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Symmetries are essential for understanding and describing 
the physical world1; they give rise to the conservation laws of 
physics, lead to degeneracies, control the structure of matter, 

and dictate interactions. Symmetries require the laws of physics 
to be invariant under changes of redundant degrees of freedom; 
equivalently, one expects the physics to be equivalent for a par-
ticle and its antiparticle (charge conjugation; C symmetry), for 
a system and its mirror image (parity; P symmetry); and even 
when time is running backwards (time reversal; T symmetry). 
Symmetries are perceived as the ‘key to nature’s secret’2; however, 
it is the symmetry breaking that creates nontrivial physics by lift-
ing the degeneracies.

Systems exhibiting PT symmetry are in general non-Hermitian 
systems, which are invariant under the combined action of the P and 
T operations. PT symmetry has its roots in quantum field theory and 
opens a new perspective in studying non-Hermitian Hamiltonians 
(Box 1). While it is still being debated whether PT symmetry is a 
fundamental property of nature, it shares common features with 
naturally occurring symmetries: it can exhibit spontaneous sym-
metry breaking accompanied by a real-to-complex spectral phase 
transition, or, conversely, it can undergo a phase transition that 
restores the broken symmetry. The spectral degeneracies induced 
by PT symmetry are, however, very different from conventional 
ones: they are non-Hermitian and known as exceptional points 
(EPs)3 where the real parts and the corresponding imaginary parts 
of certain eigenvalues coincide, as well as their associated eigenvec-
tors. In essence, the system behaves as if it loses its dimensionality 
near an EP because the vector space becomes severely skewed. This 
is strikingly different from the spectral degeneracies of Hermitian 
systems—so-called diabolic points (DPs)4—where only the eigen-
values coalesce, but the eigenvectors can be chosen to be orthogonal 
to each other (Box 1). DPs are associated with a geometric Berry 
phase5, they play an essential role in the understanding of reac-
tion mechanisms in chemistry4,6 (where DPs are known as conical 
intersections), and are exploited in optical sensing methods using 
whispering gallery mode (WGM) resonators7,8, where they appear 
as ‘mode splittings’.

Since 1998 when Bender and Boettcher showed that a wide 
class of non-Hermitian Hamiltonians can exhibit real spectra if 
they commute with the PT operator9, PT symmetry has become 
an active research area, because it can provide new design strate-
gies for devices with novel functionalities (Fig. 1a). The realiza-
tion of PT-symmetric optical structures from the combination of 
symmetric index guiding with an antisymmetric gain/loss pro-
file10,11, as in a coupled two-component system (Fig. 1b), attracted 
considerable attention, beyond the initially interested community 
of mathematical physicists. The progress in understanding and 
creating PT-symmetric photonic structures has resulted in the 
demonstration of many nontrivial effects such as power oscilla-
tions11–13, loss-induced transparency14 and lasing15,16, non-reciprocal 
light propagation17–19, unidirectional invisibility20–22, PT-symmetric 
lasers23,24 and laser-absorbers25–27, chiral modes and on-demand 
directional emission28–30, and orbital angular momentum lasers31. 
In parallel, there has been a growing excitement about exploring 
PT symmetry in atomic and quantum systems32–34, in optomechan-
ics35–40, acoustics41–43, electronics44, plasmonics45,46, metamaterials47–51  
and photonic crystals52–54.

In this Review, we focus on PT symmetry and the degeneracies 
that it gives rise to, with a particular emphasis on implementations 
in optics. We will review key concepts and experiments that have 
probed fundamental properties of PT symmetry and demonstrated 
the ability of PT-symmetric structures to control and manipulate 
light transport and point out future challenges. PT-symmetric non-
linear optics (not covered here) has been discussed already else-
where55,56.

PT symmetry in optics
One of the challenges in photonics is to develop on-chip optical 
devices that enable better control for information processing and 
transmission. Artificial materials with functionalities beyond those 
of natural materials can offer control over light propagation and 
optical dynamics through engineering the signs and profiles of the 
permittivity ε(r, t)=n2(r, t) and the permeability μ(r, t) (Fig. 1a). 
PT-symmetric optics is mostly concerned with the refractive index 
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n(r, t)=nr(r, t)+ini(r, t) and the interplay between its real part nr, 
which determines the phase velocity, and its imaginary part ni, 
which determines attenuation (loss; ni>0) or amplification (gain; 
ni<0). The crucial question is how to design nr and ni to achieve 
functionalities beyond optical amplification or damping alone.

Early works57–59 on the simultaneous presence of loss and gain 
in optical systems did not mention PT symmetry or its breaking; 
however, their findings can be associated with the implications of 
PT symmetry. The starting point for the use of optical structures 
to simulate PT symmetry was the similarity between the scalar 

Box 1 | PT-symmetric Hamiltonians

In quantum mechanics, the Hamiltonian H is assumed to be Her-
mitian, H=H†, where the superscript † denotes Hermitian conju-
gation (that is, transposition plus complex conjugation). This en-
sures real energy eigenvalues and correspondingly a unitary time 
evolution for which the probability to find this particle somewhere 
is conserved. Systems with gain or dissipation, on the other hand, 
are described by non-Hermitian Hamiltonians—that is, H≠H† for 
which the probability is in general not conserved and time-evolu-
tion is not unitary. What Bender and Boettcher showed, however, 
was that Hermiticity is not a necessary condition for real eigenval-
ues of H, and that a whole class of non-Hermitian Hamiltonians 
(featuring both gain and loss) can have real eigenvalues without be-
ing Hermitian9. This, not necessarily exclusive, class of Hamiltoni-
ans has the property of being PT-symmetric in the sense that they 
commute with the PT operator—that is, [PT, H]=PTH−HPT=0 
where P and T operators satisfy P2=1, P=P†, T2=1, T=T† and [P, 
T]=0. The action of the operators P and T are, respectively, de-
fined as → ̂→ − ̂ ̂ → − ̂P i i x x p p: , , , and → − ̂→ ̂ ̂ → − ̂T i i x x p p: , ,  
with ̂p and ̂x satisfying the commutator [x, p]=xp−px=iħ. The 
complex conjugation (i→−i) when the T operator is applied im-
plies that T is an anti-linear operator. (An antilinear operator K 
satisfies ψ ψ ψ ψ+ = +c x c x c x c xK[ ( ) ( )] K ( ) K ( )* *1 1 2 2 1 1 2 2 , where * 
denotes complex conjugation.) Applying the PT operator to the 
above commutator PT [x, p]TP = −iħ shows that the PT operator 
is an antilinear operator too.

The 2 × 2 Hamiltonian
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describes a non-Hermitian (H≠H†) two-component system with 
complex frequencies ω1−iγ1 and ω2−iγ2. Here γ1, γ2 are the cor-
responding loss/gain coefficients and κ is the coupling strength 
between the components of the system. The eigenvalues of this 
Hamiltonian are ω ω χ κ Γ= − ± +± i0

2 2  where ω0=(ω1+ω2)/2, 
χ=(γ1+γ2)/2 and Γ=δ+iβ with δ=(ω1−ω2)/2 and β=(γ1−γ2)/2. 
When varying two of the available parameters, the two eigen-
values can be forced to coincide at a specific point called an 
‘exceptional point’ (EP) where κ2+Γ2=0, implying the solutions 
δ κ β β κ δ= = ∓ = = ∓r i( 0, ) o ( 0, ) . At an EP not only the eigen-

values coincide in their real and imaginary parts, but also the eigen-
vectors become completely parallel, such that the Hamiltonian is 
defective and not diagonalizable.

The necessary conditions for the two eigenvalues of the 
Hamiltonian H to be real are found as: (i) χ=0, which leads to 
γ1=−γ2, implying that while one of the components of the system is 
dissipating, the other component is amplifying; and (ii) κ2+Γ2≥0, 
which can be satisfied if δ=0, implying ω1=ω2. Under the 
necessary conditions of γ1=−γ2=γ and for the case of ω ω ω= = ′1 2 , 
the Hamiltonian of the two-component system becomes
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with the eigenvalues given as ω ω κ γ= ± −′ ′±
2 2 . Thus, for this 

system to have real eigenvalues one also has to satisfy κ≥γ. The 
Hamiltonian ′H  is PT-symmetric because it stays invariant after 
the action of the PT operator =′ ′PT H H PT . Since the T opera-
tor is anti-linear a PT-symmetric Hamiltonian does not necessar-
ily have eigenvectors that inherit this symmetry; but if they do, 
then the PT symmetry of the eigenvectors entails that these states 
experience an equal amount of gain and loss, such that the cor-
responding eigenvalues are real. This PT-symmetric phase of the 
eigenvectors occurs for κ/γ>1and gets broken at the EP (spon-
taneous PT-symmetry breaking), which is located right at the 
point κ/γ=1, where both the eigenstates and eigenvectors become 
degenerate. The parameter restriction imposed by PT symme-
try implies that the variation of a single parameter is sufficient 
to reach the EP, where an abrupt phase transition from real-to-
complex spectra occurs.

Plotting the full dependence of both eigenvalues of the non-
Hermitian Hamiltonian on κ and δ yields two intersecting 
Riemann sheets wrapped around the EP right in the centre 
(panel a of the figure below). The interesting topology of this 
plot also nicely illustrates that the EP is, in fact, a branch point 
singularity3 as known from the complex analysis of multivalued 
functions. For a Hermitian Hamiltonian with loss/gain 
parameters γ1, γ2=0, the resultant eigenvalues ω ω κ δ= ± +′′± 0

2 2  
form a double cone topology as a function of κ, δ such that the 
cones touch each other at their apex (κ=δ=0), creating a ‘diabolic 
point’ (DB) (panel b). A DP differs from an EP in the sense that 
in the latter both the eigenfrequencies (energy levels) and the 
corresponding eigenstates coalesce, whereas in the former only 
the eigenfrequencies coalesce but the eigenstates may be chosen 
such as to be orthogonal to each other.

Topology of non-Hermitian and Hermitian degeneracies. a, Varying the 
coupling strength κ and the frequency detuning δ of two coupled gain-
loss elements reveals a complex eigenvalue topology of two intersecting 
Riemann sheets centred around an exceptional point (EP). The black 
trajectories show the adiabatic evolution of eigenstates when encircling 
the EP, and the white lines indicate the square-root parameter dependence 
right at the EP. b, In a Hermitian system EPs do not occur and conventional 
degeneracies known as diabolic points (DP) have a double-cone topology 
around them.
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paraxial optical wave equation and the time-dependent Schrödinger 
equation10,11 (Box 2). While being of fundamental interest initially, 
this similarity inspired many PT experiments and follow-up studies 
in which gain and loss are treated on an equal footing, controlled by 
the coupling between them (Fig. 1). The most basic features result-
ing from this interplay can already be seen in the example of two 
coupled discs (Fig. 1c): in the strong coupling regime (κ/κPT>1), 
gain can help to fully compensate the loss, and the system oper-
ates in the PT-symmetric phase (exact phase) with real eigenval-
ues; in the weak coupling regime (κ/κPT<1), on the other hand, gain 
is unable to compensate the loss, and thus the system operates in 
the regime of broken-PT symmetry (broken phase) with complex 
conjugate eigenvalues. In between these regimes, a real-to-complex 
spectral phase transition takes place at an EP (κ/κPT=1). The cru-
cial aspect here is that having a sub-system with gain equal to the 
amount of loss of a second sub-system is not sufficient to have real 
eigenvalues: a proper amount of coupling between them is also 
needed. PT-symmetric systems are open because they have loss and 
gain, thus in the broken-PT phase they are non-equilibrium sys-
tems with exponential amplification and dissipation (that is, com-
plex conjugate eigenvalue pairs), but at the same time they behave 
like closed systems in the exact PT phase because they have a real 
energy spectrum (although the power is not conserved during the 
time evolution11).

Passive PT-symmetry breaking
In the first experimental realizations, the stringent requirement of 
loss–gain balance was circumvented by generalizing the definition 

of PT symmetry to include loss-only structures14,60 (Box 3). Such 
systems are identified as passive PT-symmetric systems to empha-
size that gain is not involved.

The ability of PT-symmetric systems to confine and guide 
light is one of their major strengths first highlighted in a passive 
PT-symmetric experiment performed using coupled waveguides14 
(Fig. 2a) whose loss-imbalance was tuned by introducing addi-
tional loss to one of the waveguides. The concept was subsequently 
extended to coupled microwave61 and optical16 (Fig. 3a) resona-
tors. These experiments with two-component systems revealed 
that when the additional loss was below a threshold value, the 
eigenmodes of the system were distributed evenly between the 
components, and experienced similar losses. As a result, the total 
transmitted power through the waveguides (Fig. 2a) (similarly the 
total field inside the resonators) decreased with increasing loss. 
When the loss was increased to the symmetry-breaking threshold 
and beyond it, the system transited from the strong to the weak 
coupling regime. Consequently, the modes, which were initially 
evenly distributed between the components, were rearranged to an 
asymmetric distribution, with one mode progressively localized in 
the more lossy component and the other in the less lossy compo-
nent. As a result, the total transmission through the waveguides 
increased (similarly the total field in the resonators increased) 
despite the increased loss. This ‘loss-induced transparency’ is coun-
terintuitive from the conventional view that increasing loss should 
decrease the transmitted power.

Despite the absence of spatially symmetric gain and loss regions, 
these experiments are considered to be the first realizations of PT 

GG

PT-symmetric system

R
ea

l p
ar

t o
f e

ig
en

va
lu

es
 (

a.
u.

)

Im
ag

in
ar

y 
pa

rt
 o

f e
ig

en
va

lu
es

 (
a.

u.
)c

a b

Loss
(εi > 0)

Gain
(εi < 0)

Negative indexmaterials(ε
r < 0, µ < 0)

µ-negativematerials(ε
r > 0, µ < 0)

Plasmonics(ε
r < 0, µ > 0) Normalmaterials(ε

r > 0, µ > 0)

als> 0,

εrεi

G L

LL

κ

κ

κ

κ

κ

κ

PT

T

P

Coupling strength κ/κPT

0.0 0.5 1.0 1.5 2.0

Coupling strength κ/κPT

0.0 0.5 1.0 1.5 2.0

G –G

κ

κ

µ

Fig. 1 | PT symmetry. a, Controlling the magnetic permeability (μ) and the real part of the dielectric permittivity (εr) has enabled novel functionalities. 
PT symmetry and non-Hermitian photonics open new possibilities by controlling the imaginary part of the dielectric permittivity (εi), and by considering 
gain and loss on equal footing. b, A system of two coupled structures (with coupling strength κ), one with passive loss (L) and one with gain (G) 
compensating the loss of the other, forms a PT-symmetric system. The parity operator (P) exchanges the structures spatially, and with the action of the 
time-reversal operator (T) loss becomes gain and gain becomes loss. The combined action of PT leaves the system unchanged. c, Real and imaginary 
parts of eigenvalues versus coupling strength κ in a PT-symmetric system with gain–loss balance. Red circles and blue squares are obtained by numerical 
simulation in COMSOL assuming that the system is composed of resonators. κ is normalized to the critical coupling strength κPT at which the PT phase 
transition takes place (EP). Insets feature the intracavity field intensities of the resonators in the PT-symmetric regime (κ/κPT>1) and in the broken-PT 
regime (κ/κPT<1). In the broken-PT regime, one of the supermodes experiences amplification while the other one attenuation.
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symmetry in optics. The transitions from a spatially symmetric 
to an asymmetric state at EPs constitute the PT phase transitions. 
Different from the waveguide experiment14, an optical resonator-
based design16 allowed the variation of both the loss and the inter-
resonator coupling strength. Thereby, the eigenfrequency surfaces 
that exhibited a complex square-root-function topology, and a con-
tinuous thread of EPs along an ‘exceptional line’ were conveniently 
obtained. Moreover, it enabled the investigation of nonlinear pro-
cesses and Raman lasing16 in the vicinity of an EP where field local-
ization enhances the intracavity field intensity.

The relation between purely dissipative and balanced gain–
loss systems has subsequently spurred other investigations with 
loss-only optical structures on wave transport in non-Hermitian 
systems62, achieving effects like the one-sided absence of reflec-
tion or unidirectional invisibility63,64. Moreover, going beyond 
two waveguides, a passive PT-symmetric lattice fabricated with 
direct-laser writing was used to demonstrate that wave transport 
in a non-Hermitian system can undergo a sudden transition from 
ballistic to diffusive transport even in the absence of disorder, and 
that this transition depends only on the degree of dissipation (or 
the Hermiticity) rather than on the coupling strength between the 

waveguides62. In another example, a passive PT-symmetric struc-
ture formed using a Si waveguide, whose permittivity was mod-
ulated in its imaginary and real parts by periodically arranged 
and sinusoidal-shaped Ge/Cr and Si structures on top, was used 
to demonstrate ‘asymmetric back-reflection’ at an EP65 (Fig. 2c), 
where the destructive interference of the coalescing modes sup-
pressed the reflectance for one input direction but not for the 
other. The concept of unidirectional invisibility utilizing EPs was 
later extended to a wafer-scale multilayer structure66 (Fig. 2g). 
Although such systems are unidirectionally reflectionless, the 
Lorentz reciprocity of light still holds.

PT-symmetric waveguides and asymmetric power 
oscillations
The first fully PT-symmetric system with gain and loss was dem-
onstrated13 using two coupled waveguides, with constant coupling 
strength, fabricated from Fe-doped LiNbO3 (Fig. 2b). Gain was 
gradually built up through two-wave mixing by selectively irradi-
ating one of the waveguides with a pulsed laser. The other wave-
guide had loss arising from the optical excitation of electrons from 
Fe2+ centres to the conduction band. At t=0 (no gain), transmis-

Box 2 | PT-symmetric optical potentials

A basic approach to derive a potential that satisfies PT symmetry is 
to start with the paraxial equation of diffraction used in optics10,11
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where E(x, z) is the electric field envelope, n(x)=nr(x)+ini(x) is the 
complex refractive index distribution decomposed in its real nr(x) 
and imaginary ni(x) parts, k=k0n0 is the wavevector, k0=2π/λ with 
λ being the wavelength of the field in vacuum and n0 the substrate 
index. This widely used equation is mathematically isomorphic to 
the Schrödinger equation
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Here, ψ(x, t) is the probability amplitude, ħ is Planck’s constant, 
m is the mass and V(x) is the complex potential. The paraxial 
equation of diffraction describes the spatial propagation of a 
light beam whose amplitude varies very little in the direction 
of propagation over a distance comparable to its wavelength 
(that is, all of the light travels nearly parallel to the direction of 
propagation and the spreading of the wave in transverse direc-
tion is very small). The Schrödinger equation, on the other 
hand, describes the temporal evolution of a quantum particle 
in a potential. Nonetheless, if the parameters E(x, z), z, k and 
k0n(x) of the paraxial equation are replaced by ψ(x, t), t, m/ħ 
and –V(x)/ħ, we obtain the Schrödinger equation with the z 
coordinate in the paraxial equation playing the role of time t in 
the Schrödinger equation. The refractive index distribution n(x) 
translates to the complex potential V(x), and is thus considered 
as the optical potential.

We first apply the PT operator to the Schrödinger equation 
to find the conditions on the complex potential V(x) to be a PT-
symmetric potential. The isomorphism suggests that the same 
condition then can be imposed on n(x) such that it is also PT-
symmetric. Applying the T operator performs i→−i, ̂→ ̂x x and 

̂ → − ̂p p, yielding

where the superscript * denotes complex conjugation and we 
replaced t→−t to have the same sign in front of the first term. The 
P operator, which performs i→i, ̂→ − ̂x x and ̂ → − ̂p p, transforms 
the above expression as
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We may thus conclude that if ψ(x, t) satisfies the Schrödinger 
equation so does ψ*(−x, −t) provided that V(x)=V*(−x). 
Rewriting the complex potential as V(x)=Vr(x)+iVi(x) and 
V*(−x)=Vr(−x)−iVi(−x), respectively, where subscripts Vr and 
Vi denote real and imaginary parts, it becomes clear that the PT 
potential should satisfy Vr(x)=Vr(−x) and Vi(x)=−Vi(−x). This 
implies that the complex PT potential should have a real part, 
which is an even function of x, and an imaginary part, which 
is an odd function of x. Using the isomorphism between the 
paraxial equation of diffraction and the Schrödinger equation, 
we thus conclude that for the optical potential n(x)=nr(x)+ini(x)  
to be PT-symmetric, its real part should be an even function of 
x and its imaginary part should be an odd function of x—that 
is, nr(x)=nr(−x) and ni(x)=−ni(−x). The real part nr(x) of n(x) 
determines the index profile whereas its imaginary part ni(x) 
determines the gain-loss profile, where a positive imaginary part 
implies loss and a negative imaginary part implies gain. Thus, an 
optical system with PT-symmetric potential (complex refractive 
index) has a symmetric index profile but an asymmetric gain/loss 
profile. Such a refractive index profile can be obtained in a system 
of two coupled optical structures (for example, waveguides, 
resonators and so on), one having passive loss and the other 
having gain compensating the loss of the other. While the analogy 
between PT symmetry in quantum mechanics and in optics is here 
clearly most apparent, PT-symmetric concepts are not restricted 
to the paraxial wave equation, but can emerge in a multitude of 
different scenarios (see main text).
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sion was the same regardless of the waveguide into which light was 
launched; during 0<t<tcritical (gain is smaller than a critical value), 
the system was in the exact PT phase that exhibits asymmetric 
power oscillations violating right–left symmetry; at t=tcritical (gain 
reaches the critical value), the supermodes coalesced, and sponta-
neous PT breaking occurred. For t>tcritical (gain exceeds the critical 
value) the system was in the broken-PT phase, and the supermodes 
were distributed asymmetrically between the waveguides, with one 
being confined in the active waveguide (with exponential amplifica-
tion), and the other in the lossy waveguide (with decay). As a result, 
transmission always appeared at the output of the active waveguide 
regardless of the input waveguide. This effect is sometimes called 
non-reciprocal in the sense that power oscillations between the 
waveguides are asymmetric—this terminology is, however, ambigu-
ous since Lorentz reciprocity still holds as long as no nonlinearity 
builds up.

PT-symmetric resonators and non-reciprocal light 
transmission
In 2014, two works18,67 reported PT symmetry and its breaking 
in coupled silica (passive, lossy) and an erbium-doped silica 
(active, with gain) WGM microresonators. The power of a pump 
laser controlled the gain while the distance between the resona-
tors tuned the coupling strength (Fig. 2d). At fixed gain-to-loss 

ratio, the resonances describing the two supermodes exhibited 
spontaneous PT-symmetry breaking18 as the coupling strength 
was reduced. In the strong coupling regime (exact phase), two 
resonances (split modes) with different frequencies but similar 
linewidths were seen. With decreasing coupling strength, the split 
modes approached each other and finally coalesced at a critical 
value. Further decrease pushed the system into the broken phase 
where the modes bifurcated in their linewidths: one mode became 
increasingly localized in the active resonator and the other in the 
lossy resonator. As a result, the field was localized and amplified 
in the active microresonator regardless of whether it was input 
into the passive or the active microresonator. Consequently, 
the intracavity field intensity was resonantly amplified leading 
to a gain-saturation nonlinearity. Following an earlier theoreti-
cal suggestion17, this nonlinearity was used to demonstrate the 
first nonlinearity-based non-reciprocal optical device utilizing 
PT-symmetry breaking18.

This work18 with microresonators ended the debate on the rela-
tion between PT-symmetry breaking and Lorentz reciprocity, by 
showing that such systems with gain and loss are reciprocal in 
the linear regime regardless of whether they are operated in the 
exact or in the broken-PT phase. Magneto-optical, nonlinear or  
time-dependent materials and structures are needed to break reci-
procity68. The strong field localization in the broken-PT phase just 

Box 3 | EPs and passive PT symmetry

The simplest Hamiltonian describing a non-Hermitian system 
consisting of two lossy components is represented by a 2 × 2 
matrix, where the off-diagonal elements represent the coupling 
strength (real κ) between the optical modes. The diagonal ele-
ments represent the unperturbed complex energies ω0−iγ1 and 
ω0−iγ2 of the modes (γ1, γ2>0 corresponds to loss):
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The corresponding Schrödinger equation is given as follows 
(we set ħ=1 without loss of generality):
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Defining χ=(γ1+γ2)/2 and β=(γ2−γ1)/2 and applying the gauge 
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The new Hamiltonian ′H  has the same off-diagonal elements 
κ as the original Hamiltonian H; however, the imaginary parts of 
its diagonal elements are now balanced (that is, the gain in one 
element has the same magnitude as the loss in the other). For this 
matrix to be PT-symmetric, =′H PT[ , ] 0 should be satisfied. Note 
that the parity P operator is the Pauli operator 





σ = 0 1
1 0x  and the 

time-reversal T operator corresponds to complex conjugation. 
Thus, starting with the commutator, we find that
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where we have used T=T−1, P=P−1 and =′ ′TH T H *. Thus, for  
this matrix to represent a PT-symmetric Hamiltonian, H′=PH′*P 
should hold:
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Thus, the gauge transformation reveals the hidden PT symmetry 
present in the non-Hermitian matrix H by changing the reference 
point: before the transformation gain and loss are defined with 
respect to zero (positive γ1,2 implies loss and negative γ1,2 implies 
gain). After the transformation the reference point becomes χ. 
Consequently, if γ1,2 is greater than χ, the system is considered as 
lossy. If γ1,2 is less than χ, it is considere as a system with gain. 
Similarly, one can write the general non-Hermitian matrix as the 
sum of a PT-symmetric part and a lossy part

� ������� ������� � ����� �����





































ω γ κ
κ ω γ

ω β κ
κ ω β

χ
χ

−
− =

+
− +

−
−

-

i
i

i
i

i
i
0

0
0 1

0 2

0

0

PT symmetric coupled systems lossy uncoupled systems

In this sense the dynamics of a loss–loss system is equivalent to 
that of a loss–gain system apart from a global exponential decay/
amplification.
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helps to obtain the nonlinear response at much lower power with 
respect to the exact phase. PT-symmetric microresonators thus 
enable a significant reduction in the required input power and a 
higher rectification (complete absence of transmission in one direc-
tion and resonantly enhanced transmission in the opposite direc-
tion) for nonlinearity-based non-reciprocal light transmission.

In general the degree of non-reciprocity in such nonlin-
ear devices depends on the intensity of the signal. Operating a 

PT-symmetric system in the broken-PT phase helps to achieve a 
higher degree of non-reciprocity at much lower signal intensities. 
Moreover, although nonlinearity-based non-reciprocal devices 
may transmit strong signals in one direction and suppress them in 
the opposite direction, they may also exhibit ‘dynamic reciproc-
ity’ for a certain class of weak signals that coexist with the strong 
signal69. Therefore, they cannot be used as isolators for arbitrary 
signals because an isolator should suppress the transmission in 
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one direction regardless of the presence of a weak signal in the 
opposite direction, or in both. This is true even in PT-symmetric 
systems where gain and loss coexist. A PT-symmetric system 

that can be used as an isolator is yet to be discovered, with its 
advantages and disadvantages over the conventional ones being 
still under debate.
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PT-symmetric lattices and photonic crystals
Large-scale temporal PT-symmetric lattices21 were realized using 
two coupled optical fibre loops of different lengths, which were 
periodically switched between gain (provided by semiconductor 
optical amplifiers) and loss (induced using acoustic modulators). 
Optical pulses propagating in the system are delayed or advanced, 
creating discretized arrival times to the detectors. Each of these 
‘time slots’ corresponded to a node of an analogous spatial lat-
tice (Fig. 2e). In the absence of gain (passive lattice) two bands 
formed without gap and the power in the lattice was conserved. In 
the broken-PT phase, parts of the band structure became imagi-
nary and the power grew exponentially in time. At the EP, band-
merging took place and the power increased linearly in time. In 
the exact PT phase, an entirely real band structure with bandgap 
formed, and power oscillations took place due to the interfer-
ence of non-orthogonal Floquet–Bloch modes, leading to power 
revivals during evolution. At the EP, light input in one direction 
experienced no reflection and was fully transmitted, even without 
any phase imprint, whereas the light in the other direction was 
reflected with a reflection coefficient exceeding one, leading to 
unidirectional invisibility.

The temporal PT lattice was subsequently used to demonstrate 
defect states70 and optical solitons71. Defect states in PT lattices do 
not only trap light but also exhibit linearly growing emission if the 
associated EP is located within the continuum70. The existence 
of such bound states in the continuum in Hermitian systems is 
often linked to some symmetry, which completely decouples them 
from their surroundings. These observations suggest the possibil-
ity of controlling light emission by tuning defect parameters in  
PT lattices72.

In the PT lattice below the PT transition point, an optical input 
pulse with sufficiently high power to induce nonlinearity leads to 
stable discrete solitons71. In the broken-PT phase, the wavepacket 
spreads and is exponentially amplified when the power is low and 
the system is in the linear regime. In the nonlinear regime, however, 
the system becomes unstable, nonlinearity cannot prevent wave-
packet spreading, and thus no solitary wave is formed. When the 
symmetry is restored and the band structure becomes real, discrete 
stable optical solitons appear.

Another related concept is ‘constant-intensity waves’73 supported 
by certain loss–gain potentials, which give rise to waves without 
any interference fringes in their intensity in spite of spatial poten-
tial variations—a feature that is impossible to realize in Hermitian 
scattering landscapes. These waves survive the presence of a Kerr 
nonlinearity and can thus be used to study ‘modulation instability’ 
in non-uniform potential landscapes. This concept also allows for 
perfect transmission through disordered media with gain and loss 
components74—an effect that was meanwhile experimentally real-
ized in an acoustic setup75.

In PT-symmetric photonic crystals (PhCs), increasing the 
strength of gain and loss may lead to the coalescence of EPs52. 
One intriguing feature53,54 is band-merging, leading to rings and 
contours of EPs, and to bandgaps opening. The Dirac point where 
the two conical bands of the material dispersion touch each other 
in a Hermitian system, gives rise to a ring of EPs in passive two-
dimensional PhC slabs due to non-Hermiticity induced radiation 
losses53 (Fig. 2f).

EPs in resonators and lasers
One of the earliest studies on the role of EPs in lasers is the pre-
diction and the measurement of linewidth broadening beyond 
the Schawlow–Townes linewidth by a factor, known as the 
Petermann excess noise factor76. This excess noise originates 
from non-orthogonal modes formed due to the non-Hermitic-
ity of a laser. While a first generation of experiments77 already 
probed the linewidth-broadening due to non-orthogonality, the 

maximal broadening at an EP was explicitly explored in a recent 
work on phonon lasers39. EPs in lasers are also at the origin of 
many dynamical phenomena, such as fast self-pulsations (‘dis-
persive self Q-switching’) in two-section distributed-feedback 
lasers where mode-beating occurs when two nearly degenerate 
modes have similar threshold gain78. In addition, an investigation 
of PT-symmetric resonators in the vicinity of an EP have revealed 
that non-Hermiticity, if properly engineered and controlled, can 
enhance the laser performance regarding single-mode operation, 
wavelength tunability, and stability79.

A striking example for the nontrivial laser physics occurring at 
an EP is the reduction in light emission despite an increasing pump 
power15,80. The theoretical prediction80 that pumping each sub-
component of a coupled laser system separately steers its complex 
eigenvalues towards a ‘pump-induced EP’ that inhibits lasing was 
first realized in coupled quantum cascade lasers15 (Fig. 3b). If the 
lasers are pumped equally, no EP appears and the system emits in 
two modes associated with the individual lasers. Driving one of the 
lasers with a constant pump slightly above its lasing threshold and 
varying the pump of the other one reverses the dependence of the 
emitted light intensity on the pump strength: as the pump of the 
second laser is increased, the system gradually approaches an EP; 
the output of the existing single lasing line gradually decreases and 
then completely turns off at the EP (‘lasing death at an EP’). Further 
increase of the pump moves the system away from the EP and hence 
the lasing re-emerges.

While these experiments demonstrated the influence of an EP on 
a laser, the EP itself was observed only indirectly, as being pushed 
below the lasing threshold by the lasing death phenomenon15. A 
system of coupled resonators16 allowed to probe the resonances 
also below the threshold through their input–output relations and 
through their Raman lasing above threshold (Fig. 3a). The positions 
and widths of the resonances in this ‘photonic molecule’ provided 
the real and imaginary parts of the eigenvalues that were steered to 
an EP by adjusting the inter-resonator coupling and the loss imbal-
ance of the resonators. This information was then directly matched 
with the observation of a loss-induced suppression and revival of 
Raman lasing as the system was moved to and away from the EP. 
Keeping the pump power above the lasing threshold and introduc-
ing loss to one of the resonators annihilated an existing Raman 
laser. Increasing the loss further pushed the system closer to the EP 
and enhanced the intracavity field intensity via field localization, 
thereby reviving the Raman laser, whose intensity increased with 
increasing loss. Similarly, the laser threshold power first increased 
but then decreased with increasing loss16. These observations are in 
stark contrast with the general expectation that the loss is detrimen-
tal to laser systems.

PT-symmetric lasers
PT-symmetry breaking was proposed for single-mode operation in 
multimode large-area laser amplifiers81 where the coupling strength 
between identical modes in two subsystems (with loss and gain, 
respectively) forming the PT structure is higher for higher-order 
modes. Thus, the gain (and the same amount of loss) required for 
PT breaking is higher for the higher-order modes than for the fun-
damental mode. If the system is suitably designed and excited, the 
fundamental mode will be the first to undergo PT breaking and will 
thus be amplified. The rest of the modes will be bounded in their 
amplitudes. The modes below the PT-breaking threshold are sym-
metrically distributed and exhibit oscillations. The mode pair above 
the PT-breaking threshold has an asymmetric distribution with the 
mode that is localized in the gain subsystem being shifted across the 
lasing threshold.

Single-mode lasing in the PT-breaking regime was demonstrated 
in two coupled InGaAsP microrings23 and in an InGaAsP/InP 
microring24 (Fig. 3c,d). These experiments showed that by selectively  
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breaking PT symmetry, stable single-mode operation is possible in 
laser cavities with multiple modes within the gain spectral band-
width. Any resonator with a spectrally non-uniform gain profile 
can sustain single mode operation if the gain compensates losses 
in only one resonance but not in the others. Single-mode operation 
can also be achieved in lasers without PT configurations by using a 
spatially modulated pump, exploiting the Vernier effect or by intro-
ducing dispersive elements. The crucial difference between lasers 
with a PT-symmetric setting and those without lies in the maximum 
achievable gain (while maintaining single-mode operation), which 
is defined as the contrast between the principal mode gain g0 and 
the gain g1 of the next competing mode. For a laser in the PT con-
figuration one finds

=
∕ +

∕ −
g g

g g

g g

1

1max
PT

max
0 1

0 1

whereas gmax=g0−g1 is the maximum achievable gain contrast for a 
laser without PT configuration23. This square-root behaviour is a 
consequence of the square-root topology in the vicinity of an EP in 
non-Hermitian systems, including PT-symmetric systems (Box 1).  
As gmax is very small for broadband gain materials, this square-
root behaviour leads to higher gain enhancement and better mode  
selection.

The concept of PT symmetry and its breaking was later applied 
to different laser configurations and platforms. EPs and an asso-
ciated transition to single-mode lasing were observed in PhC 
nanolasers through controlling the gain contrast of coupled lasers 
via graphene-induced loss82. PT-symmetry breaking occurred in 
electrically pumped and coherently coupled vertical-cavity sur-
face-emitting laser (VCSEL) arrays83. Beam steering (different 
from the conventional method of locking each element to a com-
mon master) and hopping of the lasing mode between in- and 
out-of-phase modes were shown to arise from the non-Hermitic-
ity of the array caused by the gain–loss contrast. The maximum 
relative phase tuning was reached at or beyond the EP in the  
PT-broken regime.

Coherent-perfect absorption and lasing
Resonances appear as poles of the scattering matrix that describes 
how a resonator scatters incoming modes into the outgoing ones 
(Box 4). For a resonator without a gain medium, these complex poles 
have negative imaginary parts. But when gain is added, they move 
towards the real axis until the first pole reaches the real axis and 
lasing sets in. The scattering matrix of the resonator also features 
zeros in the upper part of the complex plane located at the mirror-
images of the poles. When adding loss they move downwards until 
a zero reaches the real axis and the time-reversed process of lasing 
takes place—a coherent and monochromatic field illuminating the 
resonator with a suitable wavefront gets perfectly absorbed84. This 
‘coherent-perfect absorption’ (CPA) generalizes the concept of ‘criti-
cal coupling’ to an arbitrary number of modes. First experimental 
realizations have recently been reported85.

In a PT-symmetric structure, the conditions for CPA and those 
for lasing can coincide25. The discrete points in parameter space 
where CPA-lasing occurs are the points where a pole and a zero of 
the scattering matrix (Box 4) meet on the real axis26. A first imple-
mentation was based on a pair of passive resonators coupled to a 
microwave transmission line27. Lasing (coherent amplification) 
and anti-lasing (coherent absorption) in the same optical device 
was realized86 in a waveguide where InGaAsP quantum wells on 
an InP substrate provided gain, and periodic Cr/Ge structures on 
top induced loss to provide PT-symmetric gain–loss modulation. 
The phase difference of the light input to the waveguide in both 
directions was tuned to selectively excite either the lasing or the 

anti-lasing mode. CPA lasers provide the flexibility of using the 
same device as an absorber, a laser or as a modulator86.

Asymmetric backscattering and directional emission
Highly symmetrical shapes of WGM microresonators and microlas-
ers prevent directional light output as desired for many applications. 
To circumvent this problem, the resonators’ circular rotational sym-
metry is intentionally broken either by deforming their shapes or 
by introducing defects so that the clockwise (CW) and the coun-
terclockwise (CCW) mode components differ87,88. Chiral WGMs 
with a predominantly CCW or CW component, such as in spi-
ral-shaped resonators88, were linked to the asymmetric scattering 
between CCW and CW waves89, which forms non-orthogonal co-
propagating modes. These properties are strongly enhanced at an 
EP where the scattering between the CW and CCW components 
vanishes completely in one of the two directions. This asymmetric 
backscattering and the consequent chirality, non-orthogonality and 

Box 4 | PT-symmetry breaking in scattering systems

PT-symmetric Hamiltonians exhibit spontaneous symmetry 
breaking in their eigenvalues, which are either real or come in 
complex conjugate pairs. Whereas Hamiltonians are conveni-
ent to describe problems with specific boundary conditions, 
unbounded scattering problems are typically characterized by 
a scattering matrix S, which relates the amplitudes of incom-
ing modes to those of the outgoing modes, ψ ψ→ =→S

in out (in a 
flux-normalized basis). In systems without any gain or loss the 
scattering matrix is unitary—that is, S†S=1 and the eigenval-
ues of S are uni-modular complex numbers. To obtain a cor-
responding condition for PT-symmetric systems, we recall 
that the scattering matrix for scattering at a potential V that 
is part of the Hamiltonian H=H0+V can be written as the fol-
lowing limit, = −→∞S iH t i Ht iH tlim exp[ ] exp[ 2 ] exp[ ]t 0 0 .  
Knowing that both the Hamiltonian of free space H0 and 
the Hamiltonian H including the potential V are PT-sym-
metric, (PT)H0(PT)=H0 and (PT)H(PT)=H, one can eas-
ily show that = −PT iH t PT iH t( ) exp[ ] ( ) exp[ ]0 0  and 

− =PT i Ht PT i Ht( ) exp[ 2 ] ( ) exp[ 2 ] . We thus obtain the desired 
relation26 (PT)S(PT)=S−1, which is reminiscent of the unitarity 
condition for Hermitian systems S†=S−1. Indeed, both relations 
result in the relation |det S|=1. Unitarity, however, is a stronger 
constraint, in the sense that the eigenvalues sn of unitary scatter-
ing matrices always lie on the complex unit circle, whereas the 
eigenvalues of a PT-symmetric S matrix are either uni-modular 
or come in pairs with reciprocal moduli—for example, s2=1/s1* 
for a 2 × 2 scattering matrix. Correspondingly, one finds that also 
in scattering problems the eigenchannels of the scattering ma-
trix can be in two different phases separated by an exceptional 
point at which s1=s2: In the PT-symmetric phase the S matrix 
features uni-modular eigenvalues (with no net amplification be-
tween input and output) and PT-symmetric eigenvectors. In the 
broken-PT phase the S matrix eigenvalues are shifted away from 
the unit circle and the PT operator transforms one eigenvector 
(with gain) into the other one (with loss). In this PT-broken 
phase, if one eigenvalue goes to zero (s1→0) its counterpart goes 
to infinity (s2→∞). At these special parameter points, the object 
described by such a scattering matrix can emit coherent waves 
(such as laser light) and simultaneously fully absorb incoming 
waves with appropriate frequency, amplitude and phase25,26. An 
experimental realization of such a PT-symmetric laser absorber 
is very challenging, particularly in the presence of noise, but first 
results have been reported86.
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co-propagation have been observed in microcavities with intention-
ally placed scattering centres30,90–93.

Asymmetric backscattering with partially directional emis-
sion was reported in a wavelength-scale microdisc with InGaAsP/
InGaAs quantum wells92 (Fig. 3e). The link between asymmetric 
backscattering and EPs was unambiguously demonstrated in a pas-
sive microresonator30, using two nanotips as Rayleigh scatterers 
whose relative size and distance within the resonator’s mode volume 
could be finely adjusted to drive the system close to or away from 
EPs (Fig. 3f). At an EP, the transmission was the same regardless 
of the input direction. Reflection curves, however, showed a pro-
nounced resonance peak only for one of the input directions. These 
experiments clarified the difference between directionality (the 
amplitude difference between the CW and CCW directions without 
correcting for the bias of the input light direction) and chirality (an 
intrinsic property of a WGM independent of the input direction), 
concluding that chirality is the quantifier of asymmetric backscat-
tering. Directionality changes depending on how close the system is 
to an EP; however, the direction in which the input light is injected 
remains dominant. Chirality, on the other hand, can take any value 
in the range [–1,1]: it is zero if backscattering is equal for the CW 
and CCW inputs (orthogonal eigenstates, away from an EP); it is 
non-zero if backscattering for the input in one direction is larger 
than that for the other direction; it approaches 1 or –1 as the system 
approaches an EP. This concept, when translated to WGM microla-
sers, revealed that laser emission is bidirectional when chirality is 
close to zero; it occurs only in one direction when chirality is maxi-
mal; and its direction can be reversed by moving from one EP to 
another (Fig. 3f).

Travelling CW/CCW modes in WGM resonators carry high 
optical angular momentum (OAM). However, the reduction, if not 
complete cancellation, of the OAM due to simultaneous excita-
tion of CW and CCW eigenmodes, and the difficulty of extracting 
the highly confined WGMs into free-space without reducing their 
OAM have hindered their practical use. It was suggested that the 
chirality at an EP can be used for developing WGM microlasers that 
emit OAM or vortex beams30. Experimentally, single-mode OAM 
lasing into free space was demonstrated94 in a microring laser, with 
an embedded angular grating structure operating at an EP.

Encircling EPs
There is still considerable potential to explore new physics when 
encircling an EP rather than approaching it95. Changing system 
parameters sufficiently slowly and continuously around an EP was 
originally expected to give rise to an adiabatic state evolution. A 
closed loop on the self-intersecting Riemann surface at an EP (Box 
1) would move from one Riemann sheet to the other one such that 
an initial state transported around the EP would then return to a 
different state in terms of a so-called state flip32,95. Only a second 
loop would return the system to its initial state (apart from a Berry 
phase of π).

Recent theoretical works have shown, however, that the non-
Hermiticity necessary for the observation of an EP actually prevents 
an adiabatic evolution96–98. The presence of non-adiabatic terms 
leads to a chiral behaviour, such that the encircling direction of the 
EP essentially determines in which final state the system will arrive 
(Fig. 4a,b). This behaviour remained unattainable in earlier stud-
ies due to the parametric (not dynamical) encircling consisting of 
a concatenation of static experiments32,95. To go beyond this limita-
tion, the dynamical variation of parameters along a loop around an 
EP was mapped onto a boundary-modulated waveguide with two 
transverse modes99. The corresponding device transmitted waves 
only into one of the two transverse modes at either one of its two 
outputs. In another implementation35 an optomechanical system 
was steered to encircle an EP, giving rise to asymmetric energy trans-
fer: in one encircling direction, there is energy transfer between the 

system’s eigenmodes; in the other, non-adiabatic transitions lead to 
its breakdown. This concept was recently implemented in silicon 
photonics to span the entire optical communications band100.

PT optomechanics
The interaction between optical fields and mechanical motion is 
the central topic of cavity optomechanics (COM)101. Hybridization 
of non-Hermitian physics and optomechanics to engineer these 
interactions has initiated the field of PT optomechanics36 (or non-
Hermitian optomechanics more generally).

The first example36 investigated phonon lasing in a PT-symmetric 
structure (a passive optical resonator with a mechanical mode cou-
pled to an active resonator without mechanical mode), predicting 
a giant enhancement in the optomechanical coupling strength that 
enables highly efficient phonon lasing around an EP36. A study of the 
nonlinear dynamics of this system without resorting to phonon las-
ing revealed that gain saturation helps to regulate oscillation ampli-
tudes that otherwise would be unbounded40. In coupled mechanical 
resonators with optically induced loss and gain, a combination of 
nonlinear saturation and noise leads to preserved or weakly broken 
PT symmetry, and a transition from a thermal to a lasing state with 
small amplitude102. The same structure was used to study optome-
chanically induced transparency101 (OMIT), revealing38 an inverted 
spectrum with a transparency dip between two sideband peaks, 
gain-induced suppression of optical transmission (reversal of gain 
dependence) and transitions between slow- and fast-light regimes 
by tuning the gain-to-loss ratio.

The enhancement of optomechanical interactions and associ-
ated nonlinearities around an EP has inspired numerous studies. 
A system consisting of a lossy resonator with weak mechanical 
nonlinearity coupled to a resonator with mechanical gain but no 
nonlinearity was proposed for non-reciprocal phonon transport in 
the broken-PT regime103. Ultralow threshold chaos104 was linked 
with PT-symmetry breaking in an optomechanical system due to 
enhanced optomechanical nonlinearity. Emergence of a third-order 
EP (three eigenfrequencies and eigenmodes of the system coalesce) 
and the consequent enhancement of optical spring and mechani-
cal damping, which enable low-power mechanical cooling, were 
predicted in a PT-symmetric optomechanical system38. A mechani-
cal analogue of the loss-induced optical lasing16 was predicted in 
optomechanical resonators by tuning the loss of intrinsic two-level 
system (TLS) defects that exist in amorphous materials used in the 
fabrication of optomechanical resonators105. Despite many theoreti-
cal studies, there are only two reported experiments35,39 so far on 
non-Hermitian optomechanics. In one, encircling an EP resulted 
in asymmetric energy transfer35 and in the other operating a pho-
non laser at an EP lead to significant linewidth broadening39. These 
studies provide deeper insights into the interplay between non-Her-
miticity and optomechanical coupling and can thus help to explore 
the behaviour of thermal and quantum fluctuations in the vicinity 
of EPs, and to construct new devices for controlling photon–pho-
non interactions.

Sensing at exceptional points
Lifting DP and/or EP degeneracies by perturbations leads to a 
splitting of energy levels, which can be quantified to under-
stand the nature of the perturbations. The topology exhibited in 
the vicinity of a DP or an EP (Box 1) leads to a striking differ-
ence in their sensitivity to perturbations106 (Box 5). While fre-
quency splitting close to a DP is proportional to the perturbation 
strength ϵ, it scales as ϵ ∕N1  in a system106 close to an N-fold EP 
where N eigenfrequencies and eigenmodes coalesce simultane-
ously107. Hence, splitting at an EP is larger for a sufficiently small 
perturbation (ϵ ≪ 1). Similarly, the splitting is larger at an EP 
of higher degree. For stronger perturbations, the response of a 
system operating at an EP approaches that of a system operating 
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at a DP. When operating the sensor at an EP with PT symmetry, 
an important advantage, in addition to the ϵ ∕N1  behaviour, arises: 
due to the gain–loss balance the resonance modes have narrow 
linewidths, which enables resolving much smaller frequency 
splittings. The same Nth root behaviour at the EP occurs also 
for loss-only systems, leading to an equivalent response to small  

perturbations. However, the increased losses in such systems pro-
duce resonances with larger linewidths, which impose a limit on 
the smallest amount of frequency splitting that can be resolved. 
As a result, PT systems can detect much smaller perturbations 
than loss-only systems due to their gain–loss balance and hence 
narrower linewidth.
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Box 5 | Enhancement of sensing at EPs

Sensors operating in the vicinity of EPs are asserted to be superior 
to those operating away from EPs. This sensitivity enhancement 
has been attributed to the nth root topology of the eigenvalue sur-
faces formed by varying the parameters of the system (Fig. 1 and 
the figure in Box 1 depict a square-root behaviour because two 
eigenvalues are involved). Let us first consider here a system that is 
either at a conventional Hermitian degeneracy (DP) or at a generic 
non-Hermitian degeneracy (EP). Adding the same perturbation 
to both of these two situations individually differentiates them in 
the way the perturbation lifts the degeneracy in the corresponding 
eigenvalues. At a DP the unperturbed Hamiltonian can be written 
as follows











=H
E

E
0

00
DP 0

0

Adding now a non-Hermitian perturbation εH1 where











=H
E A
B E1

1 1

1 1

with C∈E A B, ,1 1 1 , leads to eigenvalues of the perturbed 
Hamiltonian ϵ= +H H H0

DP
1 that are split by ϵΔ =E A B2DP 1 1 . 

The real part of ΔEDP corresponds, for example, to the splitting 
between two resonance positions away from the perfect over-
lap at the DP (the imaginary part corresponds to a splitting in 
the linewidth). When applying the same perturbation εH1 to a 
Hamiltonian that is located at an EP, where











=H
E A

E00
EP 0 0

0

we obtain an eigenvalue splitting of ϵ ϵΔ = +E A B A B2EP 0 1 1 1  
that is not linear in the perturbation strength ϵ (as for the DP), 
but that scales with the square root of ϵ. For a sufficiently weak 
perturbation (that is, for ε ≪ 1 or ∣ ∣ ≫ ∣ ∣A A0 1 ) we thus find that 
the splitting at the EP is always enhanced as compared to the DP: 

ϵ ϵΔ = Δ + ∕ ∕E E A AEP DP 0 1 . The situation described here is typ-
ically encountered in particle sensors based on microcavities7,8,112, 
where the two degenerate modes may, for example, be the whisper-

ing gallery modes in a circular resonator and the perturbation may 
be a particle that splits their degeneracy when being close to the rim 
of the resonator (panel a of the figure below).

A similar situation occurs in sensors that detect a small change 
in the refractive index of a medium. Consider as an illustrative 
example the case of three nearest-neighbour-coupled sites with 
balanced gain and loss at the outer two elements and no gain/
loss in the middle site113. Taking out the common real part of 
the refractive index in these sites, we end up with the simple 
Hamiltonian













κ
κ κ

κ
=

−
H

ig

ig

0
0

0
0
EP

that can be tuned to a threefold EP (EP3) simply by shifting the 
gain/loss-strength g to the value κ=g 2 , where κ is the coupling 
strength between sites. At this parametric position, where all the 
three eigenvalues and eigenvectors of H0

EP coincide, the sensitiv-
ity of the system to a perturbation in any of the three elements 
is strongly enhanced. Consider adding to the gain element a per-
turbation in the form of a refractive index change ϵ→ +ig ig , for 
which case one can show using perturbation theory around the EP 
that two of the degenerate eigenvalues split as κ ϵΔ ≈ ∕∕E 3 2EP

2 3 3 .  
At an EP3 we thus obtain an eigenvalue splitting that scales with 
the third root of the perturbation strength ε, suggesting that oper-
ating a sensor at an EP in general and at a higher-order EP in par-
ticular can significantly enhance a system’s sensitivity with respect 
to perturbations (panel b).

In addition to the splitting of the eigenvalues one, however, also 
needs to take into account their resolvability. Within the context 
of nanoparticle sensing Özdemir et al. introduced a criterion that 
states that the amount of splitting should be larger than the total 
loss of the system (that is, resonator losses plus nanoparticle-
induced losses)131. It is here that PT-symmetric sensing setups 
come in handy, as the corresponding gain–loss balance in them 
results in narrower linewidth that can resolve much smaller mode 
splittings and hence much smaller perturbations. A loss-only 
system operating at an EP, although having the same dependence 
(that is, ϵ ∕1 2) on the perturbation, may not be able to resolve an 
induced mode splitting because it has higher loss and broader 
linewidth.
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The sensitivity enhancement at an EP was theoretically investigated 
for particle detection in resonators106 and one-dimensional PhC nano-
beams108, chemical detection in PT-symmetric photoexcited graphene 
metasurfaces109, and refractive index sensing with PT-symmetric 
microlasers110. A sensitivity enhancement of two orders of magnitude 
was predicted111 close to the transition point from the unbroken- to the 
broken-PT regime for detecting mechanical motion.

The theoretical concepts developed around EP- and PT-enhanced 
sensing were recently confirmed112,113 in ring resonators for nanopar-
ticle sensing using twofold EPs with a square-root dependence112, 
and for refractive index sensing using threefold EPs with cubic-root 
dependence113 on the perturbation strength (Box 5). The enhance-
ment in nanoparticle detection at an EP originates from the joint 
contribution of the symmetric scattering due to the perturbation (as 
is the case at a DP) and the fully asymmetric internal backscatter-
ing, which is much larger than the former for weak perturbations106. 
Although these proof-of-principle experiments have opened an 
exciting direction in optical sensing with unparalleled resolution 
and sensitivity, there are still many remaining technical challenges 
before such sensors can be put to practical use. For example, since 
each detection event in these sensors will move the system away 
from the EP, the sensitivity will gradually decrease with an increas-
ing number of detection events (unless the system is brought back 
to the EP after each event). This limits the number of events that 
can be detected with an EP-enabled sensitivity. Therefore, practical 
systems for bringing the system back to the EP are needed. In this 
regard, PT-symmetric systems can have advantages over systems 
with only lossy components as they can be turned back to an EP 
after each detection event simply by modifying the gain under fixed 
coupling strength.

A plethora of platforms and techniques have been utilized for 
imaging and sensing, spanning from nano/microelectromechanical 
systems (NEMS/MEMS) and plasmonics to optical resonators and 
electronics, and from the use of conventional classical approaches 
to inherently quantum or quantum-inspired designs. It is not clear 
yet whether EP- and PT-enhanced sensors can beat these matured 
technologies in practical settings and, more importantly, whether 
they can approach quantum-noise-limited precision and compete 
with the performance of quantum(-inspired) sensors. EP-enhanced 
sensing is still in its infancy and we expect more theoretical studies 
on the connections of this field to the established quantum limits 
and a development of the reported proof-of-principle experiments 
into more elaborate and practical sensing platforms.

Topological effects in PT-symmetric systems
Topological photonics has emerged as one of the most fascinating 
and rapidly growing fields in physics114. In a broader sense, already 
the effects related to encircling of EPs are topological since they rely 
on the specific topology of the Riemann sheets that self-intersect 
at an EP (Fig. 4a,b). In a stricter sense, topological photonics deals 
with topologically protected phases, which enable robust and highly 
confined states of light. These can arise at the interface between two 
regions that have topologically distinct band structures. Recently, 
there have been efforts to investigate topological physics in dissipa-
tive non-Hermitian systems115–118.

The argument that a topological edge state in a system, described 
by a PT-symmetric Hamiltonian, cannot be an eigenstate of the PT 
operator because the action of the PT operator will send the state 
to the other edge and break PT symmetry, has been used to state 
the impossibility of PT-symmetric topological states119. The theo-
retical demonstration118 of the existence of topologically protected 
mid-gap states in the broken-PT regime of a photonic system was 
supported by the first experimental demonstration116 of a topologi-
cal transition in the bulk of a non-Hermitian system in the broken-
PT regime. Photonic Floquet topological insulators with scatter-free 
edge transport were realized experimentally117, and the existence of 

a PT-symmetric variant in a non-Hermitian system with periodi-
cally modulated potentials was pointed out theoretically120. Recent 
studies have shown that topologically protected defect states can 
emerge in non-Hermitian systems at the interface of two regions 
with different non-Hermiticity by combining PT and chiral symme-
tries121, and that chiral topological edge modes in a non-Hermitian 
variant of two-dimensional Dirac equations are related to the EPs of 
the bulk Hamiltonians122.

Selective control and enhancement of a topologically induced 
state by localized absorptive losses was demonstrated in a one-
dimensional chain of coupled microwave resonators with alter-
nating spacing between them72 (Fig. 4c). A defect that broke PT 
symmetry was formed at an interface state by repeating one of the 
spacings. The first truly PT-symmetric topological interface state 
was recently demonstrated123 in a photonic waveguide lattice with 
a (similarly induced) topological defect (Fig. 4d). The waveguides 
were coupled to their nearest neighbours with alternating coupling 
strengths determined by their spacing. Dimerization (difference of 
the coupling strengths) was used to tune the system across an EP, 
completing the transition from the broken- to the unbroken-PT 
regime. For zero dimerization, due to the absence of an interface/
defect state, an incoming wavepacket spreads regardless of whether 
the lattice is Hermitian or not. For non-zero dimerization, the inter-
face state creates a topological state that strongly confines light at the 
defect site. For a non-Hermitian lattice, this takes place only when 
the system moves into the PT-symmetric regime. Probing topologi-
cal effects in non-Hermitian systems may further clarify how topo-
logical Chern numbers are related with EPs, and how global and 
local PT symmetry affect light transport.

Future outlook and discussions
A considerable number of theoretical and experimental break-
throughs have been reported in PT-symmetric photonics. 
Experimental implementations have already reached a mature stage 
beyond mere demonstrations of PT symmetry and its breaking, 
now aiming at creating functionalities unseen in purely dissipa-
tive or amplifying systems. For example, the scattering properties 
of nanoparticles with gain and loss regions or nanostructures com-
posed of such nanoparticles seem suitable for designing structures 
with tunable scattering and transmission. Similarly, the control of 
physical processes in composite structures, formed with organic 
and molecular materials, small molecules, polymers and two-
dimensional materials, via PT symmetry concepts can be used 
for developing novel photonic functionalities. Additional work is 
needed to clarify the fundamental limits of EP-enhanced sensors 
and whether they can approach quantum-noise-limited perfor-
mance. Here we provide a brief account of some of the topics that 
we expect to attract attention in future PT-physics studies.

Plasmonics. Plasmonics is concerned with the interaction of light 
with electrons in metals. It allows one to localize light fields in sub-
wavelength dimensions and to achieve strong intensity enhance-
ments124. Unfortunately, plasmons suffer from dissipation in metals 
(Ohmic losses). These losses can be compensated, and dissipative 
dynamics in plasmonics can be controlled by embedding structures 
in gain-providing environments or by injecting carriers/plasmons. 
These efforts provide a platform for PT plasmonics in the sense 
that the loss in one plasmonic system can be balanced with gain 
in another system configured to exchange energy with it. Although 
there have been several theoretical studies45,46 on PT-symmetric 
plasmonics, no experiment has been reported yet. It is also still 
unclear whether PT plasmonics can lead to strong coupling between 
an emitter and a plasmonic mode.

PT symmetry and non-Hermiticity in the quantum regime. 
The majority of experimental and theoretical concepts developed 
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so far in PT-symmetric physics consider the classical regime, but 
we expect an extension to the quantum regime. Since PT systems 
operate with gain and loss, which are intrinsically linked to quan-
tum noise through the quantum fluctuation–dissipation theorem, 
a quantum description should encapsulate such effects102,125. The 
ultimate goal would be to precisely tailor non-Hermitian photonic 
systems via coupling strength, loss–gain ratio or loss engineering to 
address the challenges in quantum photonics. Engineering transi-
tions in quantum dynamical systems, by driving them closer to or 
further away from EPs or investigating the interaction of a single 
atom with the field of a PT-symmetric system would be of interest. 
It is still an open question whether photon number statistics and 
quantum correlations will be preserved when a quantum state of 
light is transmitted through a PT-symmetric network in the bro-
ken- and unbroken-PT regimes, and whether gain–loss engineering 
can help to provide longer propagation distances without degrading 
the quantum nature of light. Similarly, investigating non-Hermitian 
nonlinear parametric processes126,127 for preparing quantum states 
of light, quantum frequency translation, parametric amplifica-
tion and frequency combs, as well as for enhancing photon–pho-
ton interactions, will be of interest. A recent study128 suggests that 
PT-symmetric qubits may be more robust against decoherence, and 
thus may be better suited for quantum information processing. A 
study129 on information flow in PT-symmetric non-Hermitian sys-
tems has revealed that complete information retrieval is possible 
from the environment only in the exact PT phase; the PT phase 
transition (at the EP) marks the boundary between the reversible 
and irreversible criticality of information flow; and in its vicinity the 
recurrence times and distinguishability of quantum states exhibit 
power law behaviour. The information retrieval is then attributed to 
a hidden entangled partner protected by PT symmetry. The idea of 
PT symmetry was also extended to strongly correlated many-body 
systems, revealing a novel quantum phase transition, accompanied 
by the spontaneous breaking of PT symmetry, which does not have 
a correspondence in Hermitian quantum many-body systems130. 
The same study also predicts anomalously enhanced superfluid cor-
relations in the PT-broken quantum critical phase. The experimen-
tal verification of these predictions related to quantum phenomena 
and quantum processes will certainly encourage further studies on 
PT-symmetric quantum information science.

Conclusion
Introducing PT symmetry and non-Hermiticity into photonics has 
established novel ways of using gain, loss and their coupling to con-
trol light transport. Although the field has grown exponentially in 
recent years, there is still ample room for new insights and innova-
tion. In the coming years, we expect the discovery of novel features 
in different physical systems configured to exploit PT symmetry 
and non-Hermitian dynamics, new PT-symmetric devices, and an 
efficient use of PT symmetry as solutions for fields suffering from 
loss. Exploiting non-Hermiticity and PT symmetry in already estab-
lished and emerging fields of physics and photonics could dramati-
cally improve the performance and the robustness of devices, and 
promises breakthroughs in both the fundamental and technological 
outcomes in photonics and materials science.
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