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Abstract

We explore numerically, analytically, and experimentally the relationship between quasi-normal
modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrum of one-
dimensional (1D) and quasi-1D open disordered systems. It is shown that for weak disorder there exist
two types of the eigenstates: ordinary QNMs which are associated with a TR, and hidden QNMs which
do not exhibit peaks in transmission or within the sample. The distinctive feature of the hidden modes
is that unlike ordinary ones, their lifetimes remain constant in a wide range of the strength of disorder.
In this range, the averaged ratio of the number of transmission peaks N;s to the number of QNM:s
Ninod> Nres/ Nmod» 18 insensitive to the type and degree of disorder and is close to the value m , which
we derive analytically in the weak-scattering approximation. The physical nature of the hidden modes
is illustrated in simple examples with a few scatterers. The analogy between ordinary and hidden
QNMs and the segregation of superradiant states and trapped modes is discussed. When the coupling
to the environment is tuned by an external edge reflectors, the superradiance transition is reproduced.
Hidden modes have been also found in microwave measurements in quasi-1D open disordered
samples. The microwave measurements and modal analysis of transmission in the crossover to
localization in quasi-1D systems give a ratio of Nyes/Nipoq close to \/m . In diffusive quasi-1D
samples, however, N,/ Nnoq falls as the effective number of transmission eigenchannels M increases.
Once Ny,oq is divided by M, however, the ratio Nies/Nioq is close to the ratio found in 1D.

1. Introduction

Two powerful perspectives have helped clarify the nature of wave propagation in open random systems. One of
them, relates to the leakage of waves through the boundaries of the system and can be described in terms of
quasi-normal modes (QNM:s), which are the extension to open structures of the notion of normal modes in
closed systems [1-9]. The eigenfrequencies of the QNM:s are complex, with imaginary parts that are the inverses
of the lifetimes of the QNMs. The second perspective is that of transmission through random systems [10—12].
For multichannel samples, transmission is most conveniently described in terms of the transmission matrix, t,
whose elements are field transmission coefficients [13—15]. The transmittance is the sum of eigenvalues of the
Hermitian matrix t'. Some of these eigenvalues are close to unity even in weakly transmitting samples

[13, 14, 16, 17]. Knowledge of the transmission matrix makes it possible to manipulate the incident wavefront to
enhance or suppress total transmission through random media [ 18-22] and to focus transmitted radiation at
selected points [23]. The control over transmitted radiation can be exploited to improve images washed out by
random scattering and to facilitate the detection and location of objects [23]. The great potential of such
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algorithms for a host of practical applications has recently attracted attention in both the physics [23] and
mathematics communities [1] and references therein.

In open regular homogeneous systems (e.g. single quantum potential wells, optical cavities, or microwave
resonators) each peak in transmission, or transmission resonance (TR), is associated with a QNM ([24] and
references therein), so that the resonant frequency is close to the real part of the corresponding eigenvalue.
However, despite extensive research and much recent progress the connection between QNMs and TRs in
disordered open systems still requires a better physical understanding and mathematical justification,

To this end, it is instructive to look for insights in one-dimensional (1D) systems. It is well-known [12, 25]
that the transmission of along enough 1D disordered system is typically exponentially small. At the same time,
there exists a set of frequencies at which the transmission coefficient has alocal maximum (peak in
transmission), and some of these are close to unity [25-27]. In 1D, each peak is associated with an eigenstate
which is a solution of the wave equation with outgoing boundary conditions (a pole of the S-matrix).

Quite surprisingly, much less are studied the properties of QNMs in 1D systems with weak disorder where
thelocalization length is smaller than the size of the sample. In this paper we show for the first time that in
completely open 1D disordered systems, two different types of QNMs can exist: ordinary QNMs, associated with
resonant transmission peaks and hidden QNMs unrelated to any maxima in the transmission spectrum. The
hidden modes exist due to random scattering and arise as soon as an arbitrarily small disorder is introduced. The
imaginary parts of the eigenfrequencies of hidden QNMs vary with increasing disorder in an unusual manner.
Typically, stronger disorder leads to stronger localization of modes with eigenfrequencies that approach the real
axis. However, the imaginary part of a hidden mode’s eigenfrequency, depending on the boundary conditions,
either is independent of strength of random scattering or even increases from the onset of disorder. Surprisingly,
the average ratio of the number of ordinary modes to the total number of QNMs in a given frequency interval is
independent of the type of disorder and remains close to the constant \/ﬁ over wide ranges of the strength of
disorder and of the total length of the system. The value \/% follows from the general statistical properties of
random trigonometric polynomials [28]. As the scattering strength and/or the length of the system increase,
hidden QNM:s eventually become ordinary.

The situation is different in multi-channel random systems in which a genuine diffusive regime exists. The
degree of spectral overlap is expressed in the Thouless number, 6, which gives the ratio of the typical width dv
and spacing Av of QNMs, § = év/Av [8,9, 12]. The typical linewidth év is essentially equal to the field
correlation frequency over which there is typically a single peak in the transmission spectrum. The density of
peaks is therefore 1/6v. On the other hand, the inverse level spacing 1/ Av is equal to the density of states
(DOSs) of the medium. Thus the ratio N5/ Nyj0q can be expected to be close to Av/év = 1/6 for diffusive
waves. The localization threshold liesat § = 1[9, 10, 12]; 6 may be much larger than 1 for diffusive waves so that
Nies/Nmoa ~ 1/6 and may be small. For localized waves, the number of channels that contribute effectively to
transmission, M, approached unity and transport becomes effectively 1D [29]. For example, the statistics of
transmittance are then in accord with the single parameter scaling hypothesis [30]. It is worth noticing that
although the statistics of the eigenstates of disordered systems is a subject of intensive investigations for already
more that two decades (see, for example [31-37]), the statistics of the TRs (peaks in transmission spectra) is
much less studied. The comparison of these two is a challenging problem for future investigations. Here we find
thata connection can be made between the present 1D calculations of N,;/ Nyjoq and measurements in
multichannel diffusive systems. This is done by comparing ratio of N, to the number of QNM:s divided by M,
MN;es/ Ninoq in multichannel systems to the ratio Nyes/ Nioq in 1D, where M= 1.

2. QNMs of open systems

We first consider a generic 1D system composed of N + 1scatterers separated by N intervals and attached to
two semi-infinite leads. The eigenfunctions v, (x, t) are solutions of the wave equation satisfying the outgoing
boundary conditions, which means that there are no right/left-propagating waves in the left/right lead. Each
eigenfunction is a superposition of two counter-propagating monochromatic waves v, (x))e~»*. The
eigenfunction in the jth layer, w%) (x),isequal to ar(fj) eFikn* and the amplitudes afj in adjacent layers are
connected by a transfer matrix. The wave numbers k,,, are complex-valued and form the discrete set

kimed — k! — ik k! > 0, so that the frequencies wm°Y = ck (M, These eigenfunctions are QNMs. Note
that all distances hereafter are measured in optical lengths.

In what follows, the scatterers and the distances between them are characterized by the reflection coefficients
1j = 1y + orjand thicknesses d; = d, + 6d;, respectively. The random values é7; and 6d; are distributed in
certain intervals, and Y~6d; = 0. Thelast condition means that the length L of the sample is equal to Nd.

To explicitly introduce a variable strength s of disorder, we replace all reflection coefficients by s, and
assume (unless otherwise specified) that the coefficients r;are homogeneously distributed in the interval
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Figure 1. Spatial distribution of the intensity I,,(x) of quasi-normal mode (thin light gray curve) and I, (x) (thick red curve) ina
regular resonator with (a) symmetric (|r,| = |rz]) and (b) asymmetric (r;| < |rg|) walls.

(—1, 1). This enables to keep track of the evolution of the QNM eigenvalues k{™°? as the disorder increases. The
condition }~6d; = 0 ensures that any random realization with the same N contains the same number of QNMs
Niod = AkL/w inagiven interval Ak of the wavenumbers.

At the beginning, let us consider the QNMs of a regular resonator of the length L = Nd, assuming that all
reflection coefficients except r; = 7 and v 1 = 7 are equal to zero. In this case the real and imaginary parts of
the QNM eigenvalues k(MY are

, 1 m + 2wm, when rprg > 0,
k= —. (D
2L 27m, when rp g < 0,
k”:filn ‘rLrR )
" 2L ’

wherem =10, 1, 2, ...

In what follows, instead of the intensity of the mth mode, I, (x) = |¢§,}L) (x) + wﬁ;’ (x) |2 , we consider the
quantity I, (x) = |1,ZJ£71+) @P + | 77//5;) (x)|*, which is I,,(x) averaged over fast oscillations caused by the
interference of the left- and right-propagating waves. Examples of these functions for resonators are shown in
figures 1(a), (b). There I, (x) is distributed along the system as I, (x) oc cosh[2k” (x — x*)], where
x*=L[1 — In(|rg/rc])/In(|rrr|)1/2. When [r;| = |rz|, the minimum of the intensity is located at the center
of the system, and in an asymmetric case shifts to the boundary with higher reflection coefficient. This property
will be used when analyzing the properties of the QNM:s of the disordered system.

In a disordered sample, the reflection coefficients r; are random and scaled by the parameter s. The evolution
of the eigenvalues k™°9 (s) as the parameter s grows shows that QNMs separate into two essentially different
types. There are ordinary QNMs whose lifetimes, defined by the value of 1/k”, increase monotonically with s.
Simultaneously, there are ‘hidden’ QNMs (the origin of this term will be explained in the next section), whose
lifetimes are substantially smaller than the lifetimes of ordinary QNMs and remain constant when s varies over
many orders of magnitude. Figures 2 and 3 show trajectories of the QNMs’ eigenvalues
kmed (s) = k’(s) — ik” (s) as the parameter s grows, and dependencies k” (s).

Our numerical calculations show that when external reflectors are added at the edges of the sample, the
imaginary parts of some of the hidden modes increase with the strength of disorder.

The spatial distributions of the intensity I (x) along the system are also different for ordinary and hidden
QNMs. The evolution of T (x) as the strength of the disorder s grows is shown in figure 4.

Initially, when s is so small that values of k" are almost equal for both types of modes, the distributions I (x)
are practically identical and evolve in the same manner: the minimum is placed near the center of the sample,
and slopes (which are k") decrease as the disorder strength s grows. These distributions are similar to the
distribution of the intensity in the regular resonator with a small imbalance between the reflection coefficients r;
and ry of the resonator walls.
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Figure 2. Motion of QNMs’ eigenvalues under disorder strength growth. Eigenvalues move from above. Some eigenvalues (examples
are marked by ‘@’, ‘b, and ‘¢’) stop their motion and ‘stand still’.
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Figure 3. Variation of k” (s). Some k” (marked by the same letters as in figure 2) are independent of s in a broad range (several order of

magnitude!) of s variation. Note that length of the system is equal or larger than localization length when s > 0.1. Red line shows the
dependence k” (s), described by equation (22).

When k” (s) of the hidden mode ‘a’ reaches its plateau (see figure 3), the minimum of its distribution shifts
from the center, as in the resonator with strong imbalance between the reflection coefficients r; and rz. The slope
of the distribution of hidden modes remains constant (k” is independent of s on the plateau), whereas the slopes
of all ordinary modes are equal and continue to decrease as the parameter s grows (see figure 4). The difference
between the distributions of ordinary and hidden QNM:s is that the ordinary modes are concentrated near both
edges of the system, while the hidden mode is nestled at one edge.

Itis important to stress that this separation of the QNMs into two types occurs when the disorder strength sis
small so that the localization length 4, is large relative to the system length L, £, > L. Thus, this phenomenon
isnot related to Anderson localization, but, as it will be shown below, manifests itself also when £, < L.

Notwithstanding thatat s — 1, the lifetimes of all hidden modes increase, these modes are much more
resistant to disorder: they become localized at far stronger disorder than ordinary states. As can be seen, for
example, in figure 3,at s ~ 0.4 — 0.5,when L ~ 15 — 204, the difference between the imaginary parts of
ordinary and some of hidden QNMs is about of one order of magnitude.
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Figure 4. Intensity distribution I (x) along the system for ordinary QNMs ‘a;’ (a) and ‘ag’ (b), and hidden QNM ‘@’ (c) for different
values of the disorder strength s. Notations for the modes are the same as in figures 2 and 3.

3. TRsin 1D systems

We now consider the transmission of an incident wave through the system. The wavenumbers at which the
transmission coefficient reaches its local maximum and the corresponding fields inside the system are TR. The
QNMs and TRs are interrelated. In what follows, we explore the relation between QNMs and TRs, in particular,
study the differences between the spectra of TRs and QNMs.

It is easy to show that in a resonator, the wave numbers k' of the TRs coincide with the real parts k., given
by equation (1), and there is a one-to-one correspondence between QNM:s and TRs so that the number of
resonances N, is equal to the number of QNMs, Nj,,o4, in a given frequency interval. The same relation also
exists in periodic systems (periodic sets r;and d;) [39].

In disordered systems, the relation between QNMs and TRs is quite different. While each TR has its partner
among the QNMs, the reverse is not true: there are hidden QNMs that are not associated with any maximum in
transmission as shown in figures 5 and 6.

Figure 7 illustrates another fundamental difference between the ordinary and hidden QNMs. The ordinary
QNMs whose real parts of the complex-valued eigenfrequency, Re w™°% lie in a given frequency interval, can be
determined from the transmittance spectrum 7T (w) of 1D disordered samples, because each peak in the
spectrum corresponds to a frequency whose value w®® practically coincides with Re w™°d, Moreover, when
disorder is strong enough, so that L > £, the distribution of the transmitted wave intensity along the sample
reconstructs very closely the shape of the intensity of ordinary QNM eigenfunctions. In contrast, a hidden QNM
is invisible (this explains the origin of the term ‘hidden’) in the transmittance spectrum and its intensity
distribution is indistinguishable from that at a non-resonant frequency.

Note that although the hidden modes are not displayed in the amplitude of the transmission coefficient, they
are manifested in the phase of the transmission coefficient. The DOSs at a frequency wis proportional to the
derivative with respect to frequency of the phase of the complex transmission coefficient [38]. Our numerical
calculations show that each hidden mode adds 7 to the total phase shift of the transmission coefficient exactly in
the same way as ordinary QNMs.

The evolution of a hidden QNM as the degree of disorder grows is analogous to the evolution of amode ina
regular resonator when one of its edges becomes less transparent. This means that a hidden mode may be
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Figure 5. Transmission spectrum T(k) ats = 0.1 (L = &,.). The black solid (dashed) vertical lines indicate the k,, values of the hidden
(ordinary) QNMs. Every maximum in the transmission spectrum can be associated with ordinary QNM (# 2, 3, 4), whereas hidden
QNMs (#1, 5, 6) are not associated with the transmission resonances.
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Figure 6. Variation of the wave numbers k) (s) (red crosses) and k’ (s) (closed blue circles) with the strength s of the disorder. QNMs
are numbered as in figure 5. It is seen that for ordinary QNMs, k9 (s) and k' (s) practically coincide, whereas there are no resonances
associated with hidden QNMs (#1, 5, 6).

transformed into an ordinary (i.e., made visible in the transmission) by increasing the reflectivity of the
corresponding edge of the sample, as illustrated in figure 8.

The sample, whose transmission spectrum is shown in figure 5, contains three hidden QNMs (# 1, 5, and 6)
in the given spectral range. Distributions of the intensity I (1) (nis the layer number) for QNMs #1 and 6 are
similar to the distributions in resonators with right reflection coefficient r; smaller than the left reflection
coefficient rp, rz/1, < 1. Theintensity distribution of QNM #5 is characterized by the opposite inequality
rr/1. > 1. When the value of the right-end reflection coefficient is increased, new resonances appear in
transmission for the initially hidden modes #1 and 6, while mode #5 remains hidden (figure 8(a)). In contrast,
increasing the left-end reflection coefficient transforms QNM #5 into a ordinary mode, whereas QNMs #1 and
6 remain hidden in the transmission spectrum (figure 8(b)).

Important to stress that the separation of QNMs into two types, ordinary and hidden, occurs already at a very
small disorder strength, s — 0, when the localization length is larger than the sample length, .. > L.

The ensemble-averaged of the ratio of the number of TRs, N;es, which is the number of ordinary modes, to
the total number of QNMs, Nj;,04, has been calculated numerically for a variety of randomly layered samples
with different types of disorder (random reflection coefficients of the layers, rj, and /or random thicknesses dj,
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Figure 7. Difference between ordinary and hidden QNMs. (a) Transmittance spectrum. (b) Distribution of the incident wave intensity
into the sample as a function of frequency and distance. There are two QNMs with nearby real parts of eigenfrequencies Re w™%,
marked by dashed lines in the panels (a) and (b). Distributions of the intensities of eigenfunctions of hidden and ordinary QNMs along
the sample are shown by thick blue lines in panels (c) and (d), correspondingly. Hatched red areas in panels (c) and (d) show intensity
distributions of the incident waves whose frequencies coincide with Re w(™°9 of hidden and ordinary QNMs, corresondingly.
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invisible in the transmission spectrum. (b) In contrast, the left-end reflection transforms mode #5 into a ordinary mode, while modes

#1 and 6 remain invisible.

with rectangular and Gaussian distribution functions) in broad ranges of the disorder strength s and of the length

of the realizations N.

Figure 9 shows the average of Nie;/Npoq over 10* random realizations as a function of the ensemble-

averaged transmission coefficient (T) (panel (a)), and as a function of ratio of N to the localization length 1y,
(measured in numbers of layers), N /1, (panel (b)) for samples with N = 50, 100, 150, and 200 layers. At this
scaling, all functions Nyes ({T))/Nimod and Nies (N /10¢ ) / Ninod for samples of different lengths merge in a single

curve.

Itis seen in figure 9 that the difference between Nis and Npoq appears when o >> N, and the ratio

Nies/ Nmod varies weakly even when 71, << N. Moreover, independently of the sample parameters, the average
ratio Nies/ Niod tends to the constant /2/5 when ny,. — o00. Thus, the existence of hidden modes and the
universality of their relative number is a general feature of 1D disordered systems not specifically related to

localization.




I0OP Publishing NewJ. Phys. 17 (2015) 113009 Y P Bliokh et al

1.0 5
N=50,100,150,200 (a)
0.8 1
T 0.6 —— e
2 V275
Z
§ 0.4 1
=
0.2 1
0.0 — -——
0.01 0.1 1
()
1.0
N=50,100,150,200
(b)
0.8 1 /
B 06 e
5 V275
B 047
=
0.2 1
0'0 T T T AL T
1E-4 1E-3 0.01 0.1 1 10
N/hloc
Figure 9. Ratio N;s/Niod as a function of the ensemble-averaged transmission coefficient (T) (panel(a)), and as a function of ratio of
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N2/5.

4. Measurements of transmission eigenchannels and TRs in multichannel systems

Itis of interest to explore the ratio of the numbers of local maxima in transmission and QNMs in random
multichannel systems and to compare to results for 1D systems. We consider quasi-one dimensional (quasi-1D)
samples with reflecting sides and transverse dimensions W much smaller than the sample length L and
localization length Ao = Nepan &> W < Hoe> L. Here, Nepap is the number of channels or freely propagating
transverse modes in the perfectly conducting leads or empty waveguide leading to the sample and £ is the
transport mean free path. The incident channels are thoroughly mixed by scattering within the sample. In
contrast to transmission in 1D samples with a single transmission channel, transmission through quasi-1D
samples is described by the field transmission matrix ¢ with elements t;, between all N, incident and outgoing
channels, a and b, respectively. From the transmission matrix, we may distinguish three types of transmission

N,

variables in quasi-1D samples: the intensity T, = |t;,|*, the total transmission, T, = Zh:‘l T, and

transmittance, T = Zi\r}‘;: [0a* . The transmittance is analogous to the electronic conductance in units of the
quantum of conductance e?/h [11, 15,40]. The ensemble average value of the transmittance T'is equal to the
dimensionless conductance, g = (T}, which characterizes the crossover from diffusive to localized waves. In
diffusive samples, the dimensionless conductance is equal to the Thouless number, ¢ = ¢ and the localization
threshold is reached when ¢ = 6 = 1[10, 12].

Significant differences between results in 1D and quasi- 1D geometries can be expected since propagation
can be diffusive in quasi- 1D samples with length greater than the mean free path but smaller than the
localization length, # < L < #,c = Nehan?> whereas a diffusive regime does not exist in 1D since £, = ¢ [41].
For diffusive waves, QNM:s overlap spectrally and may coalesce into a single peak in the transmittance spectrum.
Thus we might expect that the QNMs within a typical linewidth form a single peak in transmission so that the
ratio Nyes/ Nimod 1 the ratio of the mode spacing to the mode linewidth. The mode linewidth is related to the
correlation frequency in the transmission spectra, but the mode spacing cannot be readily ascertained once
modes overlap.

. Nopan
The transmittance can also be expressed as T = Zn o

=1
product #t' [15]. The transmission matrix provides a basis for comparison between results for 1D and quasi-1D,
which is often more direct than a comparison based on QNMs, since the statistics of the contribution of different

modes to transmission is not well-established, whereas the contribution of different channels is simply the sum

T,» where the 7, are the eigenvalues of the matrix

8
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of the transmission eigenvalues. In addition, transmission eigenchannels are orthogonal, whereas the waveform
in transmission for spectrally adjacent modes are strongly correlated [8] so that the transmission involves
interference between modes.

The transmission eigenvalue may be obtained from the singular value decomposition of the transmission
matrix, t = UAVT[42]. Here, Uand Vare unitary matrices and A is a diagonal matrix with elements /7, . The
incident fields of the eigenchannels on the incident surface, v,,, which are the columns of V, in the singular-value
decomposition are orthogonal, as are the corresponding outgoing eigenchannels, u,,. Only a fraction of the Nya,
eigenchannels contribute appreciably to the transmission [14]. In diffusive samples, the transmission is
dominated by g channels with 7, > 1/¢ [16, 43], while a single eigenchannel dominates transmission for
localized samples. The st}e\lltistics of transmission depend directly on the participation number of transmission

eigenhannels, M = (Zni‘*‘l"Tn )? / Z:I:’“l“ 72[29]. Mis equal to 3g/2 [29] for diffusive waves and approaches

unity in the localized limit [29, 30].

4.1. Numerical simulations
To explore the ratio Nyes/Nioq Over a broad range of ¢ = (T') for multichannel disordered waveguides in the
crossover from diffusive to localized waves, we carry out numerical simulations for a scalar wave propagating
through a two-dimensional disordered waveguide with reflecting sides and semi-infinite leads. For diffusive
samples in which there is considerable mode overlap since § = év/Av > 1[12], (6v and Av are the linewidth
and the distance between spectral lines) the DOS, and from this the number of QNMs within the spectrum, can
be obtained from the sum of the derivatives of the composite phase of the transmission eigenchannel [44]. The
derivative of the composite phase of the nth eigenchannel is equal to the dwell time of the photon within the
sample in the eigenchannel. The total number of modes N4 in a given frequency interval is then the integral
over this interval of the DOS. This has allowed us to determine the ratio Nye;/Nmoq in the crossover to
localization.

Simulations are carried out by discretizing the wave equation

V2E(x, y) + kie(x, y)E(x, y) = 0 3)

on asquare grid and solved via the recursive Green function method [45]. Here, k, is the wave vector in the leads.
Also, € (x, y) = 1 £ d¢ (x, y) is the spatially varying dielectric function in the disordered region with é¢ (x, y)
chosen from a rectangular distribution and € = 1in the empty leads. Reflections at the sample boundaries are
minimal because the sample is index matched to its surroundings. The product of ky at 14.7 GHz and the grid
spacing is set to unity. In the frequency range studied, the leads attached to the random waveguide support
Nchan = 16 channels which are the propagating waveguide modes. In our scalar quasi-1D simulations for a
sample with a width W, the number of channels at frequencies above the cutoff frequency is the integer part of
2W / \. These channels should not be confused with the QNM:s of the random medium which correspond to
resonances of the medium with Lorentzian lines centered at distinct frequencies. In the simulations, the length
of the sample L is equal to 500 in units of the grid spacing except for one deeply localized sample with ¢ = 0.12,
for which L = 800 and the width of the sample Wis 167. Typical spectra of intensity, total transmission and
transmittance are shown in figure 10 for a diffusive sample with g = 2.1 and for alocalized sample with g=0.3.

We find that the numbers of peaks in the spectra of intensity, total transmission and transmittance in a single
sample are nearly the same for each of the samples shown in figure 10. This is seen to be the case over a wide
range of (T) in figure 11.

The DOS and so the number of QNM:s within the spectrum in the samples of the same size are not affected by
the strength of disorder so that the decreasing ratio Nies/Nioq With increasing (T') reflects only the decreasing
number of peaks in the transmission spectra due to the broadening of the modes and the consequent increase in
their spectral overlap. Since there are typically § QNMs within the mode linewidth for diffusive waves, we might
expect the ratio Nies/ Nioq to fall inversely with M, Nies/Niod ~ 1/6 ~ 1/g ~ 3/2M. For deeplylocalized
waves, however, this ratio is expected to approach unity as M approaches unity. This suggests that
Nies/Nimoa ~ 1/M.in thislimit. A plot of 1 /M in figure 11 shows that towards the diffusive and localized limits
1/M is close to the ratio Nyes/Nipod- For diffusive waves, the intensity correlation frequency does not change as
the width of the sample changes for fixed length and scattering strength since it is tied to the time of the flight
distribution, which is independent of W [46]. Since N is essentially the width of the spectrum divided by the
correlation frequency of the intensity, the number of peaks within the intensity spectrum does not change.
However, gand the DOS are proportional to N.ap, so that M increases with sample width and N5/ Nipoq 1S
inversely proportional to M. In addition, the propagation in a multichannel disordered sample is essentially 1D,
when M is approaching unity [30].

These results suggest that a comparison can be made between propagation in both 1D and multichannel
systems via the ratio of the number of peaks in the transmission spectra to the number of modes normalized by
M, Nies/ (Nimod/M). This ratio may be expected to be close to unity for L > £,.. We consider the variation with
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Figure 10. Spectra of intensity, total transmission and transmittance for alocalized sample drawn from a random ensemble with
g = 0.3 (a)—~(c) and a diffusive sample taken from an ensemble with g = 2.1 (d)—(f). Sharper spectral features are observed and spatial
averaging is seen to be less effective in smoothing the spectra for localized waves than for diffusive waves.

1.0
1 Simulation Measurement
0.8 *— T, x T,
——T x T
J a a
——T X T

Nres / Nmod

g=<T>

Figure 11. Variation of the Nyes/Npod for transmission, total transmission and transmittance versus ¢ = (T') for multichannel
random samples in simulations. The ratios obtained from microwave measurements of spectra of the three transmission variables in a
multichannel localized sample with g = 0.37 are shown as the cross symbols and are in good agreement with the simulations with a
similar value of g. The value of 1/M found in the simulations is shown as overturned triangles.

g = (T) of theratio MN,es/ Ninoq in quasi-1D and compare this with the corresponding ratio in 1D in which
M = 1. The values of this ratio in quasi-1D and 1D are close, as seen in figure 12.

4.2. Microwave experiment

For quasi-1D samples in the crossover to localization in which spectral overlap is moderate, it is possible to
analyze the measured field spectra to obtain the central frequencies of the QNMs and to compare these to peaks
in transmission. Spectral measurements of the transmittance T'were made in a copper waveguide of diameter
7.3 cm and of length 40 cm containing randomly positioned alumina spheres with index 3.14, over a random
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Figure 12. Number of peaks in the transmission spectra per effective transmission eigenchannel, Nyes/(Npoda/M), is plotted as a
function of T = g/M. The quantity g/M is the effective transmission coefficient per effective transmission eigenvalue of the quasi-1D
system. Such normalization of the conductance gin quasi-1D samples makes possible a comparison with 1D systems. The red line
corresponds to a 1D system; the experimental data is shown by the asterisk; the blue dots show the results of numerical simulations;
and dashed line is drawn at the level \/% . Beyond the diffusive regime the ratio plotted rises towards unity for ballistic propagation.
For ballistic waves, each of the Npannel transmission eigenvalue is unity so that the transmittance is Nhannel and all eigenchannels
contribute equally to the transmittance so that M = Nipannel, yielding g/M = 1.

ensemble for which g = 0.37. The empty waveguide supports Nepan ~ 30 propagation channels in the frequency
range of the experiment: 10.0-10.24 GHz. The transmission matrix is determined from measurements of the
field transmission coefficient between points on grids of 49 locations for the source antenna and detection
antennas on the input and output surfaces of the waveguide for a single polarization with a grid spacing of 9 mm.
Such measurements of the transmission matrix in real space for a single polarization are incomplete. The
distribution of transmission eigenvalues determined from these measurements may differ from theoretical
calculations [42, 47]. We find, however, that the impact of incompleteness upon the statistics of transmittance
and transmission eigenvalues is small as long as the number of measured channels is much greater than M, as is
the case in these measurements of transmission in localized samples [30]. Here M = 1.23 and therefore the
statistics of transmission are not affected by the incompleteness of the measurement [30]. The influence of
absorption in these samples is statistically removed by compensating for the enhanced decay of the field due to
absorption [48]. Different random sample configurations are obtained by briefly rotating and vibrating the
sample tube. The probability distribution of the transmittance is in good agreement with the distribution
calculated for this value of g [30,49-51].

We find the central frequencies and linewidths of the QNMs within the frequency range of the
measurements by carrying out a modal decomposition of the transmitted field. A given polarization component
of the field can be expressed as a sum of the contributions from each of the QNMs:

L/ 2 @)

5 = 2)m m .
E@ w) arn (£) Fm/Z + i(w — wy)

Here a,, (r) are complex-valued amplitudes of QNMs.

The central frequencies w,, and linewidths I}, of the modes are found by simultaneously fitting 45 field
spectra. The transmittance as well as the Lorentzian lines for each QNM normalized to unity and the DOS, which
is the sum of such Lorentzian lines over all QNMs are shown in figure 13 for a single random configuration. The
DOS curves for different modes are plotted in different colors so that they can be distinguished more clearly. The
DOS is also determined from the sum of the spectral derivatives of the composite phase of each transmission
eigenchannel and plotted in figure 13. The DOS determined from analyses of the QNMs and of the transmission
eigenchannels are seen to be in agreement. The dashed vertical lines in figure 13 are drawn from the peaks in the
transmittance spectrain (a) to the frequency axis in (b). As found in 1D simulations, each peak in T'is close to the
frequency of a QNM, but many QNM:s do not correspond to a distinct peak in the transmittance. Frequently,
more than one QNM falls within a single peakin T.

The ratio of the number of peaks in spectra of transmittance to the number of QNMs averaged over a
random ensemble of 40 configurations is 0.61, with a standard deviation of 0.057. This is indicated by the cross
in figure 11 and is consistent with values of the ratio found in computer simulations. The value of this ratio is
slightly smaller than the value of 0.65 found in simulations for 1D samples with (T') = 0.37, as seen in figure 9.
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Figure 13. (a) Spectrum of transmittance T and the individual modes. The integration of each Lorentzian curve in the lower panel over
the frequency yields the density of state of unity. There are 22 local maxima in the spectrum of T'and the number of modes are 39.

(b) Spectrum of the DOS of the sample. The sum of all the Lorentzian curves above gives the density of states of the sample, which is
seen to be in good agreement with the DOS (panel (b)) obtained via the summation of the composite phase derivatives of each
transmission eigenchannel.

This may be attributed to the value M = 1.23 being larger than the value of unity in 1D. This reflects the tendency
of the ratio to decrease with increasing M as found for diffusive waves.

Equation (4) offers an explanation for the fact that the number of TRs can be smaller than that of all QNMs.
If, for example, the transmitted field is a sum of two modes, from equation (4) it follows that the number of peaks
in the transmission spectrum is either one or two, depending on the widths of the modes.

4.3. Spatial intensity distribution of QNMs within quasi-1D disordered samples

In order to fully characterize the QNMs and their relationship to peaks in transmittance in quasi-1D samples, it
would be desirable to examine the longitudinal profile of QNMs within the media. Because we do not have

access to the interior of the multichannel sample, however, we explore the spatial profile of QNM:s using
numerical simulations based on the recursive Greens function technique. The Greens function between points
on the incident plane ryand within the sample r’ can be expressed in a manner similar to equation (4) as a sum of
contribution from each of the modes, We find in the simulations that the spatial distribution of the mth mode
obtained by decomposing the field into QNM:s depends weakly upon the excitation point ry. We therefore
average the spatial profile for each QNM over the profiles obtained for all excitation points on the input of the
sample.

We consider propagation in a sample drawn from an ensemble with a value of gwhich is below unity but still
not too small. In this case, QNMs still overlap but it is yet possible to analyze the field into QNMs. We present in
figure 14 that a spectrum of transmittance in a sample configuration chosen from an ensemble with ¢=0.26 and
(M) = 1.16, together with profiles of a ordinary and a hidden mode within the spectrum. The nature of
propagation in the sample might not differ appreciably from propagation in 1D samples, for which M = 1. We
find that the intensity distributions integrated over the transverse direction of the hidden mode in the
transmission spectrum of the quasi-1D samples falls monotonically within the sample, while the ordinary mode
associated with peaks in transmission is peaked in the middle of the sample.

5. Analytical calculations of N,.;/Ni,04

To calculate the average number of TRsin the limit s < 1, we use the single-scattering approximation and write
the total reflection coefficient (k) of a 1D system as:
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Figure 14. Transmittance spectrum and intensity distribution of QNMs in Q1D disordered samples. (a) Spectrum of transmittance T
for alocalized sample drawn from an ensemble with ¢ = 0.26. The green circles indicate the central frequencies of the QNM:s found
from a modal decomposition of the field. Longitudinal intensity distributions of two modes with central frequencies indicated by the
arrows in (a) are shown in (b) and (c) on a semi-log scale. The average intensity shown is integrated over the transverse dimension of
the sample. The spatial profile of the mode with a peak in transmittance is seen to have a peak in the average intensity in the interior of
the sample, while the intensity falls into the sample for a hidden mode. This resembles the behavior of hidden modes found in 1D
samples shown in figure 7.

N
rky= X exp(Zikx,,), (5)
n=1

where x,, is the coordinate of the nth scatterer. The values k., at which the transmission coefficients,
T (k) = 1 — |r(k)|>, hasalocal extrema, are defined as the zeros of the function
fk) =d|rk)/dk = 2 Re [r (k)dr* (k)/dk]:
N N
f (kmax) —4Im X X 1,100k (amxm) — g, 6)

n=1m=1
Assuming first that 6d; = 0, we obtain

N N
flyox X 2 t1,(m — n)sin [Zk(m — n)do]
n=1m=1
N N-I
=% sin(zkldo){ Y it

1=1 n=1
N N

+ rnlrnl} = ¥ sin (2kld0)a1. 7)
n=I =1

Equation (7) is the trigonometric sum X\ ;4 sin (v;k) with ‘frequencies’ v, = 2Id, and random coefficients a;.
The statistics of the zeroes of random polynomials have been studied in [28], where it is shown that the
statistically averaged number of real roots N, 0f such sum at a certain interval Ak is

Ak |Svio}
Neoot = — > 8
= (®)

where o7 = Var(a;) is the variance of the coefficients a; = Z,I,\];ll fusityl + 221,11 When the reflection
coefficients are uncorrelated, then

Var(al) = 2(N — l)lz(og + 27205), )

where 0 = Var(r) and 7 is the mean value of r;. The sums in equation (8) can be calculated using equation (9),
which yields [52]:
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N ot = 2(03 + 2?206)E,A;112(N -~ é(aé + 2?20(2,)N4,
SN wiof =8di sl (of + 2708 )N (N — Iy = %dozNﬁ(aé + 27%03). (10)

From equations (8) and (10) we obtain

N = 20080 [T _ 000 [T w
T 5 ™ 5

where L = Nd,. Since the number of minima of the reflection coefficient is equal to the number of TRs,
Nies = Nioot/2, and the number N,,,q of QNMs in the same interval Ak is Nypoq = AkL/7, from equation (11)
it follows that

l\]res/Nmod = V2/5 . (12)

Although this relation was derived for systems with random reflection coefficients and constant distances
between the scatterers, it also holds for samples in which these distances are random (6d; = 0). In this case, the
frequencies v = 2Id; in equation (7) should be replaced by v = 2 |x,, — x,,,4;]. Since the main contribution to
the sums in equation (8) is given by the terms with large I ~ N, the mean value of |x,, — x,,,;| can be replaced
by Idy, in the case of a homogeneous distribution of the distances d,, along the system. This ultimately leads to the
same result equation (12).

6. Hidden modes: simple model

In section IT, QNMs were introduced as solutions of the wave equation satisfying the outgoing boundary
conditions. Their eigenvalues of QNMs, k9 = k’ — ik”, can be calculated as roots of the equation My, = 0,
where M is the transfer matrix, which connects waves’ amplitudes at the left and right sides of the whole system.
The transfer matrix of the system which consists of N + 1 scatterers separated by N intervals has the form:

M = Ty SyInSn 1S TS T, (13)
Here
ikd;
& _ |le™i 0
i— 0 e—ikdi > (14)

and T; is the transfer matrix through the ith scatterer. Assuming that reflection and transmission coefficients are
real, T; can be presented as

(1 - o), (15)

ti

—n/ti 1/t

where [ is the unit matrix, and &, is the Pauli matrix.

fiHI/ti — 1/t

s . N IS .
Omitting denominator Hi:l t;, matrix M can be written as ordered product
M = H (f — sn&2)§i, (16)

where substitution 7; — st is used. Equation (16) allows presenting transfer matrix as a power seriesin s < 1:
N+1

N
M=T] S+ X s (17)
n=1 n=1

where matrix A, contain various ordered products of matrices S; and »n Pauli matrices. Matrices S; are diagonal,
whereas Pauli matrix is anti-diagonal, so only even combinations of Pauli matrices contribute to M,,. Thus

)
My =e ™+ 37 s™ay, (18)
m=1

where L is the sample length, and the coefficients a,,, contain various combinations of products of 2m reflection
coefficients r; with exponential multipliers exp(—ikL + 2ikd;;), where d; ; are the distances between any
ordered pairs of scatterers.

Neglecting terms with higher than s* powers in equation (18), the dispersion equation, which defines
eigenvalues k, can be presented as follows:

$23 ey = —1, (19
ij
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Figure 15. (a) Coefficients c; are formed by various pairs of scatterers; (b) coefficient & contains all possible pairs of scatterers, linked
schematically by red line #1, coefficient & is formed by the scatterers from blue and green regions, connected by red lines #2.

where the coefficients ¢;; = 77 e2ikd
figure 15(a). The greater is the distance d; ; between the scatterers, the larger are exponents e
equation (19).

The largest exponents are associated with the pairs of scatterers placed near the opposite ends of the sample.
When k”dy < 1, there are many such pairs, located in blue regions in figure 15(b), whose associated exponents
are of the same order of magnitude, e**"L. Let us combine all such pairs in equation (19) in one term & and
characterize them by one common exponent e2*"", The number of scatterers near the sample ends, which form
this group, can be estimated as ng =~ (k"dy)~! > 1, so that the lengths of blue regions in figure 15(b) are
~Neff do < L.

The next group, &, which is associated with the exponent of the order of e2k” (L=, consists of pairs of
scatterers, one from green and another from blue regions in figure 15(b). In such a way, equation (19) can be
approximately presented as

ii are formed by various pairs of the scatterers, as it is schematically shown in

Zk”d,'y]‘ in

52(51€2k”L + Ezezkn(kneado) + ) = 1. (20)

Strictly speaking, the phenomenologically introduced number #. varies from group to group, but when
k"dy < 1,n.g islarge enough and it is possible to neglect its variation.

The coefficients ¢, in equation (20) are the sums of #.¢ random vectors in complex plane. For any given
sample the lengths of these vectors are fixed, whereas the phases varies from mode to mode, so that the
magnitudes of the coefficients ¢,, been averaged over many modes, can be estimates as

< > ~ <r2> 2neff ~ <r2> Teff - 1)

Using equations (20) and (21), one can calculate value of k”, averaged over many modes. When s? < 1,
(k" (s))is large and the second term in the parentheses in equation (20) is small as compared with the first one
(e 2"mexdo < 1) and can be omitted. Then, the average solution (k” (s) ) of equation (20) is

Cn

<k”(s)> Niln_;:i(ln;—llnneff)NLInL_. (22)
2L s [ 2L s2r2 2 2L %2

The dependence (k” (s)) described by equation (22) agrees well with the result of numerical simulations,

presented in figure 3 by red line.

Expression (22) describes averaged over many modes dependence k” (s), but for any given mode this
dependence can be different. Indeed, since n.s < N (for example, nee ~ 10 for s = 1078 in the numerical
simulation presented in figures 2 and 3)) fluctuation of the values of | ¢, | for different eigenmodes can be
rather large. In particular, |G | for a certain mode can be much smaller, than | |. Presenting equation (20) in the
form

z —2k"L
14 ZetWmads — S (23)
51 5152
itis easy to see that equation (23) has solution
1 -
K ~ In|2|, (24)
21’!eﬁf d() E]
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). (25)

Solution equation (24) is independent of s and represents the hidden QNM (see figure 3).

Recall that ¢, are formed by different groups of the reflection coefficients. In general, the similar,
independent of s, solutions of the dispersion equation appear when magnitudes some first coefficients ¢, in
equation (20) are small as compared with magnitudes of the next coefficients.

In order to demonstrate that independent on s solutions of the dispersion equation indeed correspond to the
hidden modes, let us consider the system composed of three scatterers only. The dispersion equation (20) for this
system is

when s> exceeds some critical value 52,
e}

G

In

2 2 =1
55> Sarit = |G expl| —

tege do

Sz[nrsezik(dﬁdz) ¥ ryryelikd 4 nrzezikdl] - 1 (26)

When all r; are of the same order of magnitude, r; ~ r, and sis so small [k” (s) is so large] that
exp[k” (s)d;,] > 1,thesolution k” of equation (26) is

VPN S N @7)

2(dy+ ) s
],there

(28)

Equations (26) and (27) are particular cases of the general formulas (20) and (22).

2

. . r
If, for example, |r | is small as compared with |r, 5|, but s? > 55y, = ||} exp[— 2

d1+d21
— In
d

1

n
is another solution of equation (26):

k" = 1 In
2d,

n

n

This solution is independent on s, similarly to the solution equation (24).

Result of numerical solution of equation (26) is shown in figure 16. Figure 17 demonstrates relation between
real part of the QNMs’ eigenvalues k' (s) and position of the peak k9 (s) in the transmission spectrum. Note
that hidden modes are invisible in the transmission spectrum even when s < s.j.

7. Superradiance and resonance trapping in 1D random systems

The model introduced in the previous section can be used to study the segregation of superradiant states and
trapped modes in regular quantum-mechanical and wave structures and to illuminate the analogy between this
phenomenon and existence of two types of QNMs (hidden and ordinary) in disordered systems considered
above. Behavior of modes in regular open structures as the coupling to an environment is altered, has been
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Figure 17. k' (s) (black dots) and k. (s) (red dots). When s < s, the value of k” is the same for hidden and ordinary modes.
Nevertheless, hidden modes are invisible in the transmission spectrum.

intensively studied in condensed matter physics, optics, and nuclear, atomic, and microwave physics. Common
to all these studies is the appearance of two time scales when the coupling to the environment via open decay
channels increases and QNMs begin to overlap [53—58]; for a review, see [59] and references therein. When the
coupling to the environment is weak, the lifetimes of all states tend to decrease as the coupling increases. As the
coupling reaches a critical value, a restructuring of the spectrum of QNM:s occurs leading to segregation of the
imaginary parts of the complex eigenvalues and of the decay widths. The states separate into short-lived
(superradiant) and long-lived (trapped) states. This phenomenon is general and, by analogy to quantum optics
[60] and atomic physics [61-63], is known as the superradiance transition. In more complicated structures, such
of those consisting of two coupled oscillating subsystems, one with alow and the other with a much higher
DOSs, the superradiance transition is closely related to the existence of doorway states [56, 57] that strongly
couple to short-lived QNM:s with external decay channels.

Itis important to stress that along with the pronounced similarities between the resonance trapping in
many-particle quantum systems, open microwave cavities, etc, and between the ‘hidding’ of some of quasi-
normal modes in disordered samples there are substantial differences as well. In particular, resonance trapping
happens in regular systems considered in [55, 59] when the coupling of the large number of QNMs to a much
smaller number of common decay channels increases. Without disorder, the samples that we consider are
perfectly coupled to the environment (total transmission at all frequencies). Finite coupling appears due to
disorder, as the result of the interference of multiply-scattered random fields, and the role of the coupling
parameter is played by the strength of the scattering inside the system.

To reproduce the superradince phenomena in disordered structures we modify the model slightly by placing
the random sample between two reflectors with reflection coefficients r; and g, located at distances ¢y and 6y
from the edge scatterers. For simplicity, we assume that oy = 6 = 6. These reflectors can be included in the
dispersion equation equation (20) as additional scatterers as follows:

_ 1. (mod) e - - o
52(5 ZT’LT‘RGZIk (L+26) T ICOeZk”(LJr(S) n CleZk”L + Czezkn(L nefrdo) + ) = 1. (29)

Here &, o< rp g contains the products r; g 7; with corresponding exponential multipliers, the largest of which,
exp [2k" (L + )], is separated in the explicit form.
To approach the conditions at which superradiance and resonance trapping occur, we consider below (in
contrast to the previous sections) the evolution of the eigenvalues of a given sample with fixed swhen rp ;| — 0.
When the product |7, 7z | is large, the first term in the parentheses dominates and the solution of
equation (29) is
1

TLTR

[/ — 1

S .
2L+ 26) (30)

If 6 = 0, the magnitudes of the exponents in the first three terms are equal. When |r; 73| — 0, the magnitudes of
the additional two terms decrease and the solutions of equation (29) tend to their solutions in the original sample
(without end reflectors), as shown in figure 18.
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Figure 18. Two reflectors are placed at the sample ends, 1, = g = 7end. Modes marked by letters correspond to the same modes in
figures 2, 3. (a) Trajectories of eigenvalues as the coupling grows. (b) k” (renq ). The life time of the hidden QNMs decreases much faster
than the life time of the ordinary ones.

When 6 = 0, the trajectories of the eigenvalues in the complex plane are more complicate. Although most of
the eigenvalues finally reach the same positions as in the original sample, there are eigenvalues, for which
k" — ooasr p — 0(seefigure 19). Indeed, the first two terms in equation (29) always dominate when § = 0
and k" — oo. In this case equation (29) can be written as

1y rpedik@L+28) 4 S(rLTN+1 + rR,.l)eZik(L+6) ~ 0, (31)

where the largest term in &, which corresponds to the largest distance L + ¢ between the end reflectors and the
sample scatterers, is explicitly presented. Solution of equation (31)
1

k"= —1Ins
26

N+1 1

+

R s

(32)

tends to infinity, when even one of the reflection coefficients r;, p — 0.

The reason why these solutions ‘run away’ when the coupling to the environment is maximal, is very simple.
The original system without end reflectors has AkL /7 eigenmodes in the given interval Ak, whereas the same
system surrounded by the reflectors has Ak (L + 26)/7 eigenmodes in the same interval. Thus, some of modes
should leave this interval Ak when the system returns to its original state.

The superradiant transition in periodic and disordered quantum system, which consist of a sets of potential
wells, was studied in [53] using effective Hamiltonian approach. It was shown that the transition occurs when the
coefficient v, which characterizes the coupling with an environment, reaches the value of the coupling €2
between the wells, v ~ €. In the considered above system v ~ 1 — |rz;[*and 2 >~ 1 — s2(r?), so that the
superradiant transition occurs when |rg 1 | =~ sm . This condition agrees well with presented in figure 19(b)
results.
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Figure 19. The same as figure 19, but reflectors are placed at a some distance from the sample ends. There is one eigenvalue whose k”
grows unlimitedly.

Hidden modes can be associated with superradiant states, while normal modes are trapped resonances.
Thus, \/% =~ 0.63 correspond to the fraction of the modes which are trapped. This result agrees with [55],
where this value was estimated as >0.58,and 1 — m =~ (.37 is the fraction of the modes which are
superradiant. Note, that the original disordered sample is already coupled to the environment, so that the
coupling strength is limited by the intrinsic properties of the sample and cannot exceed this value, even when the
end reflectors are fully transparent.

8. Conclusions

In conclusion, we have studied the relationship between spectra of QNMs and TRs in open 1D and quasi-1D
systems. We start from homogeneous samples, in which each TR is associated with a QNM, and vice versa. As
soon as an arbitrarily weak disorder is introduced, this correspondence breaks down: a fraction of the eigenstates
becomes hidden, in the sense that the corresponding resonances in transmission disappear. The evolution of the
imaginary parts of the eigenfrequencies of the hidden QNMs with changing disorder is also rather unusual.
Whereas increasing disorder leads to stronger localization of ordinary modes so that their eigenfrequencies
approach the real axis, the imaginary parts of the eigenfrequency of hidden modes changes very slowly (and may
even increase when external reflectors are added to the edges) with increasing disorder, and begin to go down
only when the disorder becomes strong enough. For weak disorder, the averaged ratio of the number of
transmission peaks to the total number of QNM:s in a given frequency interval is independent of the type of
disorder and deviates only slightly from a constant, /2,/5, as the strength of disorder and/or the length of the
random sample increase over a wide range. This constant coincides with the value of the ratio Nyes/Npod
analytically calculated in the weak single-scattering approximation. As the strength s of disorder keeps growing,
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ultimately all hidden QNMs become ordinary. This means that in 1D random systems there exists a pre-
localized regime, in which only a fraction of the QNMs are long-lived and provide resonant transmission. If the
coupling to the environment is tuned by an external edge reflectors, the superradiace transition can be
reproduced. In quasi-1D samples, a genuine diffusive regime exists in which some QNMs coalesce to form a
single peak in transmission with width comparable to the typical modal linewidth. In such samples, hidden
modes have been discovered experimentally and their proportion of all QNMs in the crossover from diffusion to
localization was fairly close to the same constant. The number of peaks in spectra of transmission, as well as in
total transmission and in transmittance are nearly the same and fall well below the number of QNMs. Though
theratio Ni;/Nppoq may be small, we find in microwave experiments and numerical simulations that once the
number of QNMs is divided by the effective number of channels contributing to transmission to give MN,, /N,,,,
this function is similar to results in 1D samples.
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