
 
 

 
 

1 

Supplementary Information 

Topological non-Hermitian origin of surface Maxwell waves 
K. Y. Bliokh et al. 

 
 
 
 
 
 
 
 
 

 
Supplementary Figure 1. Phases of the surface refractive index. Phases Arg nsurf( ) , 

Eq. (27), are shown for the (a) propagating (  kz
2 > 0 ) and (b) evanescent (  kz

2 < 0 ) surface 
modes with real frequencies, ω 2 > 0 . The blue (pink) zones correspond to the “right-
handed” (“left-handed”) surface modes with parallel (anti-parallel) wavevector and 
complex Poynting vector (26). All these diagrams are plotted for the  µ1 > 0  case. 
Simultaneously flipping the signs of  µ1  and  ε1  swaps the “blue” and “pink” zones in 
these diagrams, i.e., changes the phase of   nsurf  by π . 
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Supplementary Note 1. Bulk modes of Maxwell equations 
 

We consider monochromatic wave solutions of Maxwell’s equations, which are described by 
complex electric and magnetic field amplitudes E r( )  and H r( ) . The corresponding real fields are 

given by Re E r( )e− iωt⎡⎣ ⎤⎦  and Re H r( )e− iωt⎡⎣ ⎤⎦ , where ω  is the wave frequency. Maxwell’s equations 
in an isotropic lossless homogeneous optical medium read: 

   µωH = −i∇×E ,     εωE = i∇×H ,       ∇⋅H = ∇⋅E = 0 , (1) 

where ε  and µ  are the real-valued permittivity and permeability of the medium.  
Despite the medium being lossless, the first pair of these equations can be written in the non-

Hermitian helicity-based form (1) or (6) of the main text:  

 Ŝ ⋅ p̂( )ψ = −ω
2

ε + µ( )σ̂ 2 + i ε − µ( )σ̂ 1⎡⎣ ⎤⎦ψ . (2) 

Here, ψ = E,H( )T  is the 6-component “wavefunction”, and 
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are the Pauli matrices exchanging the electric and magnetic fields, whereas  
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Ŝz =
0 −i 0
i 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
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are the spin-1 matrices acting on the Cartesian components of the fields as −i Ŝ ⋅∇( ) = ∇× .  

The bulk dispersion for Eqs. (1) and (2) is  

   ω
2 = k 2 / εµ( ) , (3) 

which describes a massless spectrum with a Dirac point in the origin of the momentum k -space [1]. 
At the same time, the dispersion (3) shows that the signs of the permittivity and permeability 
determine different classes of optical media. For εµ > 0  the spectrum (3) is real and the medium is 
transparent, whereas for εµ < 0  the medium is opaque (we will refer to such medium as a “metal”) 
and either the frequency or wavevector becomes imaginary. This exactly corresponds to the fact that 
the ε = 0  and µ = 0  values determine the exceptional points [2,3] of the non-Hermitian operator in 
the right-hand side of Eq. (2). Below we show that the cases ε > 0, µ > 0( )  and ε < 0, µ < 0( )  or 
ε > 0, µ < 0( )  and ε < 0, µ > 0( )  are also topologically different. 

Assuming propagation along the  z -axis, the circularly-polarized bulk modes of Eqs. (1) can 
be written as: 

 

   

E ∝ 1

2

1
iσ
0

⎛

⎝

⎜
⎜
⎜
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⎟

exp ikz z( ) ,      
  
H = −iσ

kz

µω
E , (4) 
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where σ = ±1  determines the sign of the polarization.  
It is useful to introduce the complex refractive index n  and the dimensionless impedance Z  

of the medium. These are determined by the relations 

 ε = n
Z

,      µ = nZ , (5) 

which imply n = ± εµ  and Z = ± µ / ε , but do not fix the signs of n  and Z . In transparent 
media, these signs are fixed by distinguishing the “right-handed” (positive-index) and “left-
handed” (negative-index) media, where the canonical momentum (wavevector) and energy flux 
(Poynting vector) are parallel and antiparallel to each other, respectively [4–6]. Since we consider a 
non-Hermitian model including “metallic” media with complex wavevectors, it is instructive to also 
consider the complex Poynting vector [7].  

Assuming the frequency ω  to be real, the modes (3) have real wavevectors  kz  in transparent 
media and imaginary  kz  in metallic media. The complex Poynting vector for these modes is: 

 
   
Πz ∝ E* × H( )

z
∝

kz

µ
. (6) 

Thus, sgn µ( )  distinguishes “right-handed” and “left-handed” media with parallel and antiparallel 
canonical momentum and energy flux. Choosing the “+” sign for the refractive index of “right-
handed” media, n = + εµ , and the “–” sign for the “left-handed” media, n = − εµ , and using 
Eq. (4), we arrive at the definition of the refractive indices and impedances in different media, as 
shown in Fig. 2(c). Using this definition, and setting  kz = nω , the relation (4) between the magnetic 

and electric fields of the bulk modes becomes H = −iσ Z −1E . 
We now consider the helicity of the bulk modes. As shown in detail in Ref. [8] (see also [9–

11]), it is determined by the biorthogonal non-Hermitian formalism for Maxwell equations, where 
the “right” and “left” (adjoint) wavefunctions are given by ψ = E,H( )T  and 

 !ψ = εE,µH( )T ≡ D,B( )T , whereas the helicity operator is: 

 

 

Ŝ =
0 iηZ

−iηZ −1 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, (7) 

where η = n / n  is the parameter indicating the phase of the refractive index. Note that in the 
alternative non-Hermitian formalism of Eq. (7) in the main text, using the “right” and “left” 
wavefunctions ′ψ = E,B( )T  and  !ψ = D,H( )T , the helicity operator becomes: 

 

 

ˆ ′S =
0 iηn−1

−iηn 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. (8) 

It is worth noticing that the conditions for Eqs. (7) and (8) to be Hermitian (i.e., proportional to the 
Pauli matrix σ̂ 2 ), η 2Z 2 = 1 and n2 = 1 , determine the transitions in the pair of polarization indices 
v  , Eq. (8) in the main text. In any of these representations, the circularly-polarized plane waves (4) 
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with H = −iσ Z −1E  are eigenmodes of the helicity operator with the eigenvalues Eq. (2) in the main 
text, which could also be written as expectation values: 

 
  
S =

!ψ *Ŝψ
!ψ *ψ

=ησ . (9) 

Note that the norm 
 
!ψ *ψ = ε + µ Z −2( ) E 2  vanishes in metallic media with εµ < 0 . However, the 

ratio (9) remains finite. Furthermore, the inevitable dispersion in metals modifies this norm to 

 
!ε + !µ Z −2( ) E 2 , where  !ε , !µ( ) = ε ,µ( )+ω d ε ,µ( ) / dω ; this makes the norm positive-defined and 

does not affect the expectation value (9) [8]. 
Thus, the helicity (9) always equals to 1 in absolute value, while its phase, with respect to the 

vacuum value σ , is determined by the phase of the complex refractive index. This yields the 
topological classification of optical media by the “helicity  ! 4  winding number”   w = 2 / π( )Arg η( ) , 
Eq. (3) in the main text, as discussed in the main text and shown in Fig. 2(b). 

It is worth remarking on the unusual behavior of the bulk modes near the exceptional points 
ε = 0  and µ = 0 . In vacuum (ε = µ = 1 ), the bulk modes with well-defined helicity are the two 

orthogonal eigenvectors of the σ̂ 2  Pauli matrix:  ψ = E,H( )T ∝ 1,∓i( )T . In the ε = 0  exceptional 
point, the impedance becomes infinite, and the two bulk modes coalesce to a single “chiral” mode 
[12–15] with only-magnetic field: ψ c = E,H( )T ∝ 0,1( )T . Here the magnetic field can still have two 
polarizations, and the “chirality” is assumed in the space of Pauli matrices σ̂ i , i.e., the “chiral” mode 
is a single eigenvector of σ̂ 3 . Such anomalous modes manifest themselves in “epsilon-near-zero” 
materials [16–18]. In the µ = 0  exceptional point, the “chiral” mode has only the electric field: 

ψ c = E,H( )T ∝ 1,0( )T . 
We also note that the non-Hermitian σ̂ 1 -term in Eq. (2) can be removed by rescaling the 

electric and magnetic fields. Indeed, choosing ψ = αE,βH( )T  with β /α = Z , the equation (2) 
becomes:  

 Ŝ ⋅ p̂( )ψ = −nωσ̂ 2ψ . (10) 

However, this scaling is: (i) singular in the exceptional points, and (ii) cannot remove the non-
Hermitian terms simultaneously in two media. In the case of two media, performing such scaling in 
the medium 1, results in the non-Hermitian equation for the medium 2: 

 
   
Ŝ ⋅ p̂( )ψ = −

n1ω
2

ε r + µr( )σ̂ 2 + i ε r − µr( )σ̂ 1
⎡⎣ ⎤⎦ψ , (11) 

where n1  is the refractive index of the first medium, whereas  ε r = ε2 / ε1  and  µr = µ2 / µ1  are the 
relative permittivity and permeability. Thus, the Maxwell interface can be considered as an interface 
between the “Hermitian vacuum”, with the substitution ω → n1ω , and a “non-Hermitian medium” 
determined by the relative parameters  ε r  and  µr , Eqs. (9) in the main text. 
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Supplementary Note 2. Complex Chern numbers for photons in a medium 
 

In most known topological wave systems, the topological numbers are associated with 
properties of the system Hamiltonian over momentum space. The helicity winding number, Eq. (3) 
in the main text, is a different topological construction, which is based on the behavior of the helicity 
operator over the parameter  ε ,µ( ) -space. Nonetheless, it can also be related to more familiar Chern 
numbers defined via the integration of the bulk eigenmodes in momentum space. 

The Chern numbers of free-space photons are well understood [1]. The free-space eigenmodes 
with well-defined energy and helicity are circularly-polarized plane waves propagating in an 
arbitrary direction determined by the wavevector  k . The transversality conditions   E ⋅k = H ⋅k = 0  
make the polarization vectors effectively  k -dependent and generate the Berry connection and 
curvature in momentum space. The Berry connection has the form of a helicity-dependent monopole 
at the origin of momentum space [1,19–21]:  

 
   
Fσ =σ k

k 3 . (12) 

Integrating this curvature over all directions, i.e., calculating the flux of the monopole field (12) 
through a sphere in momentum space, we obtain the helicity dependent Chern numbers of photons 
[1]: 

 
    
Cσ = 1

2π
Fσ!∫ ⋅d 2k = 2σ . (13) 

One can also introduce the spin (helicity) Chern number 
  
C spin = σCσ

σ =±1
∑ = 4  [1,22,23]. 

Calculations in an isotropic lossless medium, using circularly-polarized plane-wave modes 
similar to (4), result in the same Berry curvature (12). This is because the Berry curvature (12) 
originates from properties of the circular-polarization vectors and transversality conditions, which 
remain unchanged in a homogeneous isotropic medium. Equation (12) in a medium can be formally 

derived using the wavefunction    ψ = E,H( )T
 , the “left wavefunction”     

!ψ = εE,µH( )T
, the Berry 

connection    A
σ = −i !ψ ∇k ψ !ψ ψ , and curvature  F

σ = ∇k × Aσ . The only modification of the 
Berry curvature as compared to the free-space case is the value of the wavevector  k , which changes 
between different media. In particular, in metallic media with  εµ < 0 , the wavevectors become 
purely imaginary, assuming real frequency ω  in Eq. (3). Thus, one can say that the presence of a 
medium modifies the properties of momentum space but preserves the form of the Berry-curvature 
monopole (12). 

The modification of the wavevector, compared with the free-space case, is described by the 
transformation   k → nk . To understand how this affects the topological properties of light, i.e., the 
Chern numbers (13), we note that the factor   1/ k 2  in the monopole (12) is compensated by the 
surface integration    d 2k  in Eq. (13). The remaining part of the monopole (12) is then transformed as 

 
   
σ k

k
→σ n

n
k
k
=ησ k

k
=S 

k
k

. (14) 

From here, it is easy to conclude that the Chern number (13) and spin (helicity) Chern number in a 
medium become  
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    C
σ = 2ησ = 2S ,        C

spin = 4η . (15) 

Remarkably, the Chern numbers of photons in media become complex. This is caused by the 
complexification of the momentum  k -space (assuming the frequency ω  to be real). Indeed, in free 

space, only the direction of the wavevector,    k / k = k / k = k / k ⋅k , matters. In a medium, both 

the direction and phase of the wavevector,   Arg k ⋅k , play roles. Therefore, in contrast to the 
majority of known topological wave systems, the phase rather than magnitude of the Chern 
numbers describe topological properties of Maxwell equations. While the magnitude is constant and 
unchanged between different media, the phase can vary and yields exactly the “helicity winding 
number”, Eq. (3) in the main text: 

 
  
w = 2

π
Arg C spin( ) = 2

π
Arg η( ) . (16) 

This describes the relation between the helicity winding number introduced in this work and the 
widely known Chern numbers. To the best of our knowledge, the system considered in this work, 
i.e., Maxwell equations in an isotropic lossless medium, provide the first example of a wave system 
with complex Chern numbers. Note that in the particular case of an interface between right-handed 
(  ε > 0 ,  µ > 0 ,  η = 1 ) and left-handed ( ε < 0 ,  µ < 0 ,  η = −1) transparent media, the presence of 
surface modes agrees with standard models involving real Chern numbers. Indeed, the spin Chern 
numbers in the two media equal   C spin = 4  and   C spin = −4 , respectively. In the known quantum spin-
Hall effect case for electrons [22,23], an interface with spin Chern numbers   C spin = ±2  results in a 
single edge state propagating in each direction. In the Maxwell case under consideration, the 
contrast of the spin Chern numbers is twice as large, and this results in two surface waves (TE and 
TM) propagating in a given direction at an interface between a right-handed and left-handed 
medium, see Fig. 3(a). 

It is worthwhile to compare the above calculation to very recent studies [24,25] of edge states in 
non-Hermitian tight binding models, which appeared after the submission of this work. These papers 
identified non-Hermitian systems where the correct bulk-boundary correspondence does not involve 
bulk modes with purely real wavevectors  k  (i.e., propagating Bloch modes). Due to the “non-
Hermitian skin effect”, the bulk modes also become evanescent (acquiring complex wavevectors). 
In this case, Refs. [24,25] showed that the number of edge states only changes at phase transitions 
where the bulk modes delocalize. Our phase diagram Fig. 3(a) for the helicity winding number is 
fully consistent with these studies; in particular,  k  vanishes and the number of surface modes 
changes at the transition points  ε = 0  and  µ = 0 , implying a transition from localized to propagating 
bulk modes. 
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Supplementary Note 3. Surface modes of Maxwell equations 
 

We now consider a planar x = 0  interface between two isotropic lossless homogeneous media: 

 

  

ε , µ =
ε1, µ1 for x > 0

ε2 , µ2 for x < 0

⎧
⎨
⎪

⎩⎪
 (17) 

We also use the relative permittivity and permeability  ε r = ε2 / ε1  and  µr = µ2 / µ1 . Such an interface 
can support TE or TM surface waves [1,26–32]. Assuming the propagation along the  z -axis, these 
waves are described by the 2D scalar wave equations: 

 
  
ΔEy + εµω

2Ey = 0       (TE),  

 
  
ΔH y + εµω

2H y = 0       (TM), (18) 

where 
  
Δ = ∂2

∂x2 +
∂2

∂z2  and the other nonzero field components are determined by 

 
 
Hz = − i

µω
∂Ey

∂x
,     

 
Hx =

i
µω

∂Ey

∂z
      (TE),  

 
 
Ez =

i
εω

∂H y

∂x
,     

 
Ex = − i

εω
∂H y

∂z
      (TM). (19) 

We seek the modes localized at the interface, i.e., having the form 

 
  

Ey , H y{ }∝ exp ikz z −κ1,2 x( ) ,       
ε1,2µ1,2ω

2 = kz
2 −κ1,2

2 , (20) 

where κ1,2 > 0  are the real spatial-decay constants in the two media, Ey  and Hy  correspond to the 
TE and TM modes, subscripts “1” and “2” correspond to the fields in the two media, and we used 
the dispersion relation (3) in each of the media. Substituting Eqs. (20) into wave equations (18) and 
(19), and using the continuity of the tangential components   

Ey ,z  and   
H y ,z  for the TE and TM 

modes, we obtain [1,30–32]: 

 
 

κ1

µ1

+ 
κ 2

µ2

= 0    (TE),       
 

κ1

ε1

+ 
κ 2

ε2

= 0    (TM). (21) 

The surface Maxwell modes are fully described by the algebraic equations (20) and (21). First, 
since κ1,2 > 0  is the necessary condition of the surface-mode localization, it is evident from 

Eqs. (21) that: (i) there are no surface modes at an interface with  µr > 0, ε r > 0( ) ; (ii) there can be 

both TE and TM modes at an interface with  µr < 0, ε r < 0( ) ; (iii) there is only one TM mode at an 

interface with  µr > 0, ε r < 0( ) ; and (iv) there is only one TE mode at an interface with 

 µr < 0, ε r > 0( ) . This precisely coincides with the phase diagram in Fig. 3(a), which is described by 

the “helicity winding number”   w ε r ,µr( )  and bulk-boundary correspondence, Eqs. (3)–(5) in the 
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main text. Moreover, it is easy to see that the expectation value of the helicity (7)–(9), determined by 
the product H* ⋅E , vanishes identically for the TE and TM surface waves:  

  Ssurf ≡ 0 . (22) 

Second, solving equations (20) and (21), we obtain 

 
  
kz

2 =κ1
2 µr ε r − µr( )

ε rµr −1
,     

 
ε1µ1ω

2 =κ1
2 1− µr

2

ε rµr −1
      (TE),  

 
  
kz

2 =κ1
2 ε r µr − ε r( )

ε rµr −1
,     

 
ε1µ1ω

2 =κ1
2 1− ε r

2

ε rµr −1
      (TM). (23) 

Note that the solutions (23) depend only on the relative parameters  ε r  and  µr  with the substitution 
ω → n1ω , as indicated in Eq. (11). Most importantly, since  µr < 0  ( ε r < 0 ) for the TE (TM) modes, 

the sign of   kz
2  is fully determined by the product of the two non-topological polarization indices, 

Eq. (8) in the main text, at the interface,   v ε r ,µr( ) ≡ v1,v2{ } : 

   kz
2 ∝−v1 v2    (TE),        kz

2 ∝ v1 v2    (TM), (24) 

This shows that changing the sign of v1  or v2  corresponds to the swapping of the TE and TM 
modes. This is schematically shown in Fig. 3(b), where the v1 = 0  and v2 = 0  lines divide the 

 ε r ,µr( ) -plane into alternating TE and TM zones. It should be remembered, however, that the “two-

mode” zone with  ε r < 0  and  µr < 0  supports both TE and TM modes in every point, Fig. 3(a). 
Analyzing the expressions (24) with Eqs. (3) and (8) in the main text, we find that in the “one-
mode” TE (TM) zone with  ε r > 0 ,  µr < 0  ( ε r < 0 ,  µr > 0 ), the non-Hermitian indices are v1 > 0 , 

v2 < 0  ( v1 > 0 , v2 < 0 ), so that this mode is always propagating:   kz
2 > 0 . At the same time, in the 

“two-mode” zone  ε r < 0  and  µr < 0 , with simultaneously existing TE and TM modes, one of the 

modes is propagating (  kz
2 > 0 ), while the other one is evanescent (  kz

2 < 0 ). Crossing the line v1 = 0  
or v2 = 0  in the “two-mode” zone switches the propagating TE (TM) mode to the evanescent TE 
(TM) mode and vice versa, as shown in Fig. 3(c). 

Thus, the topological numbers, Eq. (3) in the main text, and polarization indices, Eq. (8) in the 
main text, fully control the domains of the existence and propagation properties,   

sgn kz
2( ) , of surface 

Maxwell waves. However, due to the non-Hermitian character of these modes, their frequencies ω  
can also be complex (either real or imaginary in lossless media). Equations (23) show that this 
behavior is not described by the above indices and involves additional frequency zeros in the 

 ε r = −1  and  µr = −1 points. These zeros divide the phase diagram of the propagating surface modes 

(  kz
2 > 0 ), Fig. 3(c), into real-frequency (ω 2 > 0 ) and imaginary-frequency (ω 2 < 0 ) zones, as 

shown in Fig. 3(d). Due to the ε1µ1  prefactor in Eqs. (23), these zones are opposite for the 
transparent-first-medium and metallic-first-medium cases (this does not break the symmetry 1↔ 2  
between the two media because the coordinates  ε r ,µr( )  are asymmetric). Considering only 
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propagating surface waves with real frequencies, we obtain the phase diagrams previously found in 
Refs. [1,31,32]. 

For completeness, we also find the complex energy flux (Poynting vector) in surface 
Maxwell modes. Locally, it is given by 

 
  
Πz ∝−Ey

*Hx =
kz

µω
Ey

2
   (TE),      

  
Πz ∝ Ex

*H y =
kz

*

εω
H y

2
   (TM). (25) 

Since its direction is opposite in the two media, it makes sense to calculate the integral Poynting 
vector for the localized surface wave. Integrating Eqs. (25) across the interface, ... = ...∫ dx , we 
find 

 
  
Πz ∝

kz

µ1ωκ1

1− µr
−2( ) Ey

2
   (TE),      

  
Πz ∝

kz
*

ε1ωκ1

1− ε r
−2( ) H y

2
   (TM). (26) 

Similar to the bulk modes, the Poynting vector (26) is either parallel or anti-parallel to the 
wavevector  kz , which distinguishes the “right-handed” and “left-handed” surface waves [31,32]. By 

analogy with the bulk modes, one can also define the “surface refractive index”,   nsurf
2 = kz

2 /ω 2 , 
using the dispersion relations (23). This yields 

 
  
nsurf

2 = ε1µ1

µr ε r − µr( )
1− µr

2    (TE),      
  
nsurf

2 = ε1µ1

ε r µr − ε r( )
1− ε r

2    (TM), (27) 

One can fix the signs (phases) of these indices, using the mutual direction of the complex Poynting 
vector (26) and the wavevector  kz . However, it should be noticed that the time-averaged Poynting 
vector (25) and (26) is well-defined only for surface waves with real frequencies ω .  

Supplementary Figure 1 shows the phase diagrams for the surface refractive index (27) for the 
propagating (   kz

2 > 0 ) and evanescent (  kz
2 < 0 ) surface modes. Note that our diagrams separating the 

“right-handed” and “left-handed” surface modes coincide with those in Ref. [32] in the   kz
2 > 0 , 

ε1µ1 > 0  case, but differs in the   kz
2 > 0 , ε1µ1 < 0  case. The presence of the “left-handed” and “right-

handed” surface waves, together with the nontrivial behavior of the surface refractive indices (27) 
suggests that 1D interfaces between 2D interfaces with different properties, i.e., 1D edges between 
four media with ε1,2,3,4  and µ1,2,3,4 , could support 1D edge Maxwell modes; this is a problem for 
future studies. 
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