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Resolution of superluminal signalling in non-
perturbative cavity quantum electrodynamics
Carlos Sánchez Muñoz 1, Franco Nori 1,2 & Simone De Liberato 3

Recent technological developments have made it increasingly easy to access the non-

perturbative regimes of cavity quantum electrodynamics known as ultrastrong or deep strong

coupling, where the light–matter coupling becomes comparable to the bare modal fre-

quencies. In this work, we address the adequacy of the broadly used single-mode cavity

approximation to describe such regimes. We demonstrate that, in the non-perturbative

light–matter coupling regimes, the single-mode models become unphysical, allowing for

superluminal signalling. Moreover, considering the specific example of the quantum Rabi

model, we show that the multi-mode description of the electromagnetic field, necessary to

account for light propagation at finite speed, yields physical observables that differ radically

from their single-mode counterparts already for moderate values of the coupling. Our multi-

mode analysis also reveals phenomena of fundamental interest on the dynamics of the

intracavity electric field, where a free photonic wavefront and a bound state of virtual photons

are shown to coexist.
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Large light–matter couplings achievable in solid-state cavity
quantum electrodynamics (QED) setups have allowed to
enter non-perturbative regimes in which the interaction

energy is a non-negligible fraction of the unperturbed excitation
energies. Classified as ultrastrong coupling1 or deep strong cou-
pling2 accordingly to whether the interaction energy is of the
order of, or larger than, the bare ones, those regimes have been
both achieved in different solid-state implementations3–19.

From the theoretical side, the investigation of these non-
perturbative regimes proceeded through the analysis of arche-
typical Hamiltonians, adapted to model different physical
implementations and parameter regimes. The quantum Rabi
model, describing a single two-level system (TLS) coupled to a
single mode of the electromagnetic field, stands out as the sim-
plest and the most iconic of them. Presently well understood for
arbitrary values of the coupling20, it has been successfully
employed to model the first observation of strong coupling21 and,
with some tweaks, of deep strong coupling16. Its mathematical
properties22 and the possible implementations with synthetic
models23, 24 have also become object of interest.

To what extent any particular physical implementation is
faithfully described by the quantum Rabi model depends
largely upon how well it satisfies two assumptions: the emitter
behaves effectively as a TLS, and only a single mode of
the electromagnetic field significantly couples with it. The validity
of the latter assumption is far from universal, and it has
often been recognized that when the coupling is large enough
to significantly hybridize the emitter with higher-lying
photonic modes, those should be included in the Hamiltonian
description17, 25–32.

The first major result of this paper will be to show, exploiting a
simple gedanken experiment, that, at least in the case of cavities
with an harmonic multi-mode structure, there is actually an
intrinsic problem in the description of a emitter-cavity system in
terms of the single-mode quantum Rabi model, which becomes
unphysical in the deep strong coupling regime since it allows for
superluminal signalling. In order to better understand the prac-
tical relevance of such a problem, we will then perform a rigorous
analysis of the multi-mode version of the quantum Rabi model,
exploiting both numerical and analytical approaches. Such ana-
lysis will reveal that the failure to consider higher-lying photonic
modes has a profound impact already in the ultrastrong coupling
regime, that is, for values of the coupling nowadays routinely
achieved in experiments. So far, such observations have mainly
consisted of transmission experiments probing the low-energy

spectrum of the system33. It is worth noticing that, in the kind of
systems we are focussing on, one can obtain a low-energy spec-
trum of the single-mode description that does not differ
greatly from the full, multi-mode case if one uses distinct fitting
parameters. However, in contrast to these previous works, our
analysis reveals that the different nature of the eigenstates and
their degeneracy have critical consequences on the system
dynamics.

Results
The problem of superluminal signalling. We will focus most of
our discussion on the simple physical system sketched in Fig. 1a:
a perfect, one-dimensional cavity of length L coupled to a single
TLS of frequency ωx placed at its centre. When only the coupling
to the lowest mode of frequency ωc= πc/L is considered, such a
system is perfectly described by the standard Rabi Hamiltonian
(we take hereafter ħ= 1):

HR ¼ ωx

2
σz þ ωca

ya� igσx a� ay
� �

: ð1Þ

In order to see how this Hamiltonian allows for superluminal
signalling when g ’ ωx;ωc, let us consider the situation sketched
in Fig. 1b, with an observer placed close to one of the mirrors and
the system initialized in a factorized state, with the TLS either in
its ground gj i or excited ej i energy level and the cavity field in its
vacuum state. Such a configuration can be prepared performing
only local operations on the TLS, i.e. by non-adiabatically
switching on its coupling to the cavity34, 35.

After a timescale τR ≈ 2πg−1, the Hamiltonian in Eq. (1)
will lead to an evolution of the cavity field, conditional on the
initial state of the TLS. The cavity mode is delocalized along
the cavity and the observer can thus, measuring the local
field, acquire an information on the initial state of the TLS,
placed at a distance L

2. Unless τR � L
2c, the observer can thus

measure the state of the TLS, placed at a distance L
2, in a time

smaller than L
2c. The above inequality can be expressed in terms of

coupling and bare frequencies as ωc � g, showing that the
parameter regime in which superluminal signalling becomes
possible coincides with the non-perturbative coupling regimes of
cavity QED.

Multi-mode quantum Rabi model. In order to better understand
the impact of the single-mode approximation, we will study the
same model of Eq. (1) but now considering the full, real-space
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Fig. 1 The problem of superluminal signalling in the single-mode Rabi model. a Schematic view of a qubit embedded in a perfect 1D cavity, together with the
depiction of the three lowest cavity modes. When the qubit is only coupled to the fundamental mode, the system is described by the Rabi Hamiltonian. b
Violation of relativistic causality by the single-mode Rabi model in regimes where g≈ωc. An observer placed close to the cavity edge can retrieve
information about the initial state of the TLS before light is able to reach its position. c A multi-mode description is able to capture the spatio-temporal
structure of the light field necessary to comply with causality
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electric field inside the cavity:

EðxÞ ¼ iuz
X
k

�hωk

2ϵ0LA

� �1=2

ake
iðkx�ωktÞ þ h:c:; ð2Þ

where we have taken into account a single relevant polarization
along the z axis. Here A is the transverse area of the cavity, and
without any loss of generality, we have taken periodic boundary
conditions to simplify the numerical analysis.

By defining the symmetric modes:

an ¼
1ffiffiffi
2

p ak þ a�kð Þ; for k ¼ 2πðnþ 1Þ
2

; n ¼ 0; 1; ¼ ; ð3Þ

the dipolar coupling interaction Hint=−d · E, where the dipole
operator is d= μσxuz, yields the multi-mode Rabi Hamiltonian:

H ¼ ωx

2
σz þ

XN�1

n¼0

ðnþ 1Þωca
y
nan � i

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
gσx an � ayn

� �� �
; ð4Þ

with g � ffiffiffiffiffiffiffiffi
2ωc

p
μ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2ε0LA

p
and N the total number of modes

included in the description. Equation (4) is well defined in the
electric dipolar approximation and the low-energy part of its
spectrum converges in the limit of an ideal multi-mode cavity
N →∞, when the TLS frequency ωx includes the N-dependent
renormalization due to the dipole self-interaction in the
Power–Zienau–Woolley gauge36, 37.

In the standard Coulomb gauge in which ωx is microscopically
independent from N, convergence would require instead to
consider the diamagnetic A2 term in the Hamiltonian27, 28.
Recent works have proved that this remains true also in the case
of superconducting circuits31, 38, 39, assuring that our results are
applicable also to this important class of systems. Given that we
consider ωx to be an experimentally measured value, we will not
explicitly mark its dependency upon N.

In general, the total number of modes N involved will depend
on the specific physical implementation of the quantum Rabi
model, e.g. due to the finite size of the emitter, with several tens of

them being a typical figure31. Even for these finite values of N,
computing the dynamics of Eq. (4) for large g/ωc is a
computationally formidable task, because even in the ground-
state each photonic mode contains a finite population of virtual
photons1. As explained in the Methods section, we thus adopt the
approach of refs. 40, 41, recasting the Hamiltonian into the form of
a chain with nearest neighbour interactions, which can then be
efficiently solved by using matrix product states (MPS)42–44.

System dynamics. In Fig. 2a, we plot the time evolution of the
TLS population versus g/ωc, with the TLS initially in its excited
state and zero photons in the cavity, ψð0Þj i ¼ ej i 0j i, obtained,
respectively, solving Eq. (1) (single-mode) and Eq. (4) (multi-
mode). This initial configuration is a superposition of excited
states of the coupled light–matter system, which could be initi-
alized by applying a π pulse in a decoupled system and then by
non-adiabatically switching on the coupling34, 35. As an alter-
native approach to obtain an initial excited configuration, one
could also apply a suitable pulse to the coupled system in its
ground state45. In any case, the effects that we report here appear
as long as the system is initially in some superposition of excited
states.

Figure 2b shows a plot along the dashed lines in Fig. 2a,
corresponding to g/ωc= 0.6. It is clear that the single-mode
approximation drastically fails as the system enters the non-
perturbative region, with completely different physics taking
place already for values of the coupling well below the boundary
of the deep strong coupling regime. While for the considered
values of the coupling the Rabi oscillations are distorted in the
single-mode case, for the multi-mode Hamiltonian the TLS
relaxes immediately and remains most of the time in a
superposition of gj i and ej i yielding a population of 1/2,
experiencing a sequence of sharply peaked revivals that bring it
back to the excited state at times multiple of the cavity roundtrip
time, 2π/ωc. Even for lower values of the coupling—before these
revival peaks are fully formed—one can observe a perturbation of
the Rabi oscillations taking place at those specific times. In Fig. 2c,
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Fig. 2 Breakdown of the Rabi model observed through the system dynamics. a Contour plot of the TLS population versus time and coupling rate. The
dashed line marks the value g/ωc≈ 0.6 chosen for the rest of the simulations. Above this value, the single-mode Rabi model differs drastically from the
multi-mode model. Insets on the right show a zoom view around a revival peak. b Population of an initially excited TLS versus time for the single-mode
(blue, dashed) and multi-mode (red, solid) cases, for a coupling rate of g/ωc= 0.6. c Amplitude of the electric field inside the cavity (square root plotted
for clarity) as a function of space and time, for g/ωc= 0.6. The inset focus on the precise moment when the field is perfectly absorbed by the emitter,
giving rise to the revival peaks in the population of the TLS. Computed using the technique of MPS including 50 cavity modes
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we plot the amplitude of the electric field inside the cavity,
x∈ (−L/2, L/2) as a function of time, for the case g/ωc= 0.6. The
electric field features the coexistence between two distinct
components; (i): a localized cloud bound at the position of the
TLS, and (ii): a free wavefront propagating at the speed of light.
The free wavefront is backscattered at the edges of the cavity and
returns at the position of the emitter at times 2πn/ωc, when all the
light is perfectly absorbed by the TLS—see inset of Fig. 2c—
yielding the revival peaks in its population.

In order to gain further insight into the dynamical features of
the multi-mode quantum Rabi model in the non-perturbative
regime, we perform now an analysis similar to the one applied in
ref. 2 to the single-mode case. To do so, we split the Hamiltonian
into two parts, H=HI+HII, with HII ¼ ωx

2 σz , and start by
studying the action of HI alone. While in the single-mode case
neglecting HII is a good approximation only in the limit ωx ≈ 0 of
the deep strong coupling regime2, we will show that it is enough
to describe the features that we have reported for the multi-mode
model even at the resonant condition ωx ≈ ωc and in the
ultrastrong coupling regime. Let us consider that HI is acting
on a wavefunction whose matter component is one of the
eigenstates of σx, ±j i. In that case, HI takes the form of a
collection of driven harmonic oscillators:

HI;± ¼
XN�1

n¼0

ðnþ 1Þωca
y
nan � i

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
g an � ayn
� �� �

: ð5Þ

The evolution under this Hamiltonian can be readily solved by

means of a unitary transformation U± ¼ QN�1
n Dn

�β0ffiffiffiffiffiffi
nþ1

p
	 


,

where Dn βð Þ ¼ exp βayn � β�an
� �

is a displacement operator
acting on mode n with a sign that depends on the state of the
TLS, and β0= ig/ωc. This transformation gives a Hamiltonian
without the driving term, H′

I ¼ U±HI;±U
y
± =PN�1

n¼0 ðnþ 1Þωca
y
nan � g2=ωc

� �
. We can write the evolution of

an initial state with no photons ψð0Þj i± =
Q

n 0j in ±j i under the
effect of HI as:

ψðtÞj i±¼ Uy
± e

�iH′
ItU± ψð0Þj i±¼ e

ig
2

ωc

PN�1

n

1�sin½ðnþ1Þωc t�
ωcðnþ1Þ

n o
�ξNðtÞj i ±j i

ð6Þ

where �ξNðtÞj i≡QN�1
n �βnðtÞ

�� �
. Here βnðtÞ

�� �
represents a

coherent state in the nth cavity mode, with βn(t) given by:

βnðtÞ ¼
β0ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p exp½�iωcðnþ 1Þt� � 1f g: ð7Þ

The corresponding trajectories in phase space for each cavity
mode are depicted in Fig. 3. The single-mode case was already
introduced in ref. 2; it features circular trajectories corresponding
to oscillations around the centre of an harmonic oscillator
displaced by β0. The period of these oscillations is given by 2π/ωc,
and it is associated with the revivals in the probability of the
initial state, corresponding to those times when the state in phase
space crosses the (0, 0) point. In the multi-mode case, this picture
is extended, with each mode of frequency ωc(n+ 1) following a
circular trajectory, whose radius and period depend on n as
1=

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
and 1/(n+ 1), respectively. With high-energy modes

oscillating faster than low-energy ones, the total period of the
dynamics is fixed, as in the single-mode case, by the period of the
fundamental mode, ωc. The revival probability of the initial state

is given by:

P0ðtÞ ¼ hψðtÞjψð0Þij j2¼ e
�
PN�1

n

jβnðtÞj2
:

ð8Þ

If the TLS is initially in an excited state ej i= þj i � �j ið Þ= ffiffiffi
2

p
,

as in the case we solved numerically, the resulting wavefunction
consists of a superposition:

ψðtÞj i ¼ 1ffiffiffi
2

p �ξNðtÞj i þj i � ξNðtÞj i �j ið Þ; ð9Þ

with a revival probability given as well by Eq. (8). The two terms
of the superposition are coupled by the Hamiltonian part HII that
we have neglected so far, with a matrix element
þh j �ξNðtÞh jHII �j i ξNðtÞj i=�ωxONðtÞ=2 that is proportional
to the overlap between the two cavity states, ONðtÞ≡
�ξNðtÞjξNðtÞh i= e�2

PN�1

n
βnðtÞj j2 . The exponent is given by a

sum that diverges logarithmically with N for all t except for t=
2πn/ωc:

XN�1

n

βnðtÞ
�� ��2¼ g2

ω2
c

XN�1

n

2
nþ 1

1� cos ðnþ 1Þωct½ �f g: ð10Þ

This means that the overlap decays quickly to some stationary
value ON that goes to zero with increasing N as ON �
1= 2eγðN þ 1Þ½ �4g2=ω2

c (with γ the Euler–Mascheroni constant)
and then experiences sharp revivals at multiples of the cavity
roundtrip time. In contrast to the single-mode case, where the
width of the revival peaks is given by g/ωc, these decays and
revivals occur on a short timescale τ ≈ 2π/(Nωc), which justifies
the approximation of neglecting HII as long as (i): the decay is fast
enough, Nωc � ωx; and (ii): the stationary value of the overlap
after the decay is small enough, ωxON 	 g. This sets two
conditions on N and g for the multi-mode physics to become
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Fig. 3 Phase space trajectories of the cavity modes. Trajectories in phase
space for the single-mode case (left) and the multi-mode case (right) in
which the trajectories of successive modes are plotted up to n= 20. Red
(blue) curves correspond to the trajectories for an initial þj i �j ið Þ state in
the TLS
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relevant and the effect of light propagation that we report to
manifest, breaking down the single-mode Rabi physics. We have
observed that, for ωx= ωc, values of N∈ [10, 100] and g=ωc ⪆
0.25 are sufficient to fulfil these conditions, meaning that these
effects will be relevant already in the ultrastrong coupling regime
for systems involving only several tens of cavity modes. A more
detailed analysis of the implications of a finite N is provided
in Supplementary Notes 1 and 2. Interestingly, these results show
that the multi-mode Rabi model can work as a dynamical
description of wavefunction collapse based only on the
Schrödinger equation. This is related to previous efforts46–48,
which, in the spirit of the many-worlds theory, describe the
wavefunction reduction as a unitary evolution that includes the
measurement device as part of the quantum system49, 50.

As we showed before numerically, the revivals can also
manifest in the population of the TLS, which within our
approximation is trivially related to the overlap ON(t) as:

σyσ
 �ðtÞ ¼ 1

2
1þ ONðtÞ½ �: ð11Þ

This expression reproduces perfectly the extremely sharp
revival profiles that we report in Fig. 2b that were numerically
computed for N= 50. Furthermore, it is easy to show how the
collection of circular trajectories of the multi-mode case gives rise
to the spatial profile of the electric field that we obtained
numerically. The amplitude of the electric field is given by:

E�Eþh iðx; tÞ ¼ �hg2

ϵ0ALωc

PN
n;m¼0

eiðnþ1Þωct � 1
� �

´ e�iðmþ1Þωct � 1
� �

cos 2π x
L ðnþ 1Þ� �

cos 2π x
L ðmþ 1Þ� �

;

ð12Þ

which, when plotted, shows a perfect agreement to the profile in
Fig. 2c. This is explicitly shown in Fig. 4a, which depicts a
comparison between numerical calculations and Eq. (12) at a
given time. Equation (12) can be decomposed into a time-
dependent term, corresponding to (i) the part of the field that is
emitted from the TLS and propagates freely towards the ends of
the mirror, and (ii) a time-independent term, corresponding to
the part of the field that remains bound to the TLS at the centre of
the cavity. These terms have their origin in the time-dependent
and -independent parts of the coherent amplitude βn(t) of each of
the cavity modes, see Eq. (7), and the ratio between them will
depend on the initial state (being 1/2 in our particular case).

Propagative and bound photons. The plot of the electric field in
Fig. 2c seems to clearly attribute the regular peaks in Fig. 2a, b
with period 2π/ωc to a rather trivial propagative effect of photons
bouncing back and forth, and as such it had already been
described in ref. 51 within the rotating wave approximation,
which a priori excludes the presence of any non-perturbative
effect. Still our analysis shows that those peaks have the same
origin as those reported in ref. 2 for the single-mode quantum
Rabi model in the deep strong coupling regime, in which, of
course, the concept of propagation is non-relevant. Here we have
shown that these two seemingly unrelated phenomena are
effectively the same and that, in the multi-mode case, it is inti-
mately related to light propagation and thus relativistic causality.
This provides an intuitive physical understanding of why this
phenomenon manifests at much lower coupling rates than actu-
ally predicted by the single-mode model: it is linked to a pro-
pagation that cannot be neglected when the coupling frequency
becomes comparable to the cavity roundtrip, since it would allow
for superluminal signalling.

In order to understand the second component of the dynamics
(the localized cloud bound at the position of the TLS), let us recall
that we expressed the Hamiltonian as a collection of displaced
harmonic oscillators. Therefore, the absolute value of the time-
independent part of βn(t) describes a coherent state at the
equilibrium position of the nth displaced oscillator, β0=

ffiffiffi
n

p
, i.e. its

vacuum state. We can then understand the time-independent part
of the wavefunction as a set of displaced oscillators in vacuum,
which corresponds to the ground state of the system. We have
verified this by numerically computing the ground state using
imaginary-time evolution, see Fig. 4a. The results obtained
confirm that the ground state of a TLS non-perturbatively
coupled to a cavity is indeed constituted by a localized cloud of
photons around the TLS, which is in a superposition with a
population corresponding to that observed in the revivals
nσh i ¼ 1=2. Those virtual photons have been demonstrated to
exist also in lossy systems52, although once the coupling with the
environment is properly considered35, 53–56 their non-radiative
nature becomes apparent. Our results provide a more transparent
way to understand them as a localized, bound state of photons; in
future works, the methods that we present here might be applied
to study their properties in lossy systems. Bound states have
already been documented in the context of ultrastrong coupling
of a quantum emitter to open lines57, 58, and there is much
literature discussing their existence in boson impurity models in
the single photon59, 60 and, more relevant to our discussion,
multiphoton case61. They are associated with eigenstates of the
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Fig. 4 Ground state and eigenvalues of the multi-mode Rabi model. a Red,
dashed line: Amplitude of the electric field inside the cavity corresponding
to the ground state of the system for g/ωc= 0.6. Solid, blue (dashed-
dotted, yellow): numerical (analytical) calculation of the electric field for an
initial state ej i 0j i after evolving for a time t= π/2ωc, confirming that the
dynamics of the system is given by the independent evolution of two freely
propagating wavepackets plus a localized cloud of photons corresponding
to the ground state of the light–matter system. b Low-energy spectrum of
the single-mode (red) and multi-mode (blue) Rabi Hamiltonian as a
function of the coupling rate. For each value of g, the eigenvalues are
expressed with respect to the ground state. Here, ωx=ωc
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system whose energy lie outside the energy spectrum of the bath,
which in this case would be constituted by the infinite set of cavity
modes.

For a given set of parameters, the spectrum of eigenvalues
obtained from the multi-mode Rabi Hamiltonian strongly differs
from the result given by the single-mode one, see Fig. 4b. In the
large-coupling limit, both models feature a series of equispaced
energy levels similar to the bare ones, a result shown above in
the derivation of H′

I and well known for the single-mode
case20, 27, 62, 63. However, the results predicted by both models
differ substantially in a range of couplings approximately
delimited by 0.1≲ g/⍵c≲ 2 for the low-energy eigenstates. The
results shown in Fig. 4b evidence that transition energies should
be fitted with a multi-mode Rabi Hamiltonian in order to obtain a
proper description of the system; the use of a single-mode Rabi
Hamiltonian might lead to a qualitatively similar prediction for
the low-energy transitions but yielding an incorrect estimation of
the system parameters. Owing to this possibility, an unambiguous
evidence of the breakdown of the single-mode Rabi model physics
enforced by causality should come from the analysis of the
dynamics of observables, such as the TLS population, that, as we
have shown, carry unequivocal signatures of the propagation of
light inside the cavity.

Discussion
We have performed a thorough theoretical analysis of a single
emitter coupled to a photonic resonator. Our first result has been
that, at least for resonators with harmonic spectra, like standard
λ/2 cavities, the single-mode quantum Rabi model is incompa-
tible with relativistic causality. By means of quasi-exact numerical
calculations using MPS, we have then studied the multi-mode
version of the quantum Rabi model confirming that, beyond
certain values of the coupling rate, the single-mode model fails to
describe the physics of a TLS coupled to the electric field inside a
cavity. The failure of the model occurs in the regime of ultra-
strong coupling, well before reaching the limit of deep strong
coupling, and where the single-mode Rabi model is often
invoked. This failure does not only manifest in the spectrum of
eigenvalues, which differs from the one given by the single-mode
model, but most importantly in the dynamics, which features
freely propagating photonic wavepackets inside the cavity that
coexist with a bound state of virtual photons corresponding to the
ground state of the system.

Our theoretical analysis is most timely. Advances in super-
conducting circuits in fact not only recently led to the first
observation of the deep strong coupling regime in a single-mode
setup16, but multi-mode effects in the ultrastrong coupling have
also been recently reported17. Although this work primarily deals
with the failure of the single-mode approximation, we verified
that our results are not qualitatively affected by the breakdown of
the TLS approximation. In Supplementary Note 3, we in fact
extend our investigations beyond the quantum Rabi model,
considering as matter degree of freedom a bosonic field with a
small Kerr nonlinearity. We found that, in this situation, although
higher modes are also involved in the dynamics, our conclusions
remain valid.

These results bring a deeper understanding of a system of
central importance in quantum mechanics and therefore are very
relevant for the design of new technologies aiming to exploit the
physics of light–matter coupling in the ultrastrong coupling
regime.

Methods
Computation of system dynamics with MPS. We make use of the approach
presented in refs. 40, 41 and define a new set of operators by means of an unitary
transformation bi ¼

PN
n¼0 Ui;nan to recast the Hamiltonian in Eq. (4) into another

with nearest neighbour interactions:

H ¼ ωx

2
σz þ

XN
i¼0

ωib
y
i bi þ ti byi biþ1 þ h:c:

	 
h i
� igρ0σx b0 � by0

	 

; ð13Þ

with Ui;n ≡
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Qiðn; 1; 0;NÞρ�1

i (Qi being the Hahn polynomials); ti≡−Aiρi
+1/ρi; ωi≡ 1+ Ai+ Ci and

ρ2i ¼
ð�1Þiðiþ 2ÞNþ1i!

2ðnþ 1Þð�NÞiN!
; ð14Þ

Ai ¼
ðiþ 2Þ2ðN � iÞ
2ðiþ 1Þð2iþ 3Þ ; ð15Þ

Ci ¼
i2ðiþ 2þ NÞ

2ðiþ 1Þð2iþ 1Þ : ð16Þ

where we used the Pochhammer symbol (z)i= z(z+ 1)…(z+ i− 1). Writing the
Hamiltonian in this form allows us to compute its dynamics very efficiently using
the MPS method.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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