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Abstract
Weexplore numerically, analytically, and experimentally the relationship between quasi-normal
modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrumof one-
dimensional (1D) and quasi-1D open disordered systems. It is shown that forweak disorder there exist
two types of the eigenstates: ordinaryQNMswhich are associatedwith a TR, and hiddenQNMswhich
do not exhibit peaks in transmission orwithin the sample. The distinctive feature of the hiddenmodes
is that unlike ordinary ones, their lifetimes remain constant in awide range of the strength of disorder.
In this range, the averaged ratio of the number of transmission peaks Nres to the number ofQNMs

N ,mod N N ,res mod is insensitive to the type and degree of disorder and is close to the value 2 5 ,which
we derive analytically in theweak-scattering approximation. The physical nature of the hiddenmodes
is illustrated in simple examples with a few scatterers. The analogy between ordinary and hidden
QNMs and the segregation of superradiant states and trappedmodes is discussed.When the coupling
to the environment is tuned by an external edge reflectors, the superradiance transition is reproduced.
Hiddenmodes have been also found inmicrowavemeasurements in quasi-1Dopen disordered
samples. Themicrowavemeasurements andmodal analysis of transmission in the crossover to

localization in quasi-1D systems give a ratio of N Nres mod close to 2 5 . In diffusive quasi-1D
samples, however, N Nres mod falls as the effective number of transmission eigenchannelsM increases.
Once Nmod is divided byM, however, the ratio N Nres mod is close to the ratio found in 1D.

1. Introduction

Twopowerful perspectives have helped clarify the nature of wave propagation in open random systems.One of
them, relates to the leakage of waves through the boundaries of the system and can be described in terms of
quasi-normalmodes (QNMs), which are the extension to open structures of the notion of normalmodes in
closed systems [1–9]. The eigenfrequencies of theQNMs are complex, with imaginary parts that are the inverses
of the lifetimes of theQNMs. The second perspective is that of transmission through random systems [10–12].
Formultichannel samples, transmission ismost conveniently described in terms of the transmissionmatrix, t,
whose elements are field transmission coefficients [13–15]. The transmittance is the sumof eigenvalues of the
Hermitianmatrix tt .† Some of these eigenvalues are close to unity even inweakly transmitting samples
[13, 14, 16, 17]. Knowledge of the transmissionmatrixmakes it possible tomanipulate the incident wavefront to
enhance or suppress total transmission through randommedia [18–22] and to focus transmitted radiation at
selected points [23]. The control over transmitted radiation can be exploited to improve images washed out by
random scattering and to facilitate the detection and location of objects [23]. The great potential of such
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algorithms for a host of practical applications has recently attracted attention in both the physics [23] and
mathematics communities [1] and references therein.

In open regular homogeneous systems (e.g. single quantumpotential wells, optical cavities, ormicrowave
resonators) each peak in transmission, or transmission resonance (TR), is associatedwith aQNM ([24] and
references therein), so that the resonant frequency is close to the real part of the corresponding eigenvalue.
However, despite extensive research andmuch recent progress the connection betweenQNMs andTRs in
disordered open systems still requires a better physical understanding andmathematical justification,

To this end, it is instructive to look for insights in one-dimensional (1D) systems. It is well-known [12, 25]
that the transmission of a long enough 1Ddisordered system is typically exponentially small. At the same time,
there exists a set of frequencies at which the transmission coefficient has a localmaximum (peak in
transmission), and some of these are close to unity [25–27]. In 1D, each peak is associatedwith an eigenstate
which is a solution of thewave equationwith outgoing boundary conditions (a pole of the S-matrix).

Quite surprisingly,much less are studied the properties ofQNMs in 1D systemswithweak disorder where
the localization length is smaller than the size of the sample. In this paperwe show for the first time that in
completely open 1Ddisordered systems, two different types ofQNMs can exist: ordinaryQNMs, associatedwith
resonant transmission peaks and hiddenQNMsunrelated to anymaxima in the transmission spectrum. The
hiddenmodes exist due to random scattering and arise as soon as an arbitrarily small disorder is introduced. The
imaginary parts of the eigenfrequencies of hiddenQNMs varywith increasing disorder in an unusualmanner.
Typically, stronger disorder leads to stronger localization ofmodes with eigenfrequencies that approach the real
axis. However, the imaginary part of a hiddenmode’s eigenfrequency, depending on the boundary conditions,
either is independent of strength of random scattering or even increases from the onset of disorder. Surprisingly,
the average ratio of the number of ordinarymodes to the total number ofQNMs in a given frequency interval is
independent of the type of disorder and remains close to the constant 2 5 over wide ranges of the strength of

disorder and of the total length of the system. The value 2 5 follows from the general statistical properties of
random trigonometric polynomials [28]. As the scattering strength and/or the length of the system increase,
hiddenQNMs eventually become ordinary.

The situation is different inmulti-channel random systems inwhich a genuine diffusive regime exists. The
degree of spectral overlap is expressed in the Thouless number, δ, which gives the ratio of the typical width dn
and spacing nD ofQNMs, d dn n= D [8, 9, 12]. The typical linewidth dn is essentially equal to thefield
correlation frequency over which there is typically a single peak in the transmission spectrum. The density of
peaks is therefore 1 .dn On the other hand, the inverse level spacing 1 nD is equal to the density of states
(DOSs) of themedium. Thus the ratio N Nres mod can be expected to be close to 1n dn dD = for diffusive
waves. The localization threshold lies at 1d = [9, 10, 12]; δmay bemuch larger than 1 for diffusive waves so that
N N 1res mod d~ andmay be small. For localizedwaves, the number of channels that contribute effectively to
transmission,M, approached unity and transport becomes effectively 1D [29]. For example, the statistics of
transmittance are then in accordwith the single parameter scaling hypothesis [30]. It is worth noticing that
although the statistics of the eigenstates of disordered systems is a subject of intensive investigations for already
more that two decades (see, for example [31–37]), the statistics of the TRs (peaks in transmission spectra) is
much less studied. The comparison of these two is a challenging problem for future investigations. Here wefind
that a connection can bemade between the present 1D calculations of N Nres mod andmeasurements in
multichannel diffusive systems. This is done by comparing ratio of Nres to the number ofQNMs divided byM,
MN Nres mod inmultichannel systems to the ratio N Nres mod in 1D, whereM= 1.

2.QNMsof open systems

Wefirst consider a generic 1D system composed of N 1+ scatterers separated byN intervals and attached to
two semi-infinite leads. The eigenfunctions x t,m ( )y are solutions of thewave equation satisfying the outgoing
boundary conditions, whichmeans that there are no right/left-propagating waves in the left/right lead. Each
eigenfunction is a superposition of two counter-propagatingmonochromatic waves x e .m

ti m( )( )y w - The
eigenfunction in the jth layer, x ,m j, ( )( )y  is equal to a e ,m j

k x
,

i m( )  and the amplitudes am j,
( ) in adjacent layers are

connected by a transfermatrix. Thewave numbers km are complex-valued and form the discrete set
k k ki ,m m m

mod( ) = ¢ -  k 0,m > so that the frequencies ck .m m
mod mod( ) ( )w = These eigenfunctions areQNMs.Note

that all distances hereafter aremeasured in optical lengths.
Inwhat follows, the scatterers and the distances between them are characterized by the reflection coefficients

r r rj j0 dº + and thicknesses d d d ,j j0 dº + respectively. The randomvalues rjd and djd are distributed in
certain intervals, and d 0.jdå = The last conditionmeans that the length L of the sample is equal to Nd .0

To explicitly introduce a variable strength s of disorder, we replace all reflection coefficients by sr ,j and
assume (unless otherwise specified) that the coefficients rj are homogeneously distributed in the interval
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1, 1 .( )- This enables to keep track of the evolution of theQNMeigenvalues km
mod( ) as the disorder increases. The

condition d 0jdå = ensures that any random realizationwith the sameN contains the same number ofQNMs
N kLmod p= D in a given interval kD of thewavenumbers.

At the beginning, let us consider theQNMs of a regular resonator of the length L Nd0= assuming that all
reflection coefficients except r rL1 = and r rN R1 =+ are equal to zero. In this case the real and imaginary parts of
theQNMeigenvalues km

mod( ) are

k
L

m r r
m r r

1

2

2 , when 0,
2 , when 0,

1m
L R

L R
· ( )

⎧⎨⎩
p p
p

¢ =
+ >

<

k
L

r r
1

2
ln , 2m L R ( ) = -

where m 0, 1, 2,= ¼.
Inwhat follows, instead of the intensity of themthmode, I x x x ,m m m

2( ) ( ) ( )( ) ( )y y= ++ - we consider the
quantity I x x x ,m m m

2 2¯ ( ) ∣ ( )∣ ∣ ( )∣( ) ( )y y= ++ - which is Im(x) averaged over fast oscillations caused by the
interference of the left- and right-propagatingwaves. Examples of these functions for resonators are shown in
figures 1(a), (b). There I xn̄ ( ) is distributed along the system as I x k x xcosh 2 ,m̄ ( ) [ ( )]*µ  - where
x L r r r r1 ln ln 2.R L R L[ (∣ ∣) (∣ ∣)]* = - When r r ,L R∣ ∣ ∣ ∣= theminimumof the intensity is located at the center
of the system, and in an asymmetric case shifts to the boundarywith higher reflection coefficient. This property
will be usedwhen analyzing the properties of theQNMs of the disordered system.

In a disordered sample, the reflection coefficients ri are random and scaled by the parameter s. The evolution
of the eigenvalues k smod ( )( ) as the parameter s grows shows thatQNMs separate into two essentially different
types. There are ordinaryQNMswhose lifetimes, defined by the value of k1 , increasemonotonically with s.
Simultaneously, there are ‘hidden’QNMs (the origin of this termwill be explained in the next section), whose
lifetimes are substantially smaller than the lifetimes of ordinaryQNMs and remain constant when s varies over
many orders ofmagnitude. Figures 2 and 3 show trajectories of theQNMs’ eigenvalues
k s k s k simod ( ) ( ) ( )( ) = ¢ -  as the parameter s grows, and dependencies k s .( )

Our numerical calculations show thatwhen external reflectors are added at the edges of the sample, the
imaginary parts of some of the hiddenmodes increase with the strength of disorder.

The spatial distributions of the intensity I x¯ ( ) along the system are also different for ordinary and hidden
QNMs. The evolution of I x¯ ( ) as the strength of the disorder s grows is shown infigure 4.

Initially, when s is so small that values of k are almost equal for both types ofmodes, the distributions I x¯ ( )
are practically identical and evolve in the samemanner: theminimum is placed near the center of the sample,
and slopes (which are k) decrease as the disorder strength s grows. These distributions are similar to the
distribution of the intensity in the regular resonatorwith a small imbalance between the reflection coefficients rL
and rR of the resonatorwalls.

Figure 1. Spatial distribution of the intensity Im(x) of quasi-normalmode (thin light gray curve) and I xm̄ ( ) (thick red curve) in a
regular resonatorwith (a) symmetric ( r rL R∣ ∣ ∣ ∣= ) and (b) asymmetric ( r rL R∣ ∣ ∣ ∣< )walls.
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When k s( ) of the hiddenmode ‘a’ reaches its plateau (see figure 3), theminimumof its distribution shifts
from the center, as in the resonatorwith strong imbalance between the reflection coefficients rL and rR. The slope
of the distribution of hiddenmodes remains constant (k is independent of s on the plateau), whereas the slopes
of all ordinarymodes are equal and continue to decrease as the parameter s grows (seefigure 4). The difference
between the distributions of ordinary and hiddenQNMs is that the ordinarymodes are concentrated near both
edges of the system,while the hiddenmode is nestled at one edge.

It is important to stress that this separation of theQNMs into two types occurs when the disorder strength s is
small so that the localization length locℓ is large relative to the system length L, L.locℓ  Thus, this phenomenon
is not related toAnderson localization, but, as it will be shown below,manifests itself alsowhen L.locℓ 

Notwithstanding that at s 1, the lifetimes of all hiddenmodes increase, thesemodes aremuchmore
resistant to disorder: they become localized at far stronger disorder than ordinary states. As can be seen, for
example, infigure 3, at s 0.4 0.5,~ - when L 15 20 ,locℓ~ - the difference between the imaginary parts of
ordinary and some of hiddenQNMs is about of one order ofmagnitude.

Figure 2.Motion ofQNMs’ eigenvalues under disorder strength growth. Eigenvaluesmove from above. Some eigenvalues (examples
aremarked by ‘a’, ‘b’, and ‘c’) stop theirmotion and ‘stand still’.

Figure 3.Variation of k s .( ) Some k (marked by the same letters as infigure 2) are independent of s in a broad range (several order of
magnitude!) of s variation.Note that length of the system is equal or larger than localization lengthwhen s 0.1. Red line shows the
dependence k s ,( ) described by equation (22).
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3. TRs in 1D systems

Wenow consider the transmission of an incident wave through the system. Thewavenumbers at which the
transmission coefficient reaches its localmaximumand the corresponding fields inside the system are TR. The
QNMs andTRs are interrelated. Inwhat follows, we explore the relation betweenQNMs andTRs, in particular,
study the differences between the spectra of TRs andQNMs.

It is easy to show that in a resonator, thewave numbers km
res( ) of the TRs coincide with the real parts km¢ given

by equation (1), and there is a one-to-one correspondence betweenQNMs andTRs so that the number of
resonances Nres is equal to the number ofQNMs, N ,mod in a given frequency interval. The same relation also
exists in periodic systems (periodic sets rj and dj) [39].

In disordered systems, the relation betweenQNMs andTRs is quite different.While each TRhas its partner
among theQNMs, the reverse is not true: there are hiddenQNMs that are not associatedwith anymaximum in
transmission as shown infigures 5 and 6.

Figure 7 illustrates another fundamental difference between the ordinary and hiddenQNMs. The ordinary
QNMswhose real parts of the complex-valued eigenfrequency, Re mod( )w lie in a given frequency interval, can be
determined from the transmittance spectrumT ( )w of 1Ddisordered samples, because each peak in the
spectrum corresponds to a frequencywhose value res( )w practically coincides with Re .mod( )w Moreover, when
disorder is strong enough, so that L ,locℓ> the distribution of the transmittedwave intensity along the sample
reconstructs very closely the shape of the intensity of ordinaryQNMeigenfunctions. In contrast, a hiddenQNM
is invisible (this explains the origin of the term ‘hidden’) in the transmittance spectrum and its intensity
distribution is indistinguishable from that at a non-resonant frequency.

Note that although the hiddenmodes are not displayed in the amplitude of the transmission coefficient, they
aremanifested in the phase of the transmission coefficient. TheDOSs at a frequencyω is proportional to the
derivative with respect to frequency of the phase of the complex transmission coefficient [38]. Our numerical
calculations show that each hiddenmode addsπ to the total phase shift of the transmission coefficient exactly in
the sameway as ordinaryQNMs.

The evolution of a hiddenQNMas the degree of disorder grows is analogous to the evolution of amode in a
regular resonator when one of its edges becomes less transparent. Thismeans that a hiddenmodemay be

Figure 4. Intensity distribution I x¯ ( ) along the system for ordinaryQNMs ‘aL’ (a) and ‘aR’ (b), and hiddenQNM ‘a’ (c) for different
values of the disorder strength s. Notations for themodes are the same as infigures 2 and 3.
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transformed into an ordinary (i.e., made visible in the transmission) by increasing the reflectivity of the
corresponding edge of the sample, as illustrated infigure 8.

The sample, whose transmission spectrum is shown infigure 5, contains three hiddenQNMs (# 1, 5, and 6)
in the given spectral range. Distributions of the intensity I n¯ ( ) (n is the layer number) forQNMs#1 and 6 are
similar to the distributions in resonators with right reflection coefficient rR smaller than the left reflection
coefficient rL, r r 1.R L < The intensity distribution ofQNM#5 is characterized by the opposite inequality
r r 1.R L > When the value of the right-end reflection coefficient is increased, new resonances appear in
transmission for the initially hiddenmodes#1 and 6, whilemode#5 remains hidden (figure 8(a)). In contrast,
increasing the left-end reflection coefficient transformsQNM#5 into a ordinarymode, whereasQNMs#1 and
6 remain hidden in the transmission spectrum (figure 8(b)).

Important to stress that the separation ofQNMs into two types, ordinary and hidden, occurs already at a very
small disorder strength, s 0, when the localization length is larger than the sample length, L.locℓ 

The ensemble-averaged of the ratio of the number of TRs, N ,res which is the number of ordinarymodes, to
the total number ofQNMs, N ,mod has been calculated numerically for a variety of randomly layered samples
with different types of disorder (random reflection coefficients of the layers, rj, and/or random thicknesses dj,

Figure 5.Transmission spectrumT(k) at s = 0.1 (L locℓ ). The black solid (dashed) vertical lines indicate the kn¢ values of the hidden
(ordinary)QNMs. Everymaximum in the transmission spectrum can be associatedwith ordinaryQNM (# 2, 3, 4), whereas hidden
QNMs (#1, 5, 6) are not associatedwith the transmission resonances.

Figure 6.Variation of thewave numbers k sres ( )( ) (red crosses) and k s( )¢ (closed blue circles)with the strength s of the disorder. QNMs
are numbered as infigure 5. It is seen that for ordinaryQNMs, k sres ( )( ) and k s( )¢ practically coincide, whereas there are no resonances
associatedwith hiddenQNMs (#1, 5, 6).
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with rectangular andGaussian distribution functions) in broad ranges of the disorder strength s and of the length
of the realizationsN.

Figure 9 shows the average of N Nres mod over 10
4 random realizations as a function of the ensemble-

averaged transmission coefficient Tá ñ (panel (a)), and as a function of ratio ofN to the localization length nloc

(measured in numbers of layers), N nloc (panel (b)) for samples with N 50, 100, 150,= and 200 layers. At this
scaling, all functions N T Nres mod( )á ñ and N N n Nres loc mod( ) for samples of different lengthsmerge in a single
curve.

It is seen infigure 9 that the difference between Nres and Nmod appears when n N ,loc  and the ratio
N Nres mod varies weakly evenwhen n N .loc  Moreover, independently of the sample parameters, the average
ratio N Nres mod tends to the constant 2 5 when n .loc  ¥ Thus, the existence of hiddenmodes and the
universality of their relative number is a general feature of 1Ddisordered systems not specifically related to
localization.

Figure 7.Difference between ordinary and hiddenQNMs. (a)Transmittance spectrum. (b)Distribution of the incident wave intensity
into the sample as a function of frequency and distance. There are twoQNMswith nearby real parts of eigenfrequencies Re ,mod( )w
marked by dashed lines in the panels (a) and (b). Distributions of the intensities of eigenfunctions of hidden and ordinaryQNMs along
the sample are shown by thick blue lines in panels (c) and (d), correspondingly. Hatched red areas in panels (c) and (d) show intensity
distributions of the incidentwaves whose frequencies coincide with Re mod( )w of hidden and ordinaryQNMs, corresondingly.

Figure 8.Hiddenmodes#1, 5, and 6, which are shown infigure 5, can be transformed in the ordinary ones by additional end
reflections. (a)Additional right-end reflection transforms the hiddenmodes#1 and 6 into the ordinarymodes;mode#5 remains
invisible in the transmission spectrum. (b) In contrast, the left-end reflection transformsmode#5 into a ordinarymode, whilemodes
#1 and 6 remain invisible.
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4.Measurements of transmission eigenchannels andTRs inmultichannel systems

It is of interest to explore the ratio of the numbers of localmaxima in transmission andQNMs in random
multichannel systems and to compare to results for 1D systems.We consider quasi-one dimensional (quasi-1D)
samples with reflecting sides and transverse dimensionsWmuch smaller than the sample length L and
localization length N ,loc chanℓ ℓ= W L, .locℓ< Here, Nchan is the number of channels or freely propagating
transversemodes in the perfectly conducting leads or emptywaveguide leading to the sample andℓ is the
transportmean free path. The incident channels are thoroughlymixed by scatteringwithin the sample. In
contrast to transmission in 1D samples with a single transmission channel, transmission through quasi-1D
samples is described by thefield transmissionmatrix twith elements tba between all Nchan incident and outgoing
channels, a and b, respectively. From the transmissionmatrix, wemay distinguish three types of transmission

variables in quasi-1D samples: the intensityT t ,ba ba
2∣ ∣= the total transmission, T T ,a b

N
ba1

chanå= = and

transmittance,T t .
a b

N
ba, 1

2chanå= = The transmittance is analogous to the electronic conductance in units of the

quantumof conductance he2 [11, 15, 40]. The ensemble average value of the transmittanceT is equal to the
dimensionless conductance, g T ,= á ñ which characterizes the crossover fromdiffusive to localizedwaves. In
diffusive samples, the dimensionless conductance is equal to the Thouless number, g d= and the localization
threshold is reachedwhen g 1d= = [10, 12].

Significant differences between results in 1D and quasi-1D geometries can be expected since propagation
can be diffusive in quasi-1D samples with length greater than themean free path but smaller than the
localization length, L N ,loc chanℓ ℓ ℓ< < = whereas a diffusive regime does not exist in 1D since locℓ ℓ= [41].
For diffusive waves, QNMs overlap spectrally andmay coalesce into a single peak in the transmittance spectrum.
Thuswemight expect that theQNMswithin a typical linewidth form a single peak in transmission so that the
ratio N Nres mod is the ratio of themode spacing to themode linewidth. Themode linewidth is related to the
correlation frequency in the transmission spectra, but themode spacing cannot be readily ascertained once
modes overlap.

The transmittance can also be expressed asT ,
n

N
n1

chanå t= = where the nt are the eigenvalues of thematrix

product tt† [15]. The transmissionmatrix provides a basis for comparison between results for 1D and quasi-1D,
which is oftenmore direct than a comparison based onQNMs, since the statistics of the contribution of different
modes to transmission is not well-established, whereas the contribution of different channels is simply the sum

Figure 9.Ratio N Nres mod as a function of the ensemble-averaged transmission coefficient Tá ñ (panel(a)), and as a function of ratio of
N to the localization length nloc (panel (b)) for systems of various lengths (number of layersN). The horizontal dashed red linemarks

2 5 .
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of the transmission eigenvalues. In addition, transmission eigenchannels are orthogonal, whereas thewaveform
in transmission for spectrally adjacentmodes are strongly correlated [8] so that the transmission involves
interference betweenmodes.

The transmission eigenvaluemay be obtained from the singular value decomposition of the transmission
matrix, t U V †= L [42]. Here,U andV are unitarymatrices andΛ is a diagonalmatrix with elements .nt The
incident fields of the eigenchannels on the incident surface, vn, which are the columns ofV, in the singular-value
decomposition are orthogonal, as are the corresponding outgoing eigenchannels, un. Only a fraction of the Nchan

eigenchannels contribute appreciably to the transmission [14]. In diffusive samples, the transmission is
dominated by g channels with e1nt > [16, 43], while a single eigenchannel dominates transmission for
localized samples. The statistics of transmission depend directly on the participation number of transmission

eigenhannels, M
n

N
n n

N
n1

2
1

2chan chan( )å åt tº = =
[29].M is equal to g3 2 [29] for diffusive waves and approaches

unity in the localized limit [29, 30].

4.1. Numerical simulations
To explore the ratioNres/Nmod over a broad range of g T= á ñ formultichannel disorderedwaveguides in the
crossover fromdiffusive to localizedwaves, we carry out numerical simulations for a scalar wave propagating
through a two-dimensional disorderedwaveguidewith reflecting sides and semi-infinite leads. For diffusive
samples inwhich there is considerablemode overlap since 1d dn n= D > [12], (dn and nD are the linewidth
and the distance between spectral lines) theDOS, and from this the number ofQNMswithin the spectrum, can
be obtained from the sumof the derivatives of the composite phase of the transmission eigenchannel [44]. The
derivative of the composite phase of the nth eigenchannel is equal to the dwell time of the photonwithin the
sample in the eigenchannel. The total number ofmodes Nmod in a given frequency interval is then the integral
over this interval of theDOS. This has allowed us to determine the ratio N Nres mod in the crossover to
localization.

Simulations are carried out by discretizing thewave equation

E x y k x y E x y, , , 0 32
0
2( ) ( ) ( ) ( ) + =

on a square grid and solved via the recursive Green functionmethod [45]. Here, k0 is thewave vector in the leads.
Also, x y x y, 1 ,( ) ( ) d=  is the spatially varying dielectric function in the disordered regionwith x y,( )d
chosen from a rectangular distribution and 1 = in the empty leads. Reflections at the sample boundaries are
minimal because the sample is indexmatched to its surroundings. The product of k0 at 14.7 GHz and the grid
spacing is set to unity. In the frequency range studied, the leads attached to the randomwaveguide support
N 16chan = channels which are the propagating waveguidemodes. In our scalar quasi-1D simulations for a
samplewith awidthW, the number of channels at frequencies above the cutoff frequency is the integer part of
W2 .l These channels should not be confusedwith theQNMs of the randommediumwhich correspond to
resonances of themediumwith Lorentzian lines centered at distinct frequencies. In the simulations, the length
of the sample L is equal to 500 in units of the grid spacing except for one deeply localized sample with g 0.12,=
for which L= 800 and thewidth of the sampleW is 16 .p Typical spectra of intensity, total transmission and
transmittance are shown infigure 10 for a diffusive sample with g= 2.1 and for a localized sample with g= 0.3.

Wefind that the numbers of peaks in the spectra of intensity, total transmission and transmittance in a single
sample are nearly the same for each of the samples shown infigure 10. This is seen to be the case over awide
range of Tá ñ infigure 11.

TheDOS and so the number ofQNMswithin the spectrum in the samples of the same size are not affected by
the strength of disorder so that the decreasing ratio N Nres mod with increasing Tá ñ reflects only the decreasing
number of peaks in the transmission spectra due to the broadening of themodes and the consequent increase in
their spectral overlap. Since there are typically δQNMswithin themode linewidth for diffusive waves, wemight
expect the ratio N Nres mod to fall inversely withM, N N g M1 1 3 2 .res mod d~ ~ ~ For deeply localized
waves, however, this ratio is expected to approach unity asM approaches unity. This suggests that
N N M1 .res mod ~ in this limit. A plot of M1 infigure 11 shows that towards the diffusive and localized limits

M1 is close to the ratio N N .res mod For diffusive waves, the intensity correlation frequency does not change as
thewidth of the sample changes forfixed length and scattering strength since it is tied to the time of the flight
distribution, which is independent ofW [46]. Since Nres is essentially thewidth of the spectrumdivided by the
correlation frequency of the intensity, the number of peakswithin the intensity spectrumdoes not change.
However, g and theDOS are proportional to N ,chan so thatM increases with sample width and N Nres mod is
inversely proportional toM. In addition, the propagation in amultichannel disordered sample is essentially 1D,
whenM is approaching unity [30].

These results suggest that a comparison can bemade between propagation in both 1D andmultichannel
systems via the ratio of the number of peaks in the transmission spectra to the number ofmodes normalized by
M, N N M .res mod( ) This ratiomay be expected to be close to unity for L .locℓ Weconsider the variationwith
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g T= á ñof the ratio MN Nres mod in quasi-1D and compare this with the corresponding ratio in 1D inwhich
M= 1. The values of this ratio in quasi-1D and 1D are close, as seen infigure 12.

4.2.Microwave experiment
For quasi-1D samples in the crossover to localization inwhich spectral overlap ismoderate, it is possible to
analyze themeasured field spectra to obtain the central frequencies of theQNMs and to compare these to peaks
in transmission. Spectralmeasurements of the transmittanceTweremade in a copperwaveguide of diameter
7.3 cm and of length 40 cm containing randomly positioned alumina spheres with index 3.14, over a random

Figure 10. Spectra of intensity, total transmission and transmittance for a localized sample drawn from a randomensemble with
g = 0.3 (a)–(c) and a diffusive sample taken from an ensemble with g = 2.1 (d)–(f). Sharper spectral features are observed and spatial
averaging is seen to be less effective in smoothing the spectra for localizedwaves than for diffusive waves.

Figure 11.Variation of the N Nres mod for transmission, total transmission and transmittance versus g T= á ñ formultichannel
random samples in simulations. The ratios obtained frommicrowavemeasurements of spectra of the three transmission variables in a
multichannel localized samplewith g = 0.37 are shown as the cross symbols and are in good agreement with the simulationswith a
similar value of g. The value of M1 found in the simulations is shown as overturned triangles.
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ensemble forwhich g= 0.37. The emptywaveguide supports N 30chan ~ propagation channels in the frequency
range of the experiment: 10.0–10.24 GHz. The transmissionmatrix is determined frommeasurements of the
field transmission coefficient between points on grids of 49 locations for the source antenna and detection
antennas on the input and output surfaces of thewaveguide for a single polarizationwith a grid spacing of 9 mm.
Suchmeasurements of the transmissionmatrix in real space for a single polarization are incomplete. The
distribution of transmission eigenvalues determined from thesemeasurementsmay differ from theoretical
calculations [42, 47].Wefind, however, that the impact of incompleteness upon the statistics of transmittance
and transmission eigenvalues is small as long as the number ofmeasured channels ismuch greater thanM, as is
the case in thesemeasurements of transmission in localized samples [30]. HereM= 1.23 and therefore the
statistics of transmission are not affected by the incompleteness of themeasurement [30]. The influence of
absorption in these samples is statistically removed by compensating for the enhanced decay of the field due to
absorption [48]. Different random sample configurations are obtained by briefly rotating and vibrating the
sample tube. The probability distribution of the transmittance is in good agreement with the distribution
calculated for this value of g [30, 49–51].

Wefind the central frequencies and linewidths of theQNMswithin the frequency range of the
measurements by carrying out amodal decomposition of the transmitted field. A given polarization component
of the field can be expressed as a sumof the contributions from each of theQNMs:

E ar r,
2

2 i
. 4m m

m

m m

( ) ( )
( )

( )w
w w

= S
G

G + -

Here a rm ( ) are complex-valued amplitudes ofQNMs.
The central frequencies mw and linewidths mG of themodes are found by simultaneously fitting 45field

spectra. The transmittance as well as the Lorentzian lines for eachQNMnormalized to unity and theDOS, which
is the sumof such Lorentzian lines over all QNMs are shown infigure 13 for a single random configuration. The
DOS curves for differentmodes are plotted in different colors so that they can be distinguishedmore clearly. The
DOS is also determined from the sumof the spectral derivatives of the composite phase of each transmission
eigenchannel and plotted infigure 13. TheDOS determined fromanalyses of theQNMs and of the transmission
eigenchannels are seen to be in agreement. The dashed vertical lines infigure 13 are drawn from the peaks in the
transmittance spectra in (a) to the frequency axis in (b). As found in 1D simulations, each peak inT is close to the
frequency of aQNM, butmanyQNMsdonot correspond to a distinct peak in the transmittance. Frequently,
more than oneQNM falls within a single peak inT.

The ratio of the number of peaks in spectra of transmittance to the number ofQNMs averaged over a
random ensemble of 40 configurations is 0.61, with a standard deviation of 0.057. This is indicated by the cross
infigure 11 and is consistent with values of the ratio found in computer simulations. The value of this ratio is
slightly smaller than the value of 0.65 found in simulations for 1D samples with T 0.37á ñ = , as seen infigure 9.

Figure 12.Number of peaks in the transmission spectra per effective transmission eigenchannel, N N M ,res mod( ) is plotted as a
function of T g M.= The quantity g/M is the effective transmission coefficient per effective transmission eigenvalue of the quasi-1D
system. Such normalization of the conductance g in quasi-1D samplesmakes possible a comparisonwith 1D systems. The red line
corresponds to a 1D system; the experimental data is shown by the asterisk; the blue dots show the results of numerical simulations;
and dashed line is drawn at the level 2 5 .Beyond the diffusive regime the ratio plotted rises towards unity for ballistic propagation.
For ballistic waves, each of the Nchannel transmission eigenvalue is unity so that the transmittance is Nchannel and all eigenchannels
contribute equally to the transmittance so that M N ,channel= yielding g M 1.=
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Thismay be attributed to the valueM= 1.23 being larger than the value of unity in 1D. This reflects the tendency
of the ratio to decrease with increasingM as found for diffusive waves.

Equation (4) offers an explanation for the fact that the number of TRs can be smaller than that of all QNMs.
If, for example, the transmitted field is a sumof twomodes, from equation (4) it follows that the number of peaks
in the transmission spectrum is either one or two, depending on thewidths of themodes.

4.3. Spatial intensity distribution ofQNMswithin quasi-1Ddisordered samples
In order to fully characterize theQNMs and their relationship to peaks in transmittance in quasi-1D samples, it
would be desirable to examine the longitudinal profile of QNMswithin themedia. Becausewe do not have
access to the interior of themultichannel sample, however, we explore the spatial profile ofQNMsusing
numerical simulations based on the recursive Greens function technique. TheGreens function between points
on the incident plane r0 andwithin the sample r¢ can be expressed in amanner similar to equation (4) as a sumof
contribution from each of themodes,Wefind in the simulations that the spatial distribution of themthmode
obtained by decomposing the field intoQNMsdependsweakly upon the excitation point r .0 We therefore
average the spatial profile for eachQNMover the profiles obtained for all excitation points on the input of the
sample.

We consider propagation in a sample drawn from an ensemblewith a value of gwhich is belowunity but still
not too small. In this case, QNMs still overlap but it is yet possible to analyze the field intoQNMs.We present in
figure 14 that a spectrumof transmittance in a sample configuration chosen froman ensemblewith g= 0.26 and
M 1.16,á ñ = together with profiles of a ordinary and a hiddenmodewithin the spectrum. The nature of
propagation in the samplemight not differ appreciably frompropagation in 1D samples, for whichM= 1.We
find that the intensity distributions integrated over the transverse direction of the hiddenmode in the
transmission spectrumof the quasi-1D samples fallsmonotonically within the sample, while the ordinarymode
associatedwith peaks in transmission is peaked in themiddle of the sample.

5. Analytical calculations of N Nres mod

To calculate the average number of TRs in the limit s 1, weuse the single-scattering approximation andwrite
the total reflection coefficient r(k) of a 1D system as:

Figure 13. (a) Spectrumof transmittanceT and the individualmodes. The integration of each Lorentzian curve in the lower panel over
the frequency yields the density of state of unity. There are 22 localmaxima in the spectrumofT and the number ofmodes are 39.
(b) Spectrumof theDOSof the sample. The sumof all the Lorentzian curves above gives the density of states of the sample, which is
seen to be in good agreement with theDOS (panel (b)) obtained via the summation of the composite phase derivatives of each
transmission eigenchannel.
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where xn is the coordinate of the nth scatterer. The values k ,max at which the transmission coefficients,
T k r k1 ,2( ) ∣ ( )∣= - has a local extrema, are defined as the zeros of the function
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Equation (7) is the trigonometric sum a ksinl
N

l l1 ( )nS = with ‘frequencies’ ld2l 0n = and randomcoefficients al.
The statistics of the zeroes of randompolynomials have been studied in [28], where it is shown that the
statistically averaged number of real roots Nroot of such sum at a certain interval kD is
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2 ( )s = is the variance of the coefficients a r r l r r l.L n
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+ = - When the reflection

coefficients are uncorrelated, then

a N l l rVar 2 2 , 9l
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0
4 2

0
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where rVar0
2 ( )s = and r̄ is themean value of ri. The sums in equation (8) can be calculated using equation (9),

which yields [52]:

Figure 14.Transmittance spectrum and intensity distribution ofQNMs inQ1Ddisordered samples. (a) Spectrumof transmittanceT
for a localized sample drawn from an ensemble with g= 0.26. The green circles indicate the central frequencies of theQNMs found
from amodal decomposition of the field. Longitudinal intensity distributions of twomodes with central frequencies indicated by the
arrows in (a) are shown in (b) and (c) on a semi-log scale. The average intensity shown is integrated over the transverse dimension of
the sample. The spatial profile of themodewith a peak in transmittance is seen to have a peak in the average intensity in the interior of
the sample, while the intensity falls into the sample for a hiddenmode. This resembles the behavior of hiddenmodes found in 1D
samples shown in figure 7.

13

New J. Phys. 17 (2015) 113009 YPBliokh et al



r l N l r N

d r l N l d N r

2 2
1

6
2 ,

8 2
4

15
2 . 10

l
N

l l
N

l
N

l l l
N

1
2

0
4 2

0
2

1
2

0
4 2

0
2 4

1
2 2

0
2

1 0
4 2

0
2 4

0
2 6

0
4 2

0
2

( ) ( )
( ) ( )
¯ ( ) ¯

¯ ( ) ¯ ( )

s s s s s

n s s s s s

S = + S - +

S = S + - +

= =

= =





From equations (8) and (10)we obtain
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where L Nd .0= Since the number ofminima of the reflection coefficient is equal to the number of TRs,
N N 2,res root= and the number Nmod ofQNMs in the same interval kD is N kL ,mod p= D from equation (11)
it follows that

N N 2 5 . 12res mod ( )=

Although this relationwas derived for systemswith random reflection coefficients and constant distances
between the scatterers, it also holds for samples inwhich these distances are random ( d 0id ¹ ). In this case, the
frequencies ld2 dn = in equation (7) should be replaced by x x2 .m m l∣ ∣n = -  Since themain contribution to
the sums in equation (8) is given by the termswith large l N ,~ themean value of x xm m l∣ ∣-  can be replaced
by ld ,0 in the case of a homogeneous distribution of the distances dn along the system. This ultimately leads to the
same result equation (12).

6.Hiddenmodes: simplemodel

In section II, QNMswere introduced as solutions of thewave equation satisfying the outgoing boundary
conditions. Their eigenvalues ofQNMs, k k ki ,mod( ) = ¢ -  can be calculated as roots of the equation M 0,22 =
where M̂ is the transfermatrix, which connects waves’ amplitudes at the left and right sides of thewhole system.
The transfermatrix of the systemwhich consists of N 1+ scatterers separated byN intervals has the form:
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andTî is the transfermatrix through the ith scatterer. Assuming that reflection and transmission coefficients are
real,Tî can be presented as
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where Î is the unitmatrix, and 2ŝ is the Paulimatrix.

Omitting denominator t ,
i

N
i1=
matrix M̂ can bewritten as ordered product

M I sr S , 16i i2( )ˆ ˆ ˆ ˆ ( ) s= -

where substitution r sri i is used. Equation (16) allows presenting transfermatrix as a power series in s 1:
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wherematrix An
ˆ contain various ordered products ofmatrices Sî and nPaulimatrices.Matrices Sî are diagonal,

whereas Paulimatrix is anti-diagonal, so only even combinations of Paulimatrices contribute toM22. Thus
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where L is the sample length, and the coefficients am contain various combinations of products of m2 reflection
coefficients riwith exponentialmultipliers kL kdexp i 2i ,i j,( )- + where di j, are the distances between any
ordered pairs of scatterers.

Neglecting termswith higher than s2 powers in equation (18), the dispersion equation, which defines
eigenvalues k, can be presented as follows:

s c e 1, 19
i j

ij
k d2

,

2 i j, ( )å = -
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where the coefficients c r r eij i j
k d2i i i,= ¢ are formed by various pairs of the scatterers, as it is schematically shown in

figure 15(a). The greater is the distance di j, between the scatterers, the larger are exponents e k d2 i j, in
equation (19).

The largest exponents are associatedwith the pairs of scatterers placed near the opposite ends of the sample.
When k d 1,0  there aremany such pairs, located in blue regions infigure 15(b), whose associated exponents
are of the same order ofmagnitude, e .k L2  Let us combine all such pairs in equation (19) in one term c1̃ and
characterize themby one common exponent e .k L2  The number of scatterers near the sample ends, which form
this group, can be estimated as n k d 1,eff 0

1( ) -  so that the lengths of blue regions in figure 15(b) are
n d L.eff 0~ 
The next group, c ,2̃ which is associatedwith the exponent of the order of e ,k L n d2 eff 0( ) - consists of pairs of

scatterers, one fromgreen and another fromblue regions infigure 15(b). In such away, equation (19) can be
approximately presented as

s c ce e 1. 20k L k L n d2
1

2
2

2 eff 0( )( )˜ ˜ ( )+ + ¼ = -  -

Strictly speaking, the phenomenologically introduced number neff varies from group to group, butwhen
k d 1,0  neff is large enough and it is possible to neglect its variation.

The coefficients cn˜ in equation (20) are the sums of neff randomvectors in complex plane. For any given
sample the lengths of these vectors arefixed, whereas the phases varies frommode tomode, so that the
magnitudes of the coefficients c ,n˜ been averaged overmanymodes, can be estimates as

c r n r n . 21n
2 2

eff
2

eff˜ ( ) 

Using equations (20) and (21), one can calculate value of k , averaged overmanymodes.When s 1,2 
k s( )á  ñ is large and the second term in the parentheses in equation (20) is small as comparedwith the first one
(e 1k n d2 eff 0-   ) and can be omitted. Then, the average solution k s( )á  ñof equation (20) is
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The dependence k s( )á  ñdescribed by equation (22) agrees well with the result of numerical simulations,
presented infigure 3 by red line.

Expression (22) describes averaged overmanymodes dependence k s ,( ) but for any givenmode this
dependence can be different. Indeed, since n Neff  (for example, n 10eff  for s 10 8= - in the numerical
simulation presented infigures 2 and 3)) fluctuation of the values of cn∣ ˜ ∣ for different eigenmodes can be
rather large. In particular, c1∣ ˜ ∣ for a certainmode can bemuch smaller, than c .2∣ ˜ ∣ Presenting equation (20) in the
form

c
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it is easy to see that equation (23) has solution
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Figure 15. (a)Coefficients cij are formed by various pairs of scatterers; (b) coefficient c1̃ contains all possible pairs of scatterers, linked
schematically by red line#1, coefficient c2̃ is formed by the scatterers fromblue and green regions, connected by red lines#2.
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when s2 exceeds some critical value s ,crit
2
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Solution equation (24) is independent of s and represents the hiddenQNM (see figure 3).
Recall that cn˜ are formed by different groups of the reflection coefficients. In general, the similar,

independent of s, solutions of the dispersion equation appear whenmagnitudes somefirst coefficients cn˜ in
equation (20) are small as comparedwithmagnitudes of the next coefficients.

In order to demonstrate that independent on s solutions of the dispersion equation indeed correspond to the
hiddenmodes, let us consider the system composed of three scatterers only. The dispersion equation (20) for this
system is

s r r r r r re e e 1. 26k d d kd kd2
1 3
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2 3
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1 2

2i1 2 2 1( ) ( )⎡⎣ ⎤⎦+ + = -+

When all ri are of the same order ofmagnitude, r r,i ~ and s is so small k s[ ( ) is so large] that
k s dexp 1,1,2[ ( ) ]  the solution k of equation (26) is
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Equations (26) and (27) are particular cases of the general formulas (20) and (22).

If, for example, r1∣ ∣ is small as comparedwith r ,2,3∣ ∣ but s s r r
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is another solution of equation (26):
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This solution is independent on s, similarly to the solution equation (24).
Result of numerical solution of equation (26) is shown infigure 16. Figure 17 demonstrates relation between

real part of theQNMs’ eigenvalues k s( )¢ and position of the peak k sres ( )( ) in the transmission spectrum.Note
that hiddenmodes are invisible in the transmission spectrum evenwhen s s .crit

7. Superradiance and resonance trapping in 1D random systems

Themodel introduced in the previous section can be used to study the segregation of superradiant states and
trappedmodes in regular quantum-mechanical andwave structures and to illuminate the analogy between this
phenomenon and existence of two types ofQNMs (hidden and ordinary) in disordered systems considered
above. Behavior ofmodes in regular open structures as the coupling to an environment is altered, has been

Figure 16.Dependence k s .( ) Vertical and horizontal red linesmark scrit and k defined by equation (28).
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intensively studied in condensedmatter physics, optics, and nuclear, atomic, andmicrowave physics. Common
to all these studies is the appearance of two time scales when the coupling to the environment via open decay
channels increases andQNMs begin to overlap [53–58]; for a review, see [59] and references therein.When the
coupling to the environment is weak, the lifetimes of all states tend to decrease as the coupling increases. As the
coupling reaches a critical value, a restructuring of the spectrumofQNMs occurs leading to segregation of the
imaginary parts of the complex eigenvalues and of the decaywidths. The states separate into short-lived
(superradiant) and long-lived (trapped) states. This phenomenon is general and, by analogy to quantumoptics
[60] and atomic physics [61–63], is known as the superradiance transition. Inmore complicated structures, such
of those consisting of two coupled oscillating subsystems, onewith a low and the other with amuch higher
DOSs, the superradiance transition is closely related to the existence of doorway states [56, 57] that strongly
couple to short-livedQNMswith external decay channels.

It is important to stress that alongwith the pronounced similarities between the resonance trapping in
many-particle quantum systems, openmicrowave cavities, etc, and between the ‘hidding’ of some of quasi-
normalmodes in disordered samples there are substantial differences as well. In particular, resonance trapping
happens in regular systems considered in [55, 59]when the coupling of the large number ofQNMs to amuch
smaller number of commondecay channels increases.Without disorder, the samples thatwe consider are
perfectly coupled to the environment (total transmission at all frequencies). Finite coupling appears due to
disorder, as the result of the interference ofmultiply-scattered random fields, and the role of the coupling
parameter is played by the strength of the scattering inside the system.

To reproduce the superradince phenomena in disordered structures wemodify themodel slightly by placing
the random sample between two reflectors with reflection coefficients rL and rR, located at distances Ld and Rd
from the edge scatterers. For simplicity, we assume that .R Ld d d= = These reflectors can be included in the
dispersion equation equation (20) as additional scatterers as follows:

s s r r s c c ce e e e 1. 29L R
k L k L k L k L n d2 2 2i 2 1
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Here c rL R0 ,˜ µ contains the products r rL R i, with corresponding exponentialmultipliers, the largest of which,
k Lexp 2 ,[ ( )]d + is separated in the explicit form.

To approach the conditions at which superradiance and resonance trapping occur, we consider below (in
contrast to the previous sections) the evolution of the eigenvalues of a given samplewith fixed swhen r 0.R L, 

When the product r rL R∣ ∣ is large, thefirst term in the parentheses dominates and the solution of
equation (29) is

k
L r r
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. 30

L R( )
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d
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+

If 0,d = themagnitudes of the exponents in the first three terms are equal.When r r 0,L R∣ ∣  themagnitudes of
the additional two terms decrease and the solutions of equation (29) tend to their solutions in the original sample
(without end reflectors), as shown infigure 18.

Figure 17. k s( )¢ (black dots) and k sres ( ) (red dots).When s s ,crit the value of k is the same for hidden and ordinarymodes.
Nevertheless, hiddenmodes are invisible in the transmission spectrum.
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When 0,d ¹ the trajectories of the eigenvalues in the complex plane aremore complicate. Althoughmost of
the eigenvaluesfinally reach the same positions as in the original sample, there are eigenvalues, for which
k  ¥ as r 0L R,  (seefigure 19). Indeed, the first two terms in equation (29) always dominate when 0d ¹
and k .  ¥ In this case equation (29) can bewritten as

r r s r r r re e 0, 31L R
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2i( ) ( )( ) ( )+ +d d+

+
+ 

where the largest term in c ,0˜ which corresponds to the largest distance L d+ between the end reflectors and the
sample scatterers, is explicitly presented. Solution of equation (31)
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tends to infinity, when even one of the reflection coefficients r 0.L R, 
The reasonwhy these solutions ‘run away’when the coupling to the environment ismaximal, is very simple.

The original systemwithout end reflectors has kL pD eigenmodes in the given interval k,D whereas the same
system surrounded by the reflectors has k L 2( )d pD + eigenmodes in the same interval. Thus, some ofmodes
should leave this interval kD when the system returns to its original state.

The superradiant transition in periodic and disordered quantum system,which consist of a sets of potential
wells, was studied in [53] using effectiveHamiltonian approach. It was shown that the transition occurs when the
coefficient γ, which characterizes the couplingwith an environment, reaches the value of the couplingΩ
between thewells, .g W In the considered above system r1 R L,

2∣ ∣g - and s r1 ,2 2W - á ñ so that the

superradiant transition occurs when r s r .R L,
2∣ ∣ á ñ This condition agrees well with presented infigure 19(b)

results.

Figure 18.Two reflectors are placed at the sample ends, r r r .L R end= = Modesmarked by letters correspond to the samemodes in
figures 2, 3. (a)Trajectories of eigenvalues as the coupling grows. (b) k r .end( ) The life time of the hiddenQNMs decreasesmuch faster
than the life time of the ordinary ones.
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Hiddenmodes can be associatedwith superradiant states, while normalmodes are trapped resonances.
Thus, 2 5 0.63 correspond to the fraction of themodeswhich are trapped. This result agrees with [55],
where this value was estimated as 0.58,> and 1 2 5 0.37-  is the fraction of themodeswhich are
superradiant. Note, that the original disordered sample is already coupled to the environment, so that the
coupling strength is limited by the intrinsic properties of the sample and cannot exceed this value, evenwhen the
end reflectors are fully transparent.

8. Conclusions

In conclusion, we have studied the relationship between spectra ofQNMs andTRs in open 1D and quasi-1D
systems.We start fromhomogeneous samples, inwhich eachTR is associatedwith aQNM, and vice versa. As
soon as an arbitrarily weak disorder is introduced, this correspondence breaks down: a fraction of the eigenstates
becomes hidden, in the sense that the corresponding resonances in transmission disappear. The evolution of the
imaginary parts of the eigenfrequencies of the hiddenQNMswith changing disorder is also rather unusual.
Whereas increasing disorder leads to stronger localization of ordinarymodes so that their eigenfrequencies
approach the real axis, the imaginary parts of the eigenfrequency of hiddenmodes changes very slowly (andmay
even increase when external reflectors are added to the edges)with increasing disorder, and begin to go down
onlywhen the disorder becomes strong enough. Forweak disorder, the averaged ratio of the number of
transmission peaks to the total number ofQNMs in a given frequency interval is independent of the type of
disorder and deviates only slightly from a constant, 2 5 , as the strength of disorder and/or the length of the
random sample increase over awide range. This constant coincides with the value of the ratio N Nres mod

analytically calculated in theweak single-scattering approximation. As the strength s of disorder keeps growing,

Figure 19.The same as figure 19, but reflectors are placed at a some distance from the sample ends. There is one eigenvalue whose k
grows unlimitedly.
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ultimately all hiddenQNMs become ordinary. Thismeans that in 1D random systems there exists a pre-
localized regime, inwhich only a fraction of theQNMs are long-lived and provide resonant transmission. If the
coupling to the environment is tuned by an external edge reflectors, the superradiace transition can be
reproduced. In quasi-1D samples, a genuine diffusive regime exists inwhich someQNMs coalesce to form a
single peak in transmissionwithwidth comparable to the typicalmodal linewidth. In such samples, hidden
modes have been discovered experimentally and their proportion of all QNMs in the crossover fromdiffusion to
localizationwas fairly close to the same constant. The number of peaks in spectra of transmission, as well as in
total transmission and in transmittance are nearly the same and fall well below the number ofQNMs. Though
the ratio N Nres mod may be small, we find inmicrowave experiments and numerical simulations that once the
number ofQNMs is divided by the effective number of channels contributing to transmission to give MN N ,p m

this function is similar to results in 1D samples.
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