
SUPPLEMENTARY INFORMATION
DOI: 10.1038/NPHOTON.2016.73

NATURE PHOTONICS | www.nature.com/naturephotonics 1

 
 

1 
 

Supplementary Information  

Optomechanically-induced stochastic resonance and chaos transfer 

between optical fields 

Faraz Monifi1§, Jing Zhang1,2,3 , Şahin Kaya Özdemir1, Bo Peng1§§, Yu-xi Liu3,4, Fang Bo1,5, 

Franco Nori6,7 & Lan Yang1 

Affiliations: 

1Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 

63130, USA 

2Department of Automation, Tsinghua University, Beijing 100084, P. R. China 

3Center for Quantum Information Science and Technology, TNList, Beijing 100084, P. R. China 

4Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R. China 

5The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute 

and School of Physics, Nankai University, Tianjin 300457, China 

6CEMS, RIKEN, Saitama 351-0198, Japan 

7Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040, USA  

Current affiliations: §Department of Electrical and Computer Engineering, University of 

California, San Diego La Jolla, CA 92093-0407, USA. §§IBM Thomas J. Watson Research 

Center, Yorktown Heights, NY 10598, USA. 

 

A. Experimental setup 

An illustration of the setup used in our experiments is given in Fig. S1. An optical pump field, 

provided by a tunable External Cavity Laser Diode (ECLD) in the 1550 nm band, was first 

amplified using an erbium-doped fiber amplifier (EDFA), and then coupled into a fiber, using a 
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2-to-1 fiber coupler, together with a probe field provided by a tunable ECLD in the 980 nm band. 

A section of the fiber was tapered, to enable efficient coupling of the pump and probe fields into 

and out of a microtoroid resonator. The pump and probe fields in the transmitted signals were 

separated from each other using a wavelength division multiplexer (WDM) and then sent to two 

separate photodetectors (PDs). The electrical signals from the PDs were then fed to an 

oscilloscope, in order to monitor the time-domain behavior, and also to an electrical spectrum 

analyzer (ESA) to obtain the power spectra. 

 

Figure S1. Schematic diagram of the experimental setup designed in a pump-and-probe 

configuration. The pump (1550 nm band) and the probe (980 nm band) fields were coupled into 

and out of a microtoroid resonator via the same tapered fiber in the same direction. EDFA: 

Erbium-doped fibre amplifier; PC: Polarization controller; WDM: Wavelength division 

multiplexer; PD: Photodetector; ESA: Electrical spectrum analyzer. 
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B. Spectral properties of pump and probe fields 

 Let us first assume that the intracavity pump and probe fields do not directly couple to each 

other, and that the probe and pump fields couple to the same mechanical mode of the 

microcavity with different coupling strengths. Below we show that in such a situation, the 

mechanical mode mediates an indirect coupling between the fields. The dynamical equation for 

the intracavity pump mode coupled to the mechanical mode of the cavity can be written as 

    pump pump pump pump pump pump ,a i g X a i t            
(S1) 

where pumpa is the complex amplitude of the intracavity pump field, pump  is the damping rate of 

the cavity pump mode,  pump t  represents the amplitude of the input pump field,  is the pump-

resonator coupling rate, pump is the frequency detuning between the input pump field and the 

cavity resonance, X is the position of the mechanical mode coupled to pumpa , and pumpg is the 

strength of the optomechanical coupling between the optical pump field and the mechanical 

mode. This equation can be solved in the frequency-domain by using the Fourier transform as 

         
 

pump pump
pump 1 pump 1 1

pump pump pump pump

,
ig i

a X a d
i i

 
    

   





  

            (S2) 

where    pump , ,a X  and  pump   are the Fourier transforms of the time-domain signals

   pump , ,a t X t  and  pump t . Since the dynamics of the mechanical motion  X t  is slow 

compared to that of the optical mode, we can replace the convolution term in the above equation 

by the product    pump ,a X   under the slowly-varying envelope approximation, which then 

leads to  
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       
 

pump pump
pump

pump pump pump pump

1 .
ig i

X a
i i

 
 

   

  
  

          
(S3) 

 X   is in general so small that we have    222 2
pump pump pumpg X      . Then using the 

identity  1 1 1x x   , for 1x  , we can re-write Eq. (S3) as 

       
 

pump pump
pump

pump pump pump pump

1 .
ig i

a X
i i

 
 

   

  
  

          
(S4) 

By multiplying the above equation with its conjugate and dropping the linear term of  X  , 

which is zero on average, we can obtain the relation between the spectrum 

    2

pump pumpS a  of the optical mode pumpa  and the spectrum of the mechanical motion 

    2
XS X  as 

       
2 2 2

pump pump
pump pump pump2 2

pump pump

1 ,X

g
S S
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  
  

                   (S5) 

where 

 
 

2
pump

pump 22
pump pump


 

 


  
                                          (S6) 

is a susceptibility coefficient. If we further introduce the normalized spectrum  

     
2 2

pump
pump pump pump2

pump

,S S
 

   


 
   

(S7) 

the above equation can be written as 
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     
2 2 2

pump pump 2
pump pump4
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
      (S8) 

We can obtain a similar equation by analyzing the spectrum of the optical mode probea  coupled to 

the probe field as 

     
2 2 2

probe probe 2
probe probe4

probe

,X

g
S S

 
   


     (S9) 

where 

 
 

2
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probe 22
probe probe

,


 
 


      

(S10) 

probe is the damping rate of the cavity mode coupled to the probe field,  probe t  represents the 

amplitude of the input probe field, probe  is the detuning between the input probe field and the 

cavity resonance, and probeg is the coupling strength between the optical mode probea  and the 

mechanical mode.  

From Eqs. (S8) and (S9), we obtain the relation between the normalized spectra  pumpS   and 

 probeS   as 

   
   

2
probe

probe pump2
pump

,S G S
 

 
 

      (S11) 

where 

2 2 4
probe probe pump
2 2 4
pump pump probe
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G
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
      

(S12) 
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If we assume that the detunings and damping rates of the optical modes are close to each other, 

i.e., pump probe   and pump probe  , we have    2 2
probe pump 1     , leading to 

   probe pump .S G S      (S13) 

This implies that the spectra of the pump and probe fields are correlated with each other. The 

correlation factor G  is mainly determined by the optomechanical coupling strengths of the pump 

and the probe fields as well as the intensities of these fields. The relation between the spectra of 

the pump and probe signals shows that the optomechanical coupling strengths pumpg and probeg  of 

the pump and probe field to the excited mechanical mode determine how closely the probe field 

will follow the pump field. Clearly, these coupling strengths do not change the shape of the 

spectrum, and this is the reason why the probe signal follows the pump signal in the frequency 

domain and enters the chaotic regime via the same bifurcation route, despite the fact that they are 

far detuned from each other (Fig. 2c, 2d).   

In our experiments, the mechanical motion was excited by the strong pump field, and the probe 

was chosen to have such a low power that it could not induce any mechanical oscillations. The 

large pump and probe detuning ensured that there is no direct coupling between them. The fact 

that both the pump and the probe are within the same resonator that sustains the mechanical 

oscillation naturally implies that both the pump and the probe are affected by the same 

mechanical oscillation with varying strengths, depending on how strongly they are coupled to the 

mechanical mode. The pump and probe spectra (Fig. S2) obtained in our experiments under these 

conditions agree well with the theoretical prediction given in Eq. (S13), in the sense that the 

spectra of the pump and the probe fields become correlated if they couple to the same 

mechanical mode. The slight differences in phase diagrams obtained in the experiments (Fig. 2a, 

2b) imply that  different coupling strengths of the pump and probe to the same mechanical mode,  
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due to the difference in their spatial overlaps with the mechanical mode, affect the trajectories 

and thus the phase diagrams. 

 

Figure S2. Experimentally-obtained power spectra for the pump and probe fields at various 

pump powers corresponding to (a,d) periodic, (b,e) quasi-periodic, and (c,f) chaotic regime. The 

spectra of the pump (a-c) and the probe (d-f) fields show similarities in these regimes.  

 

C. Bifurcation analysis of the pump and probe fields 

Here we  consider the bifurcation process and determine the route to chaos for the pump and 

probe fields. In our experiments, we observed a mechanical mode with a frequency of around 26 

MHz, and monitored the evolution of this mode as a function of the power of the input pump 

field. As shown in Fig. S3a, both the pump and probe fields experienced a period-doubling 

bifurcation as the input power of the pump field was increased: When the input pump power was 
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low, the spectra of the pump and probe fields showed a peak at around 26 MHz. When the input 

pump power was increased above a critical value, a second peak appeared just at half frequency 

of the main peak, i.e., ~ 13 MHz which corresponds to a period-doubling process. At higher 

powers, successive period-doubling events occurred, leading to peaks located at frequencies of 

1/ 2n -th of the main peak. For example, the second period-doubling bifurcation led to frequency 

peaks at 6.5 MHz for both the pump and the probe fields.  

In Fig.S3b, we present the results of  numerical simulations obtained by solving the following set 

of equations 

   pump pump pump pump pump pump ,a i g X a i t             (S14) 

    probe probe probe probe probe probe ,a i g X a i t           
(S15)

 

,m mX X P                                 (S16)
 

2

pump pump ,m mP P X g a   
    

(S17) 

which describe the evolution of the pump and probe cavity modes and the mechanical mode. In 

the simulations, we considered a single mechanical eigenmode with frequency 26 MHz, similar 

to what was observed in our experiments. Here, m and m are the frequency and damping rate 

of the mechanical mode. Similar to our experiments, we chose the probe signal to be very weak, 

so that it does not induce mechanical or thermal oscillations. Consequently, the mechanical mode 

was induced only by the pump field as described by the expression in Eq. (S17). We see that this 

model explains our experimental observations well. In both the experimental results and the 

numerical simulations, it is clearly seen that the probe field follows the pump field during the 

bifurcation process. 
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Figure S3. Optomechanically-induced period-doubling in the pump and probe fields. a, 

Experimental data and b, results of numerical simulations showing first and second period-

doubling processes for the pump (red spectra) and probe (blue spectra) fields.  
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Our experimental data shown in Fig. S3a shows the existence of a second mechanical mode with 

frequency 5 MHz. This mode was excited when the pump power was increased to observe the 

second period-doubling process. Generally, one may think that this low-frequency mechanical 

mode would affect the bifurcation process of the 26 MHz mechanical mode, because these two 

mechanical modes are in the same micro-resonator and thus may couple to each other. But we 

could not see any signature of this in our experiments. We performed numerical simulations 

using COMSOL and found that the mechanical modes at 26 MHz and 5 MHz are, respectively, 

transverse and longitudinal modes (Fig.S4). Thus, they are orthogonal, which implies that there 

is minimal or no interaction between them. 

 

 

Figure S4. Comsol simulation of the mechanical modes in a microtoroid. The mechanical 

mode with frequency a, 26 MHz is a transverse mode whereas the one with frequency b, 5 MHz 

is a longitudinal mode. Both of these mechanical modes were observed in our experiments, with 

the 5 MHz mode being excited only when the pump power was so high that the mode at 26 MHz 

experienced the second period doubling (Fig. S3). The orthogonality of these mechanical modes 

implies that there is no direct coupling between them.  
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D. Optomechanically-induced optical nonlinearity for the probe field 

In order to understand how the co-existence of the pump and probe fields in the same 

optomechanical resonator affect their interaction with the system and with each other, we 

consider the following Hamiltonian 

   † † † 2 2
probe probe probe probe probe probe probe probe probe 2

mH a a a a g a a X X P 
      

 

 † † †
pump pump pump pump pump pump pump pump pump ,a a a a g a a X       (S18)

 

where the first (fourth) and second (fifth) terms are related to the free evolution of the probe

probea  (pump pumpa ) field, and the third (sixth) term explains the interaction of the probe (the 

pump) field with the mechanical mode X . The last term corresponds to the free evolution of the 

mechanical mode.  

First, let us consider only the probe field by eliminating the fourth, fifth and sixth terms. In this 

case, we arrive at the Hamiltonian  

   † † † 2 2
probe probe probe probe probe probe probe probe probe .

2
mH a a a a g a a X X P 

      
 

(S19) 

By introducing the translational transformation 

probe †
probe probe , ,

m

g
X X a a P P  

     
(S20) 

the Hamiltonian H can be re-expressed as [S1]  

     
2

2probe† † † 2 2
probe probe probe probe probe probe probe probe ,

2 2
m

m

g
H a a a a a a X P 
      

  
(S21) 

where we see that the nonlinear interaction between the probe field and the mechanical 
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motion leads to an effective Kerr-like nonlinearity in the optical mode probea , with its coefficient 

given as 

2
probe

probe ,
2 m

g
 

       
(S22) 

where m  is the frequency of the mechanical mode. Equation (S22) implies that the 

optomechanically-induced Kerr-like nonlinearity is dependent on (i) the optomechanical 

coupling between the optical and mechanical modes and (ii) the frequency of the mechanical 

mode. 

Following a similar procedure, we can derive the coefficient of nonlinearity for the case when 

only the pump field is present. In such a case, we have  

   † † † 2 2
pump pump pump pump pump pump pump pump pump .

2
mH a a a a g a a X X P 

        (S23) 

By introducing the transformation 

pump †
pump pump, ,

m

g
X X a a P P  


    (S24) 

we rewrite the Hamiltonian as 

     
2

2pump† † † 2 2
pump pump pump pump pump pump pump pump .

2 2
m

m

g
H a a a a a a X P 
      

  
(S25) 

Thus, the coefficient of the effective Kerr-like nonlinearity in the optical mode pumpa becomes 

2
pump

pump ,
2 m

g
 


      (S26) 
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where m  is the frequency of the mechanical mode and pumpg  is the strength of the coupling 

between the pump and mechanical modes. 

Now let us consider the case where both the pump and probe fields exist within the same 

resonator and they are coupled to the same mechanical mode. In this case, by applying the 

transformation 

probe pump† †
probe probe pump pump, ,

m m

g g
X X a a a a P P   

     
(S27) 

we re-express the Hamiltonian given in Eq. (S18) as 

     
2

2probe† † † 2 2
probe probe probe probe probe probe probe probe2 2

m

m

g
H a a a a a a X P 
      


 

      
2

2pump pump probe† † † † †
pump pump pump pump pump pump pump pump probe probe pump pump .

2 m m

g g g
a a a a a a a a a a    

 

  
(S28)

 
Here the third and seventh terms are the coefficients of the Kerr-like nonlinearity derived earlier 

for the cases when only the probe or the pump fields exist in the optomechanical resonator. The 

last term, on the other hand, is new and implies an effective interaction between the pump and 

probe fields, if they both exist in the optomechanical resonator.  

The dynamical equations of this system can be written as 

 pump pump pump pump pump pump,a i g X a i            
(S29) 

 probe probe probe probe probe probe.a i g X a i            
(S30) 

In the long-time limit (i.e., steady-state), we have pump probe, 0a a  , which leads to 

© 2016 Macmillan Publishers Limited. All rights reserved. 
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   
probe probe probe probe

probe 2
probe probeprobe probe probe probe probe

,
i i g

a X
ii g X i

  
 

  
     

  

(S31) 

   
pump pump pump pump

pump 2
pump pumppump pump pump pump pump

.
i i g

a X
ii g X i

  
 

  
     

  (S32) 

If we further eliminate the degrees of freedom of the mechanical mode X  from the above 

equations, then, under the conditions that pump probe  , pump probe   ,and pump probeg g , we 

have 

 pump pump probe probe.a a 
    

(S33) 

By substituting this equation into the last term in Eq. (S28), we see that the last term of the 

Hamiltonian becomes 

    
2

2pump probe pump probe pump† † †
probe probe pump pump probe probe2

probe

,
m m

g g g g
a a a a a a





 

  (S34) 

from which we define the coefficient of nonlinearity as 

2 2
probe pump

probe 2
probe

.
m

g 





      
(S35) 

It is clear that even a very weak probe field can experience a strong Kerr nonlinearity, and hence 

a nonlinear dynamics, if the intensity of the pump is sufficiently strong. Thus, our experimental 

system intrinsically enables an optomechanically-induced Kerr-like nonlinearity, which helps the 

optical pump and probe fields interact with each other. It is clear that the strength of the 

interaction can be made very high by increasing the ratio of the intensity of the input pump field 

2
pump  to that of the input probe field 2

probe . In our experiments, the pump field is at least three-
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orders of magnitude larger than the probe field. Thus the nonlinear coefficient probe  given in Eq. 

(S35) is increased by at least three-orders of magnitude, compared to the nonlinear coefficient 

probe  given in Eq. (S22). 

 

E. Reconstructing the mechanical motion  

Here we explain our method used to estimate the trajectory of the mechanical motion from the 

experimentally-available data. The mechanical mode excited in our microtoroid during the 

experiments had a frequency of 26.1m  MHz and a damping rate of 0.2m  MHz, implying 

a quality factor of 130mQ . We used these values in the nonlinear optomechanical equations to 

reconstruct the mechanical motion. We found that the optomechanical resonator experiences a 

periodic motion (Fig. S5a) even when the detected optical pump field showed chaotic behavior. 

To explain this, we start from the following equation for the mechanical resonator 

,m mX X P       (S36) 

 pump ,m mP P X g I t        (S37) 

where P is the momentum of the mechanical mode and     2

pumpI t a t is the intensity of the 

pump with the field amplitude pumpa . By introducing the complex amplitude   2b X iP  , 

Eqs. (S36) and (S37) can be rewritten as 

   pump .m mb i b g I t          (S38) 

The above equation can be solved in the frequency domain as 
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     pump ,
m m

g
b I

i
 




       
(S39) 

from which we obtain 

   
 

     
2 2

2 2pump pump
2 22

,b bI I
mm m

g g
S b I S     


  

  
  (S40) 

where 

 
 

2

2 2
m

bI
m m

 





  
                                                            (S41) 

is the susceptibility coefficient induced by the mechanical resonator and     2
IS I  is the 

spectrum of  I t . As shown in Fig. S5a, the mechanical resonator works similar to a low-pass 

filter, which filters out the high-frequency components of  I t . In fact, the susceptibility 

coefficient  bI   modifies the shape of  IS   and shrinks the spectrum  bS  to the low-

frequency regime. By such a filtering process, the mechanical motion of the resonator does not 

experience the high-frequency components typical of chaotic behavior, but instead remains in the 

periodic-oscillation regime, as shown in the reconstructed motion of the mechanical mode in Fig. 

S5b.  

 

F. Effect of system parameters on the maximum Lyapunov exponent 

Lyapunov exponents quantify sensitivity of a system to initial conditions and give a measure of 

predictability. They are a measure of the rate of convergence or divergence of nearby 

trajectories. A positive exponent implies divergence and that the orbits are on a chaotic attractor. 
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Figure S5. Reconstructed mechanical motion of the microtoroid resonator. a, Periodic 

mechanical motion of the microtoroid when the pump and probe fields are both in the chaotic 

regime. b, Filtering by the mechanical resonator: the mechanical resonator works as a low-pass 

filter which filters out the high-frequency components in the mechanical modes. 

 

A negative exponent implies convergence to a common fixed point. Zero exponent implies that 

the orbits maintain their relative positions and they are on a stable attractor. In the main text of 

the manuscript, we presented the experimental results which show how the pump power affects 

the maximum Lyapunov exponent of the pump and probe fields. Here, we present numerical 

results (Fig. S6) regarding the effect of the frequency detuning between the cavity resonance and 

the pump, frequency detuning between the cavity resonance and the probe, and the damping rates 

of the pump and probe on the maximum Lyapunov exponent. As seen in Fig. S6a, Lyapunov 

exponents of the pump and probe fields vary with increasing frequency detuning between the 

pump and the cavity resonance. As the frequency detuning of the pump increases, Lyapunov 

exponent increases from negative to positive values, attaining its maximum value at a detuning 

value of 0.9pump m   , which coincides well with the numerical results in Ref. [S2] . Further 

increase of detuning, decreases the maximum Lyapunov exponent which becomes negative.  
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Figure S6. Maximum of the Lyapunov exponent for the pump (red spectra) and probe (blue spectra) 

fields. Effect of the (a) pump-cavity detuning, (b) probe-cavity detuning, (c) damping rate of the 

pump, and (d) damping rate of the probe on the maximum Lyapunov exponents of the pump and 

probe fields.  

 

Thus, with increasing detuning of the pump from the cavity resonance, the system evolves first 

to chaotic regime and then gets out of chaos into a periodic dynamics. This is similar to the 

behavior observed for the varying pump field. Interestingly, both the pump and probe fields 

follow the same dependence on the pump-cavity detuning. When we look at the effect of probe-

cavity detuning (Fig. S6b), we see that varying probe-cavity detuning affects only the maximum 

Lyapunov exponent of the probe, and the pump Lyapunov exponent is not affected. The reason 
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for this is that in our experiments and in these simulations, we kept the power of the probe field 

so weak that it does not affect the pump field. A similar trend is seen in the case of varying the 

damping rates of the pump and probe modes, that is varying the damping rate of the pump affects 

Lyapunov exponents of both the pump and probe (Fig. S6c) but varying the damping rate of the 

probe affects only the Lyapunov exponent of the probe (Fig. S6d). In Fig. S6c that with 

increasing damping rate the maximum Lyapunov exponent decreases from a positive value down 

to negative values. This can be explained as follows. Increasing damping rate, decreases the 

quality factor of resonator which in turn reduces the intracavity field intensity. As a result 

optomechanical oscillation is gradually suppressed and the degree of the chaos induced by 

optomechanical interaction decreases.  

   

G. Derivation of the fitting curve for SNR in stochastic resonance  

To obtain more insight into the stochastic resonance phenomenon, let us first focus on the 

dynamics of the optical mode coupled to the probe field probea . The total Hamiltonian of the 

optical modes pumpa , probea , and the mechanical mode can be written as in Eq. (S18). By 

introducing the translation transformation in Eq. (S27) and getting rid of the degrees of freedom 

of the mechanical mode and the optical mode coupled to the pump field pumpa , the Hamiltonian in 

Eq. (S18) can be re-expressed as 

   2† † †
probe probe probe probe probe probe probe probe probe ,H a a a a a a     

  
(S42) 

where probe  is given in Eq. (S35). We can see that the nonlinear optomechanical coupling leads 
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to an effective fourth-order nonlinear term in the optical mode probea .  Introducing the normalize

d position and momentum operators 

   † †
probe probe probe probe probe probe

1 , ,
2 2

ix a a p a a   
  

(S43) 

we write the following dynamical equation by dropping some non-resonant terms and 

introducing the noise terms: 

probe probe probe probe probe,x x p        (S44) 

   3
probe probe probe probe probe probe probe probe ,p x p x t t           (S45) 

where  t  is a noise term with a correlation time negligibly small when compared to the 

characteristic time scale of the optical modes and mechanical mode of the optomechanical 

resonator: 

     2 ,t t D t t    
     

(S46) 

with D  denoting the strength of the noise. Subsequently, we arrive at the second-order 

oscillation equation 

     2 2 3
probe probe probe probe probe probe probe probe probe probe probe probe2 .x x x x t t               (S47) 

Under the condition that probe probe   in the overdamped limit, the above second-order 

oscillation equation can be reduced to 

   
2
probe probe probe probe

probe probe probe probe probe
probe probe probe probe

.
2 2 2 2

x x x t t   
   
   

       (S48) 
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If we introduce the normalized time unit  probe probe2 ,t    we arrive at 

   3
probe probe probe probe probe probe .d x x x

d
    


    

  
(S49) 

which is a typical equation leading to the stochastic resonance phenomenon [S3] , [S4] , [S5] . 

The signal-to-noise ratio (SNR) for such a system is given by 

2 2 2 2 2
probe probe probe

22 4
probeprobe

exp .
88 2

m mSNR
g DD g

      
   

      
(S50)

 

Since the strength of the noise D  is related to the pump power pumpP  by 1/2
pumpD P , the relation 

between the SNR and the pump power can be re-written as 

2 2 2 2 2
probe probe probe

22 4
probe pumppump probe

exp ,
88 2

m mSNR
g PP g

 


    
   

     
(S51) 

 

Figure S7. Signal-to-noise ratio (SNR) for the pump and probe signals. Experimentally-obtained 

signal-to-noise ratio (SNR) of the probe (blue open circles) and pump (red diamonds) signals as 

a function of the pump power. Solid curves are the best fits to the experimental data.  
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which implies that the SNR is not a monotonous function of the pump power pumpP and hence it is 

possible to increase the SNR by increasing the pump power (i.e., subsequently by increasing the 

bandwidth D  and hence the noise). Following the same procedure one can derive SNR for the 

pump in a straightforward way. 

In Figure S7, we give the SNR versus pump power for both the probe and pump fields measured 

in our experiments together with the best fit according to Eq. (S51) for the probe and the similar 

expression for the pump.  Keeping   and   as free parameters, we found the best fits with 

0.825   mW and 1/ 27.4764 mW  for the probe and with 2.6388   mW and 1/ 26.47 mW   

for the pump. 

 

H. Stochastic resonance or coherence resonance? 

Stochastic resonance is a phenomenon in which the response of a nonlinear system to a weak 

input signal is optimized by the presence of a particular level of noise, i.e., the noise-enhanced 

response of a deterministic input signal [S3] . Coherence resonance is a related effect 

demonstrating the constructive role of noise, and is known as stochastic resonance without input 

signal. Coherence resonance helps to improve the temporal regularity of a bursting time series 

signal [S7] . The main difference between stochastic resonance and coherence resonance is 

whether a deterministic input signal is input to the system and whether the induced SNR 

enhancement is the consequence of the response of this deterministic input signal [S15] . In our 

system, a weak probe signal, which is modulated by the mechanical mode of the optomechanical 

resonator at the frequency 26 MHzm  , acts as a periodic input signal fed into the system. 

In order to confirm that the observed phenomenon in our experiments is stochastic resonance 

rather than coherence resonance, we performed numerical simulations and compared the results 
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with our experimental results. The dynamical equations we use for numerical simulation are 

given by 

      pump pump pump pump pump pump pump pump ,a i g X a i t D t              (S52) 

      probe probe probe probe probe probe probe probe ,a i g X a i t D t                 
(S53)  

   ,m mX X P                                                      (S54) 

 2

pump pump ,m m m mP P X g a D t    
     

(S55)
 

with parameters pump probe 1m m      , pump pump 0.1   , probe probe 0.1   , 0.01m m   , 

pump pump probe probe 0.1g g    , pump pump pump 1     , pump pump 0.1D   , probe probe 0.1D   , 

0.1m mD   .      pump probe, , mt t t    are white noises such that 

       0, ' ' ,i i j ijE t E t t t t                                                      (S56) 

where  E   is average over the noise. In the case of stochastic resonance, we set 

probe probe 0.1   , and in the case of coherence resonance  we set probe probe 0   , to simulate 

the system with a weak probe input and without the weak probe input, respectively. First, we 

compare the output spectra obtained in our experiments (Fig. S8a) with the results of numerical 

simulations where in our theoretical model introduced in the previous section is considered with 

and without weak probe input to simulate stochastic resonance (Fig. S8b) and coherence 

resonance (Fig. S8c). We see that in the output spectra obtained in the experiments (Fig. S8a)  

and the simulations with weak probe input (Fig. S8b), the position of the resonant peaks are not 

affected by increasing pump power. The spectral position of the resonant peak in the output 

spectra is fixed at the frequency of the periodic input signal. However, for the case, with no weak  
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Figure S8. Output spectra obtained in the experiments and in the numerical simulations of stochastic 

resonance and coherence resonance at various pump powers. a, Output spectra obtained in the 

experiments show that the spectral location of the resonance peak do not change with increasing 

pump power. b, Output spectra obtained in the numerical simulations of stochastic resonance 

show that the spectral location of the resonance peak stays the same for increasing pump power, 

similar to what was observed in the experiments. c, Output spectra obtained in the numewrical 

simulations of coherence resonance which show that the spectral location of the resonance peaks 

change with increasing pump power. From left to the right, the input pump power is increased.  
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probe input, simulating coherence resonance, the positions of the resonant peaks in the output 

spectra shift with increasing pump power, implying that the resonances are induced by noise 

[S13] Thus, the behavior of the resonances in the output spectra obtained in the experiments 

agrees with what one would expect for stochastic resonance, and it is completely different that 

what one would expect for coherence resonance.  

Next, we compare the mean interspike intervals and its scaled standard deviation calculated from 

the output signal measured in our experiments with the results of numerical simulations of our 

system when a weak probe field is used as an input (case of stochastic resonance) and when there 

is no input probe field (case of coherence resonance). The interspike interval is defined as the 

mean time between two adjacent spikes in the time-domain output signals [S14] , 

                                                  
1

1lim ,
N

iN iN
 




                                                            (S.57) 

where i is the time between the i-th and (i+1)-th spikes. The variation R of the interspike 

intervals which is defined as the scaled standard deviation of the mean interspike interval is 

given as [S14]  

                                                   
22

.R
 




                                                          (S.58) 

In Fig. S9, we present the results of experiments (Fig. S9a) and the numerical simulations for 

stochastic resonance (Fig. S9b) and for coherence resonance (Fig. S9c). The pump power 

dependence of    and R  obtained for our experimental data and that obtained for the 

numerical simulation of stochastic resonance agree well, that is in both the experiments and 

numerical simulations we see that pump power does not affect   much, and R reaches a 

maximum at an optimal pump power (i.e., R  is a concave).  From the results of the simulations   
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Figure S9. Mean interspike interval and its variation for the probe mode. a, Mean interspike 

interval and its variation calculated from the output signal in the probe mode obtained in the 

experiments. b, Mean interspike interval and its variation obtained in the numerical simulation 

of stochastic resonance in our system (with input weak probe). c, Mean interspike interval and 

its variation obtained in the numerical simulation of coherence resonance in our system (without 

input weak probe). Experimental results agree well with the simulation results of stochastic 

resonance, and demonstrate a completely different dynamics than the coherence resonance. This 

imply that the observed phenomenon in the experiments is stochastic resonance. 
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of coherence resonance, we see that (i) the mean interspike interval   drops gradually with 

increasing pump power, and (ii) R  is a concave function, exhibiting a minimum at an optimal 

pump power [S16] . The very good agreement between what we have observed in the 

experiments and the results of the numerical simulations of stochastic resonance in the 

theoretical model describing our system strongly supports that what we have observed in the 

experiments is stochastic resonance rather than coherence resonance.  
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