively robust against disorder in the spin-flip hopping,
as long as the spin-flip hopping is of uniform sign. Nevertheless, when the disorder induces sign-flip in spin-flip
hopping, a topological-nontopological phase transition in theQD chain takes place in the low-chemical-
potential region.

This paper is organized as follows. First, we describe the inhomogeneousQDchain in a tight-bindingmodel.
Thenwe present the scattering-matrixmethod used to calculate the topological quantumnumber. Afterwards,
we numerically study the robustness of theMBS against disorder in theQD chain. Finally, we summarize our
results.

2.Model andHamiltonian

AQDchain, as studied in [14], is schematically shownhere in figure 1. An s-wave SC is in proximity to theQD
chain and a transversemagnetic fieldB is applied along the z-axis.We assume that theQDs can be approximately
treated as one-dimensional along the chain-direction (x-axis)due to the strong transverse confinement. By
further assuming that the orbital level splitting in theQDs ismuch larger than both the Zeeman splitting and
Rashba SOC,we consider only theKramers doublet closest to the chemical potential energy in eachQD. The
general formof the tight-bindingHamiltonian describing such a chain of single-level QDs is written as [14]
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Here, af
n
† is the creation operator for a spin-α electron in the nthQD. The Paulimatrices sx y z, , act on the spin

space. The chemical potential is labeled as mn. The termproportional toB is the Zeeman splitting whileΔ stands
for the superconducting pairing due to the proximity effect. The nearest-neighbor hopping termhas two parts,
i.e., the spin-conserving (tn) and spin-flip (tn

so) ones. The spin-flip hopping can be caused by the SOCwhich
supplies an effectivemagnetic field during hopping.Herewe only consider the Rashba type SOC,with its
effectivemagnetic field along the y-axis. Due to the inhomogeneity in theQDconfining potentials as well as
other disorder sources such as charged impurities, both the spin-conserving terms, mn and tn, and the spin-flip
term, tn

so, can beQD-site dependent.
In the Bogoliubov–deGennes basis Y = -   f f f f, , ,n n n n n

( )† † , the equation (1) can be rewritten as [6]
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and the Paulimatrices tx y z, , act on the particle–hole space.

Figure 1. Schematic diagramof a disordered chain of semiconductor quantumdots (shown in blue) in proximity to an s-wave
superconductor (in red), under a transversemagnetic fieldB. The on-site chemical potentials in the quantumdots, as well as the spin-
conserving and -flip hopping terms between neighboring quantumdots, can vary among the different sites.

2

New J. Phys. 18 (2016) 043033 PZhang and FNori



3. Scattering-matrixmethod

To identify the topological property of theQDchain, we study the scatteringmatrix S relating the incoming and
outgoingwave amplitudes at the Fermi level [49]

⎛
⎝⎜

⎞
⎠⎟= ¢
¢

S R T
T R

. 5( )

The 4×4 subblocks {R, ¢R } and {T, ¢T } are the reflection and transmissionmatrices at the two ends of theQD
chain, respectively. TheZ2 topological quantumnumberQ is given by [49]

= = ¢Q R Rsgn Det sgn Det . 6( ) ( ) ( )

Here, sgn denotes the sign of the determinantDet. TheMBS arise [49] at the ends of theQD chain only
when = -Q 1.

The scatteringmatrix can be obtained by the transfer-matrix scheme. Based onHamiltonian (2), the zero-
energy Schrödinger equation gives [6]
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Here Fn is a four-component vector of wave amplitudes on the nth site. The above recursive relation
indicates that waves at the two ends (n= 1 andN) of the nanowire are related by the transfermatrix

= -M M M M M... . 9N N 1 2 1˜ ˜ ˜ ˜ ˜ ( )

In the basis with right-moving and left-movingwaves separated in the upper and lower four components, the
transfermatrix transforms as

=M U M U , 10n n˜ ( )†
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In this basis, the reflectionmatricesR ( ¢R ) and transmissionmatricesT ( ¢T ) in the scatteringmatrix S (refer to
equation (5)) can be obtained via the relations
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Finally, the calculation of the topological quantumnumberQ is reduced to that of the transfermatrixM. In
the appendix, we present the numericalmethod for calculatingM.

4. Results

Wenownumerically study4 the topological property of theQDchain. For comparison, wefirst look into an ideal
homogeneousQDchain and reproduce the topological phase reported in the literature, and then take into
account disorder to investigate the robustness of theMBS.

4.1.HomogeneousQDchain
For a homogeneousQDchain, we denote m m=n , =t tn and =t tn

so
so. Infigure 2(a)weplot the phase

diagram, RDet( ) (refer to equations (5) and (6)) versusμ andB, of a homogeneousQDchain typically with
= Dt and = Dt 0.5so . The blue region in this figure, with = -RDet 1( ) , stands for the topological phase

supportingMBS. It is found that this region is nicely enclosed by thewhite curve plotted in the figure, which
defines the topological region of a single-band homogeneous superconducting nanowire as [50, 51]

4
The Fortran code for the numerical calculations in this paper can be found here: https://github.com/ppvastar/Majorana.
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Infigure 2(b), we further show the energy spectrum (for clarity, we present only the lowest four states close to the
zero energy) of thisQD chain versusμwhenB isfixed. It is clear (from the red and blue curves infigure 2(b)) that
when theQD chain enters the topological region, the zero-energy states (localized at the two ends of theQD
chain)which are separated from the higher-energy bulk states arise. Note thatwhen varying the spin-flip
hopping tso, the topological phase space infigure 2(a) remains invariant, consistent with the feature that tso is
absent from equation (14).

Figure 2. (a)The determinant RDet( ) of the reflectionmatrixR as a function of the chemical potentialμ and the Zeeman splittingB,
in a homogeneousQD chainwith = Dt and = Dt 0.5so . The blue regionwith = -RDet 1( ) stands for the topological phase
supportingMBS. (b)The energy spectrum (with only the lowest four eigenstates close to zero energy plotted) versus the chemical
potentialμ, when the Zeeman splittingB isfixed as D2 . Note that in thisfigure, as well as infigures 3 and 4, the chain hasN=500
QDs, which is large enough for the numerical convergence.
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4.2. InhomogeneousQDchainwith disordered chemical potential and spin-conserving hopping
From equation (14), onemay infer thatwhen the disorder is induced into the chemical potentialμ or the spin-
conserving hopping tn, the topological phase spacemight change in the parameter space. Nowwe take into
account such disorder to investigate the robustness ofMBS in theQDchain.Wefirst consider disorder in the
chemical potential, which ismodeled to perturb the mnʼs independently within a uniformdistribution in the
interval m d m d- +m m,( ), whereμ is now themean value of the chemical potential and dm stands for the
fluctuationmagnitude. Our calculations indicate that the topological phase is not completely immune to
disorder. Infigures 3(a) and (b), we present the phase diagrams of the inhomogeneousQDchain calculatedwith
d D =m 0.5 and d D =m 1.5, respectively. The comparison between these twofigures indicates the effect of
stronger disorder on the formation of the topological phase. To qualitatively present the effect of increasing
disorder, we further study the ratio of the area of the topological regionwith disorder (such as the blue regions in
figures 3(a) and (b)) to that without disorder (the region defined by equation (14)), labeled asλ, versus the
fluctuationmagnitude dm. This is a qualitative study because it is performed here in afinite parameter region,

Figure 3. (a) and (b) ((c) and (d)) Phase diagrams of disorderedQD chains, where the chemical potentials mn (spin-conserving
hoppings tn)fluctuate in an interval m d m d- +m m,( ) d d- +t t,t t[( )]with a uniformdistribution. Note that d Dm is set as 0.5 and
1.5, respectively, in (a) and (b), and d tt is set as 0.2 and 0.6, respectively, in (c) and (d). (e)The ratio of the area of the topological
region for a disordered system (such as the blue regions in (a)–(d)) to the one for a clean system (the region defined by equation (14),
or, enclosed by thewhite curves in (a)–(d)), labeled asλ, versus thefluctuationmagnitude dm of the chemical potentialμ (red curve
with squares), and thefluctuationmagnitude dt of the spin-conserving hopping t (blue curvewith circles). The calculations for each
curve in (e) are carried out by averaging over ten disordered samples.
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e.g.,  m D0 5 and   DB0 5 . This result is shown by the solid curvewith squares infigure 3(e). This
curve shows that when thefluctuationmagnitude of the chemical potential dm is larger than the superconducting
gapΔ, the topological phase can be effectively destroyed.

We then consider disorder in the spin-conserving hopping, with the other terms treated as uniform.We
assume that the disorder causes the spin-conserving hopping tofluctuate in an interval d d- +t t,t t( )with a
uniformdistribution (d < tt ). Our calculations indicate that disorder in the spin-conserving hopping can also
be detrimental to the topological phase (especially when the disorder is strong), as shown by the phase diagrams
infigures 3(c) and (d). Infigure 3(e), by the blue curvewith circles, we also plot the ratioλ of the area of the
topological region for a disordered system to the one for a clean system, versus the fluctuationmagnitude dt .
Also, the stronger the disorder is, the smaller the topological phase area becomes.

4.3. InhomogeneousQDchainwith disordered spin-flip hopping
Wenow focus on the robustness of the topological phase against disorder in the spin-flip hopping. Again, for
simplicity, we assume that due to disorder, the spin-flip hopping fluctuates in an interval d d- +t t,t tso soso so

( )
with a uniformdistribution.Wefind that the topological phase is relatively robust against disorder in the spin-
flip hopping, as long as the spin-flip hopping is of uniform sign (i.e., d < tt soso

). Nevertheless, when disorder
induces sign-flip in the spin-flip hopping (d > tt soso

), a topological-nontopological phase transition in theQD
chain takes place in the low-chemical-potential region. This feature can be observed from figure 4, which
presents the phase diagrams of disorderedQDchains with increasing dtso

.
When the spin-flip hopping changes sign along theQDchain, a pair of zero-energy fermionic bound states

[40] arise at the interface between the neighboring domains with different signs of the spin-flip hopping. These
interface fermionic bound states can couple to other nearby bound states, including theMBS originally present
at the ends of theQDchain. These couplings can destroy the zero-energyMBS. To obtain a clear view of the
interface fermionic bound states and their coupling to theMBS, we further consider a simple case where a short
QD chain possesses a constant spin-flip hopping on one half of the chain but a varying spin-flip hopping on the
other half. Typically, we study a chainwith 51QDs connected by s-wave SCs.We set the spin-flip hopping
between the neighboringQDs from the 1st to 26th sites as a constant tso, and adjust from tso to-tso the spin-flip
hopping t a

so on the remaining part. The curves infigure 5(a) show the energy spectrumof such an
inhomogeneous system (the lowest six eigenstates close to zero are plotted) versus the parameter t a

so. It is clearly
shown that with the decrease and eventually the sign-flip of t a

so, the bulk gap in theQDchain gradually closes and
the zero-energy fermionic bound states located around the 26thQD arise. Accordingly, the topological quantum

Figure 4.The phase diagrams of disorderedQD chainswhere the spin-flip hoppings tn
so
fluctuate in an interval d d- +t t,t tso soso so( )

with a uniformdistribution. Thefluctuationmagnitude dtso increases from (a) D0.1 to (d)Δ.
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numberQ changes from−1 to 1 (as shown by the open circles infigure 5(a)), indicating the disappearance of the
MBSdue to their coupling to the fermionic bound states. Infigure 5(b), we further present the square of thewave
function of the lowest eigenstate, for the cases with =t ta

so so and = -t ta
so so. It is found that when =t ta

so so, i.e.,
theQDchain is homogeneous, twoweakly coupledMBS are present.However, when = -t ta

so so, a state
resulting from the coupling betweenMBS and the interface bound state replaces the originalMBS.

5. Conclusion

In this work, we have studied theMBS in a disorderedQD chain in proximity to an s-wave SC.We describe this
one-dimensional systemby a tight-bindingmodel. By calculating the topological quantumnumber based on the
scattering-matrixmethod, we can identify the topological property of such aQDchain. In our study, we take
into account disorder in both the spin-independent terms (including the chemical potential and the regular
spin-conserving hopping) and the spin-independent term, i.e., the spin-flip hopping due to the Rashba SOC.

Wefind that theMBS are not completely immune to disorder in the spin-independent terms, especially
when the disorder is strong.Meanwhile, theMBS are relatively robust against disorder in the spin-flip hopping,
as long as the spin-flip hopping is of uniform sign. Nevertheless, when the disorder induces sign-flip in spin-flip
hopping, a topological-nontopological phase transition in theQD chain takes place in the low-chemical-
potential region. This studymay provide insight into the search ofMBS in solid-state systems.

Figure 5. (a)Curves: energy spectrum (with only the lowest six eigenstates close to zero energy plotted) in an inhomogeneousQD
chainwith a finite length (in the calculationwe set the total numberN ofQDs to be 51), versus the variation of spin-flip hopping in one
half of theQD chain t a

so. Circles: the topological quantumnumberQ (in equation (6)) of this inhomogeneousQD chain (with the scale
on the right-hand side of the frame), versus the variation of spin-flip hopping in one half of theQD chain t a

so. The spin-flip hopping in
the other half of theQDchain remains invariant as = Dt 0.5so . (b) Square of thewave function Y 2∣ ∣ of the statewith its energy closest
to zero. The solid curve stands for theweakly coupledMBS in a homogeneousQDchainwhere = = Dt t 0.5a

so so , while the dashed
curve stands for the state where theMBShave disappeared due to their coupling to the interface fermionic bound states in an
inhomogeneousQD chain. For the homogeneousQD chain, = = Dt t 0.5 ;a

so so while for the inhomogeneousQD chain:
= - = Dt t 0.5a

so so .
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Appendix. Numericalmethod

As shown in section 3, the topological quantumnumberQ is determined by the reflectionmatrixR, which can
be obtained by the transfermatrix M via equation (12). However, the recursive construction (i.e., equation (13))
is numerically unstable [6, 52].We stabilize it by using themethod described in [52].We briefly introduce this
process here.

We denote

⎛
⎝⎜

⎞
⎠⎟=M

a b
c d

A1n
n n

n n
( )
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Here a b c d, , ,n n n n{ }and    , , ,n n n n{ } are 4×4 subblockmatrices. In such framework, =M N .
Further, according to equation (12), we have  = - -R N N

1 and    = - -T N N N N
1 .

Based on equations (8) and (10), onefinds that
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Therefore, one can construct a unitarymatrixWn from the nonunitarymatrix Mn as
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In this way,n is the unitary counterpart ofn, i.e.
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As a result, for numerical stability, instead of calculatingn by equation (A2), one can calculate the unitary
matrixn based on equation (A5).

Finally, the topological quantumnumberQ can be obtained via the relation

  = = - =-Q Rsgn Det sgn Det sgn Det . A8N N N
1( ) ( ) ( ) ( )
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